

 bubble_match

 v0.6.4

 Table of contents

 	Modules

 	BubbleMatch

 	BubbleMatch.Entity

 	BubbleMatch.Sentence

 	BubbleMatch.Sigil

 	BubbleMatch.Token

 	BubbleMatch.Unidekode

BubbleMatch

Bubblescript Matching Language (BML)
[image: Build Status]
[image: Hex pm]
BML is a rule language for matching natural language against a rule
base. Think of it as regular expressions for sentences. Whereas
regular expressions work on individual characters, BML rules primarily
work on a tokenized representation of the string.
BML ships with a builtin string tokenizer, but for production usage
you should look into using a language-specific tokenizer, e.g. to use
the output of Spacy's Doc.to_json function.
The full documentation on the BML syntax and the API reference is
available on hexdocs.pm. To try
out BML, check out the demo
environment, powered by Phoenix
Liveview.
Examples
Matching basic sequences of words:
	Match string	Example	Matches?
	hello world	Hello, world!	yes
	hello world	Well hello world	yes
	hello world	hello there world	no
	hello world	world hello	no

Matching regular expressions:
	Match string	Example	Matches?
	/[a-z]+/	abcd	yes

Match entities, with the help of Spacy and Duckling preprocessing and
tokenizing the input:
	Match string	Matches	Does not match
	[person]	George Baker	Hello world
	[time]	I walked to the store yesterday	My name is John

Rules overview
The match syntax is composed of adjacent and optionally nested,
rules. Each individual has the following syntax:
Basic words
hello world
Basic words; rules consisting of only alphanumeric characters.
Matching is done on both the lowercased, normalized, accents-removed
version of the word, and on the lemmatization of the word. The lemma
of a word is its base version; e.g. for verbs it is the root form (are
→ be, went → go); for nouns it is the singular form of the word.
Some languages (german, dutch, …) have compound nouns, that are often
written both with and without spaces or dashes. Use a dash (-) to
match on such compound nouns: the rule was-machine matches all of
wasmachine, was-machine and was machine.
The apostrophe sign is also supported as part of a word, for instance
when matching something like Martha's cookies. In this case, the
apostrophe 's part is called the particle. For places where the
apostrophe is a verb, e.g. in he'll do that, you can write the verb
("will") in full in the BML, as Spacy will determine the proper
verb. In that case, the BML query would be he will do that, which
would also match the version with the apostrophe. Same goes for
don't, he's, etc.
Literals
"Literal word sequence"
Matches a literal piece of text, which can span multiple
tokens. Matching is case insensitive, and also insensitive to
the presence of accented characters.
Ignoring tokens: _
hello _ world
The standalone occurence of _ matches 0-5 of any available token,
non-greedy. This can be used in places where you expect a few tokens
to occur but you don't care about the tokens.
Matching a range of tokens
	[1] match exactly one token; any token
	[2+] match 2 or more tokens (greedy)
	[1-3] match 1 to 3 tokens (greedy)
	[2+?] match 2 or more tokens (non-greedy)
	[1-3?] match 1 to 3 tokens (non-greedy)

Use this when you know how many tokens you need to match, but it does
not matter what the contents of the tokens is.
Entities
Entity tokens: [email] matches a token of type :entity with
value.kind == email. Entities are extracted by external means,
e.g. by an NLP NER engine like Duckling.
Entities are automatically captured under a variable with the same
name as the entity's kind.
The default list of supported entities is the following:
	amount_of_money (duckling)
	credit_card_number (duckling)
	date (spacy)
	distance (duckling)
	duration (duckling)
	email (duckling)
	event (spacy)
	fac (spacy)
	gpe (spacy)
	language (spacy)
	law (spacy)
	loc (spacy)
	money (spacy)
	norp (spacy)
	number (duckling)
	ordinal (duckling)
	org (spacy)
	percent (spacy)
	person (spacy)
	phone_number (duckling)
	product (spacy)
	quantity (duckling)
	temperature (duckling)
	time (duckling)
	url (duckling)
	volume (duckling)
	work_of_art (spacy)

