

 BroadwayRabbitMQ

 v0.7.2

 Table of contents

 	Changelog

 	Modules

 	BroadwayRabbitMQ.Producer

Changelog

v0.7.2 (2022-01-12)
	Support nimble_options 0.4.0 alongside 0.3.x

v0.7.1 (2021-11-25)
	Add support to AMQP 3.0

v0.7.0 (2021-08-30)
	Add support to AMQP 2.0
	Require Broadway 1.0

v0.6.5 (2020-12-11)
	Add support for a few Telemetry events. See the "Telemetry" section
in the docs for BroadwayRabbitMQ.Producer.

	Add support for :consume_options when starting a
BroadwayRabbitMQ.Producer to pass options down to AMQP.Basic.consume/4.

v0.6.4 (2020-11-23)
	Bump nimble_options dependency to 0.3.5 which fixes some deprecation
warnings.

	Fix a few potential RabbitMQ issues like possible connection leaking (see
#83).

v0.6.3 (2020-11-19)
	Start using nimble_options for validation. This has no practical
consequences on the API but introduces a new dependency in broadway_rabbitmq
(which was already used by Broadway).
	Raise if acking messages fails. See the discussion in
dashbitco/broadway#208.

v0.6.2 (2020-10-24)
	Deprecate use of a default :on_failure option.
	Expose always-present :amqp_channel metadata containing the AMQP.Channel
struct.

v0.6.1 (2020-06-05)
	Add support for the :after_connect option.
	Add auth_mechanisms to the supported connection options for RabbitMQ.
	Support passing in an AMQP connection name.
	Update Broadway requirement to ~> 0.6.0 (it was exactly 0.6.0) before.

v0.6.0 (2020-02-19)
	Update Broadway requirement to 0.6.0.
	Re-initialize client options on every reconnect. This means that the :merge_options
function is called on every reconnect, allowing to do things such as round-robin
on a list of RabbitMQ URLs.
	Remove support for the deprecated :requeue option. Use :on_success/:on_failure
instead.
	Improve logging on RabbitMQ disconnections and reconnections.

v0.5.0 (2019-11-04)
	Add support for configuring acking behaviour using :on_success and :on_failure options
	Add support for declare options :no_wait and :arguments
	Handle :auth_failure, :unknown_host and :socket_closed_unexpectedly errors
	Add support for a function as the :connection
	Add support for :merge_options option
	Update to Broadway v0.5.0

v0.4.0 (2019-08-06)
	Add :declare and :bindings options to producers
	Handle consumer cancellation by reconnecting

v0.3.0 (2019-06-06)
	Allow overriding :buffer_size and :buffer_keep
	Make :buffer_size required if :prefetch_count is set to 0
	Allow passing RabbitMQ connection options via an AMQP URI

v0.2.0 (2019-05-09)
	New option :metadata that allows users to select which metadata should be retrieved
and appended to the message struct
	New option :requeue that allows users to define a strategy for requeuing failed messages

v0.1.0 (2019-04-09)
	Initial release

BroadwayRabbitMQ.Producer

A RabbitMQ producer for Broadway.
Features
	Automatically acknowledges/rejects messages.
	Handles connection outages using backoff for retries.

For a quick getting started on using Broadway with RabbitMQ, please see
the RabbitMQ Guide.
Options
	:buffer_size - Optional, but required if :prefetch_count under :qos is
set to 0. Defines the size of the buffer to store events without demand.
Can be :infinity to signal no limit on the buffer size. This is used to
configure the GenStage producer, see the GenStage docs for more details.
Defaults to :prefetch_count * 5.

	:buffer_keep - Optional. Used in the GenStage producer configuration.
Defines whether the :first or :last entries should be kept on the
buffer in case the buffer size is exceeded. Defaults to :last.

	:on_success - Configures the acking behaviour for successful messages.
See the "Acking" section below for all the possible values.
This option can also be changed for each message through
Broadway.Message.configure_ack/2. The default value is :ack.

	:on_failure - Configures the acking behaviour for failed messages.
See the "Acking" section below for all the possible values.
This option can also be changed for each message through
Broadway.Message.configure_ack/2. The default value is :reject_and_requeue.

	:backoff_min - The minimum backoff interval (default: 1_000).

	:backoff_max - The maximum backoff interval (default: 30_000).

	:backoff_type - The backoff strategy: :stop for no backoff and
to stop, :exp for exponential, :rand for random, and :rand_exp for
random exponential (default: :rand_exp). The default value is :rand_exp.

The following options apply to the underlying AMQP connection:
	:queue - Required. The name of the queue. If "", then the queue name will
be autogenerated by the server but for this to work you have to declare
the queue through the :declare option.

	:connection - Defines an AMQP URI or a set of options used by
the RabbitMQ client to open the connection with the RabbitMQ broker. See
AMQP.Connection.open/1 for the full list of options. The default value is [].

