Bunch v0.3.0 Bunch.Math View Source
A bunch of math helper functions.
Link to this section Summary
Link to this section Functions
Link to this function
div_rem(dividend, divisor)
View Source
div_rem(dividend, divisor)
View Source
div_rem(divident :: non_neg_integer(), divisor :: pos_integer()) ::
{div :: non_neg_integer(), rem :: non_neg_integer()}
div_rem(divident :: non_neg_integer(), divisor :: pos_integer()) :: {div :: non_neg_integer(), rem :: non_neg_integer()}
Applies div/2
and rem/2
to arguments and returns results as a tuple.
Example
iex> Bunch.Math.div_rem(10, 4)
{div(10, 4), rem(10, 4)}
Link to this function
div_rem(dividend, divisor, accumulated_remainder)
View Source
div_rem(dividend, divisor, accumulated_remainder)
View Source
div_rem(
divident :: non_neg_integer(),
divisor :: pos_integer(),
accumulated_remainder :: non_neg_integer()
) :: {div :: non_neg_integer(), rem :: non_neg_integer()}
div_rem( divident :: non_neg_integer(), divisor :: pos_integer(), accumulated_remainder :: non_neg_integer() ) :: {div :: non_neg_integer(), rem :: non_neg_integer()}
Works like div_rem/2
but allows to accumulate remainder.
Useful when an accumulation of division error is not acceptable, for example
when you need to produce chunks of data every second but need to make sure there
are 9 chunks per 4 seconds on average. You can calculate div_rem(9, 4)
,
keep the remainder, pass it to subsequent calls and every fourth result will be
bigger than others.
Example
iex> 1..10 |> Enum.map_reduce(0, fn _, err ->
...> Bunch.Math.div_rem(9, 4, err)
...> end)
{[2, 2, 2, 3, 2, 2, 2, 3, 2, 2], 2}