From our experience, Duckling entities work much better than Spacy
entities, and are preferred for use. Besides being more accurate, the
Duckling entities also provide more metadata, like valid UTC times
when a date is recognized.
Regular expressions
/regex/
Matches the given regex against the sentence. Regexes can span
multiple tokens, thus you can match on whitespace and other token
separators. Regular expressions are case insensitive.
Regular expression named capture groups are also supported, to capture
a specific part of a string: /KL(?<flight_number>\d+)/ matches
KL12345 and extracts 12345 as the flight_number capture.
Per-token regular expressions
/regex/T
The special regex flag T is used to indicate that the regex should be run
against a single token instead of against the raw text of the sentence.
This will make the regex capturing much more 'narrow'. The regex start and end
symbols (^ and $) are automatically added to the regex, so eg the BML
/\d{4}/T will match the token "1234" but not "12345".
OR / grouping construct
Use parentheses combined with the pipe | character to specify an OR clause.
	pizza | fries | chicken - OR-clause on the root level without
parens, matches either token

	a (a | b | c) - use parentheses to separate OR-clauses;
matches one token consisting of first a, and then a, b or
c.

	(hi | hello)[=greeting] matches 1 token and stores it in greeting

Parenthesis with | can also be used to capture a sequence of tokens together as one group:
	(a)[3+] matches 3 or more token consisting of a

Permutation construct
The permutation construct using pointy brackets, <, > matches the
given rules in no particular order.
< a b c > matches any permutation of the sequence a b c; a c b, or b a c, or c a b, etc
An implicit _ is inserted between all rules. So the rule <a b> can
also be written as (a _ b | b _ a).
Start / end sentence markers
To match the beginning of end of sentences, the following constructs can be used:
	[Start] Matches the start of a sentence
	[End] Matches the end of a sentence

The [Start] and [End] symbols are not always the same as the
start and end of the input string, as sometimes the user input is
split into multiple sentences, based on the Spacy sentence
tokenizer.

Part-of-speech tags (word kinds)
To be able to disambiguate between word kinds, the % construct
matches on the POS-tag of a token:
	%VERB matches any verb
	%NOUN matches any noun

Any other POS Spacy tags are
valid as well.
Optionality modifier
An appended ? makes the given rule optional (it needs to occur 0 or 1 times).
Repetition modifier
Any rule can have a [] block which contains a repetition modifier
and/or a capture expression.
	a[1] match exactly one a word
	a[2+] match 2 or more a's (greedy)
	a[1-3] match 1 to 3 a's (greedy)
	a[2+?] match 2 or more a's (non-greedy)
	a[1-3?] match 1 to 3 a's (non-greedy)

Capture modifier
(my name is _)[=x] stores the entire token sequence "My name is john"
Punctuation
Punctuation is optional, and can be ignored while creating match
rules. However, punctuation tokens are stored in the tokenized
version of the input; in fact, multiple tokenizations of the input
are stored for each sentence, one without and one with with the
punctuation.
The sentence Hello, world. is stored both as:
	Hello world
	Hello , world .

Matching punctuation can be done by including the punctuation into '
literal quotes.
Sentence tokenization
The expression matching works on a per-sentence basis; the idea is
that it does not make sense to create expressions that span over
sentences.
The builtin sentence tokenizer (BubbleMatch.Sentence.Tokenizer) does
not have the concept of sentences, and thus treats each input as a
single sentence, even in the existence of periods in the input.
However, the prefered way of using this library is by running the
input through an NLP preprocessor like Spacy, which does tokenize an
input into individual sentences.
Sigil
For use within Elixir, it is possible to use a ~m sigil which parses
the given BML query on compile-time:
defmodule MyModule do
 use BubbleMatch.Sigil

 def greeting?(input) do
 BubbleMatch.match(~m"hello | hi | howdy", input) != :nomatch
 end
end
Installation
If available in Hex, the package can be installed
by adding bubble_match to your list of dependencies in mix.exs:
def deps do
 [
 {:bubble_match, "~> 0.1.0"}
]
end
Documentation can be generated with ExDoc
and published on HexDocs. Once published, the docs can
be found at https://hexdocs.pm/bubble_match.