	:qos - Defines a set of prefetch options used by the RabbitMQ client.
See AMQP.Basic.qos/2 for the full list of options. Note that the
:global option is not supported by Broadway since each producer holds only one
channel per connection. The default value is [].
	:prefetch_size
	:prefetch_count - The default value is 50.

	:name - The name of the AMQP connection to use. The default value is :undefined.

	:backoff_min - The minimum backoff interval (default: 1_000).

	:backoff_max - The maximum backoff interval (default: 30_000).

	:backoff_type - The backoff strategy. :stop for no backoff and
to stop, :exp for exponential, :rand for random and :rand_exp for
random exponential (default: :rand_exp).

	:metadata - The list of AMQP metadata fields to copy (default: []). Note
that every Broadway.Message contains an :amqp_channel in its metadata field.
See the "Metadata" section. The default value is [].

	:declare - A list of options used to declare the :queue. The
queue is only declared (and possibly created if not already there) if this
option is present and not nil. Note that if you use "" as the queue
name (which means that the queue name will be autogenerated on the server),
then every producer stage will declare a different queue. If you want all
producer stages to consume from the same queue, use a specific queue name.
You can still declare the same queue as many times as you want because
queue creation is idempotent (as long as you don't use the passive: true
option). For the available options, see AMQP.Queue.declare/3.

	:bindings - A list of bindings for the :queue. This option
allows you to bind the queue to one or more exchanges. Each binding is a tuple
{exchange_name, binding_options} where so that the queue will be bound
to exchange_name through AMQP.Queue.bind/4 using binding_options as
the options. Bindings are idempotent so you can bind the same queue to the
same exchange multiple times. The default value is [].

	:merge_options - A function that takes the index of the producer in the
Broadway topology and returns a keyword list of options. The returned options
are merged with the other options given to the producer. This option is useful
to dynamically change options based on the index of the producer. For example,
you can use this option to "shard" load between a few queues where a subset of
the producer stages is connected to each queue, or to connect producers to
different RabbitMQ nodes (for example through partitioning). Note that the options
are evaluated every time a connection is established (for example, in case
of disconnections). This means that you can also use this option to choose
different options on every reconnections. This can be particularly useful
if you have multiple RabbitMQ URLs: in that case, you can reconnect to a different
URL every time you reconnect to RabbitMQ, which avoids the case where the
producer tries to always reconnect to a URL that is down.

	:after_connect - A function that takes the AMQP channel that the producer
is connected to and can run arbitrary setup. This is useful for declaring
complex RabbitMQ topologies with possibly multiple queues, bindings, or
exchanges. RabbitMQ declarations are generally idempotent so running this
function from all producer stages after every time they connect is likely
fine. This function can return :ok if everything went well or {:error, reason}.
In the error case then the producer will consider the connection failed and
will try to reconnect later (same behavior as when the connection drops, for example).
This function is run before the declaring and binding queues according to
the :declare and :bindings options (described above).

	:consume_options - Options passed down to AMQP.Basic.consume/4. Not all options supported by
AMQP.Basic.consume/4 are available here as some options would conflict with
the internal implementation of this producer. The default value is [].
	:consumer_tag
	:no_local
	:no_ack
	:exclusive
	:arguments

Note AMQP provides the possibility to define the AMQP connection globally.
This is not supported by Broadway. You must configure the connection
directly in the Broadway pipeline, as shown in the next section.
Example
@processor_concurrency 50
@max_demand 2