 Anchor for this section

 Summary

 Types

 input()

 match_result()

 parse_opt()

 parse_opts()

 t()

 Functions

 match(expr, input)

 Match a given input against a BML query.

 parse(expr, opts \\ [])

 Parse a string into a BML expression.

 parse!(expr, opts \\ [])

 Parse a string into a BML expression, raises on error.

 Anchor for this section

Types

 Link to this type

 input()

 View Source

 Specs

 input() :: [input()] | String.t() | BubbleMatch.Sentence.t()

 Link to this type

 match_result()

 View Source

 Specs

 match_result() :: :nomatch | {:match, captures :: map()}

 Link to this type

 parse_opt()

 View Source

 Specs

 parse_opt() :: {:expand, boolean()} | {:concepts_compiler, (... -> any())}

 Link to this type

 parse_opts()

 View Source

 Specs

 parse_opts() :: [parse_opt()]

 Link to this type

 t()

 View Source

 Specs

 t() :: BubbleMatch

 Anchor for this section

Functions

 Link to this function

 match(expr, input)

 View Source

 Specs

 match(expr :: t() | String.t(), input :: input()) :: match_result()

Match a given input against a BML query.

 Link to this function

 parse(expr, opts \\ [])

 View Source

 Specs

 parse(expr :: String.t(), parse_opts()) :: {:ok, t()} | {:error, String.t()}

Parse a string into a BML expression.

 Link to this function

 parse!(expr, opts \\ [])

 View Source

 Specs

 parse!(expr :: String.t(), parse_opts()) :: t()

Parse a string into a BML expression, raises on error.

BubbleMatch.Entity

 Anchor for this section

 Summary

 Functions

 new(provider, kind, value, raw, extra \\ %{})

 Anchor for this section

Functions

 Link to this function

 new(provider, kind, value, raw, extra \\ %{})

 View Source

BubbleMatch.Sentence

A data structure which holds a tokenized sentence.
The struct contains the text of the sentence (in the text
property), and a list of tokenizations. Normally, a sentence has
just one tokenization, but adding entities to the sentence might
cause several tokens in the sentence to be replaed with an entity
token, thus creating the need for multiple tokenizations (as you
still might want to match on the original sentence, e.g. in the case
of a falsely identified entitiy)

 Anchor for this section

 Summary

 Types

 t()

 Functions

 add_duckling_entities(sentence, entities)

 Enrich the given sentence with entities extracted via Duckling

 from_spacy(s)

 Convert a JSON blob from Spacy NLP data into a sentence.

 naive_tokenize(input)

 Tokenize an input into individual tokens.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: BubbleMatch.Sentence

 Anchor for this section

Functions

 Link to this function

 add_duckling_entities(sentence, entities)

 View Source

 Specs

 add_duckling_entities(sentence :: t(), entities :: list()) :: t()

Enrich the given sentence with entities extracted via Duckling
This function takes the output of the Duckling JSON
format and enriches the given sentence with the entities
that were found using Duckling.

 Link to this function

 from_spacy(s)

 View Source

 Specs

 from_spacy(spacy_json :: map()) :: t()

Convert a JSON blob from Spacy NLP data into a sentence.
This function takes the output of Spacy's Doc.to_json
function and converts it into a sentence.
Note that the Spacy tokenizer detects multiple sentences. However,
in many cases the result is suboptimal and therefore we always
construct a single sentence, given our use case of chat messages.

 Link to this function

 naive_tokenize(input)

 View Source

 Specs

 naive_tokenize(input :: String.t()) :: [t()]

Tokenize an input into individual tokens.
As the name suggests, this tokenization is quite naive. It only
splits strings on whitespace and punctuation, disregarding any
language-specific information. However, for 'basic' use cases, and
for our test suite, it is good enough.

BubbleMatch.Sigil

 Anchor for this section

 Summary

 Functions

 sigil_m(arg, list)

 Define the ~m sigil for compile-time parsing of BML expressions.

 Anchor for this section

Functions

 Link to this macro

 sigil_m(arg, list)

 View Source

 (macro)

Define the ~m sigil for compile-time parsing of BML expressions.
For use within Elixir it is possible to use a ~m sigil which
parses the given BML query on compile-time:
defmodule MyModule do
 use BubbleMatch.Sigil

 def greeting?(input) do
 BubbleMatch.match(~m"hello | hi | howdy", input) != :nomatch
 end
end

BubbleMatch.Token

A token is a single word or a part of the sentence. A sentence is a sequence of tokens.
Each token contains information and metadata that is used to match
sentences on, and to extract information from.

 Anchor for this section

 Summary

 Types

 t()

 Tokens contain the following fields

 Functions

 base_form(str)

 Get the base form of the given string; the downcased, ASCII version.

 entity?(t, kind)

 Test whether a token is an entity of the given kind.

 from_duckling_entity(duckling_entity)

 Constructs a token from a Duckling entity definition

 from_spacy(t)

 Given a single token in Spacy's JSON format, convert it into a token.

 from_spacy_entity(spacy_entity_json, sentence_text)

 Constructs a token from a Spacy entity definition

 pos?(arg1, tag)

 Test whether a token mathces the given POS (part-of-speech) tag.

 punct?(token)

 Test whether a token is punctuation

 word?(t, word)

 Test whether a token matches the given (optionally normalized) word.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %BubbleMatch.Token{
 end: term(),
 index: term(),
 raw: term(),
 start: term(),
 type: term(),
 value: term()
}

 Tokens contain the following fields:
	raw - the raw text value of the token, including any surrounding
whitespace.

	value - the normalized value of the token. In the case of word
tokens, this is usually the normalized, lowercased version of the
word. In the case of entities, this value holds a map with keys
kind, provider and value.

	start - the start index; where in the original sentence the
token starts.

	end - the end index; where in the original sentence the
token ends.

	index - the (zero-based) token index number; 0 if it's the first
 token, 1 if it's the second, etc.

	type - the type of the token; an atom, holding either :entity,
:spacy, :naive, depending on the way the token was
originally created.

 Anchor for this section

Functions

 Link to this function

 base_form(str)

 View Source

Get the base form of the given string; the downcased, ASCII version.

 Link to this function

 entity?(t, kind)

 View Source

Test whether a token is an entity of the given kind.

 Link to this function

 from_duckling_entity(duckling_entity)

 View Source

Constructs a token from a Duckling entity definition

 Link to this function

 from_spacy(t)

 View Source

 Specs

 from_spacy(spacy_json_token :: map()) :: t()

Given a single token in Spacy's JSON format, convert it into a token.

 Link to this function

 from_spacy_entity(spacy_entity_json, sentence_text)

 View Source

Constructs a token from a Spacy entity definition

 Link to this function

 pos?(arg1, tag)

 View Source

Test whether a token mathces the given POS (part-of-speech) tag.

 Link to this function

 punct?(token)

 View Source

Test whether a token is punctuation

 Link to this function

 word?(t, word)

 View Source

Test whether a token matches the given (optionally normalized) word.

BubbleMatch.Unidekode

Documentation for Unidekode.

 Anchor for this section

 Summary

 Functions

 drop_accented(string)

 Remove accented characters from the string, but keeping special characters like emoji

 to_ascii(string)

 Transliterate Unicode characters to US-ASCII.

 Anchor for this section

Functions

 Link to this function

 drop_accented(string)

 View Source

 Specs

 drop_accented(binary()) :: binary()

Remove accented characters from the string, but keeping special characters like emoji

 Examples

iex> BubbleMatch.Unidekode.drop_accented("código")
"codigo"

iex> BubbleMatch.Unidekode.drop_accented("código 👍")
"codigo 👍"

 Link to this function

 to_ascii(string)

 View Source

 Specs

 to_ascii(binary() | charlist()) :: binary() | charlist()

Transliterate Unicode characters to US-ASCII.

 Examples

iex> BubbleMatch.Unidekode.to_ascii("código")
"codigo"

iex> BubbleMatch.Unidekode.to_ascii("código😀")
"codigo"

iex> BubbleMatch.Unidekode.to_ascii('código')
'codigo'

iex> BubbleMatch.Unidekode.to_ascii('código℗')
'codigo'

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