Broadway.start_link(MyBroadway,
 name: MyBroadway,
 producer: [
 module:
 {BroadwayRabbitMQ.Producer,
 queue: "my_queue",
 connection: [
 username: "user",
 password: "password",
 host: "192.168.0.10"
],
 qos: [
 # See "Back-pressure and `:prefetch_count`" section
 prefetch_count: @processor_concurrency * @max_demand
]},
 # See "Producer concurrency" section
 concurrency: 1
],
 processors: [
 default: [
 concurrency: @processor_concurrency,
 # See "Max demand" section
 max_demand: @max_demand
]
]
)
Producer concurrency
For efficiency, you should generally limit the amount of internal queueing.
Whenever additional messages are sitting in a busy processor's mailbox, they
can't be delivered to another processor which may be available or become
available first.
One posible cause of internal queueing is multiple producers. This is because
each processor's demand will be sent to all producers. For example, if a
processor demands 2 messages and there are 2 producers, each producer
will try to pull 2 messages and give them to the processor. So the
processor may receive max_demand * <producer concurrency> messages.
Setting producer concurrency: 1 will reduce internal queueing, so this is
the recommended setting to start with. Only increase producer concurrency
if you can measure performance improvements in your system. Adding another
single-producer pipeline, or another node running the pipeline, are other
ways you may consider to increase throughput.
Back-pressure and :prefetch_count
Unlike the BroadwaySQS producer, which polls for new messages,
BroadwayRabbitMQ receives messages as they are are pushed by RabbitMQ. The
:prefetch_count setting instructs RabbitMQ to limit the number of
unacknowledged messages a consumer will have at a given
moment (except with a value
of 0, which RabbitMQ treats as infinity).
Setting a prefetch limit creates back-pressure from Broadway to RabbitMQ so
that the pipeline is not overwhelmed with messages. But setting the limit too
low will limit throughput. For example, if the :prefetch_count were 1,
only one message could be processed at a time, regardless of other settings.
Although the RabbitMQ client has a default :prefetch_count of 0,
BroadwayRabbitMQ overwrites the default value to 50, enabling the
back-pressure mechanism. To ensure that all processors in a given pipeline
can receive messages, the value should be set to at least max_demand * <number of processors>, as in the example above.
Increasing it beyond that could be helpful if latency from RabbitMQ were
high, and in the long term would not cause the pipeline to receive an unfair
share of messages, since RabbitMQ uses round-robin delivery to all
subscribers. It could mean that a newly-added subscriber would initially
receives no messages, as they would have all been prefetched by the existing
producer.
If you're using batchers, you'll need a larger :prefetch_count to allow all
batchers and processors to be busy simultaneously. Measure your system to
decide what number works best.
You can define :prefetch_count as 0 if you wish to disable back-pressure.
However, if you do this, make sure the machine has enough resources to handle
the number of messages coming from the broker, and set :buffer_size to an
appropriate value.
Max demand
The best value for max_demand depends on how long your messages take to
process. If processing time is long, consider setting it to 1. Otherwise,
the default value of 10 is a good starting point.
Measure throughput in your own system to see how this setting affects it.
Connection loss and backoff
In case the connection cannot be opened or if an established connection is lost,
the producer will try to reconnect using an exponential random backoff strategy.
The strategy can be configured using the :backoff_type option.
Declaring queues and binding them to exchanges
In RabbitMQ, it's common for consumers to declare the queue they're going
to consume from and bind it to the appropriate exchange when they start up.
You can do these steps (either or both) when setting up your Broadway pipeline
through the :declare and :bindings options.
Broadway.start_link(MyBroadway,
 name: MyBroadway,
 producer: [
 module:
 {BroadwayRabbitMQ.Producer,
 queue: "my_queue",
 declare: [],
 bindings: [{"my-exchange", []}]},
 concurrency: 1
],
 processors: [
 default: []
]
)
Acking
You can use the :on_success and :on_failure options to control how messages
are acked on RabbitMQ. By default, successful messages are acked and failed
messages are rejected. You can set :on_success and :on_failure when starting
the RabbitMQ producer, or change them for each message through
Broadway.Message.configure_ack/2. You can also ack a message before the end of the Broadway
pipeline by using Broadway.Message.ack_immediately/1, which determines whether to ack or
reject based on :on_success/:on_failure too.
Here is the list of all possible values supported by :on_success and :on_failure:
	:ack - acknowledge the message. RabbitMQ will mark the message as acked and
will not redeliver it to any other consumer. This is done via AMQP.Basic.ack/3.

	:reject - rejects the message without requeuing (basically, discards
 the message). RabbitMQ will not redeliver the message to any other
 consumer, but a queue can be configured to send rejected messages to a
 dead letter exchange, where another
 consumer can see why it was dead lettered, how many times, and so on, and
 potentially republish it. Rejecting is done through AMQP.Basic.reject/3
 with the :requeue option set to false.

	:reject_and_requeue - rejects the message and tells RabbitMQ to requeue it so
that it can be delivered to a consumer again. :reject_and_requeue
always requeues the message. If the message is unprocessable, this will
cause an infinite loop of retries. Rejecting is done through AMQP.Basic.reject/3
 with the :requeue option set to true.

	:reject_and_requeue_once - rejects the message and tells RabbitMQ to requeue it
the first time. If a message was already requeued and redelivered, it will be
rejected and not requeued again. This feature uses Broadway-specific message metadata,
not RabbitMQ's dead lettering feature. Rejecting is done through AMQP.Basic.reject/3.

If you pass the no_ack: true option under :consume_options, then RabbitMQ will consider
every message delivered to a consumer as acked, so the settings above have no effect.
In those cases, calling Broadway.Message.ack_immediately/1 also has no effect.
Choosing the right requeue strategy
Choose the requeue strategy carefully.
If you set the value to :reject or :reject_and_requeue_once, make sure you handle failed
messages properly, either by logging them somewhere or redirecting them to a dead-letter queue
for future inspection. These strategies are useful when you want to implement at most once
processing: you want your messages to be processed at most once, but if they fail, you prefer
that they're not re-processed. It's common to pair this requeue strategy with the use of
Broadway.Message.ack_immediately/1 in order to ack the message before doing any work,
so that if the consumer loses connection to RabbitMQ while processing, the message will have
been acked and RabbitMQ will not deliver it to another consumer. For example:
def handle_message(_, message, _context) do
 Broadway.Message.ack_immediately(message)
 process_message(message)
 message
end
:reject_and_requeue is commonly used when you are implementing at least once processing
semantics. You want messages to be processed at least once, so if something goes wrong and they
get rejected, they'll be requeued and redelivered to a consumer.
When using :reject_and_requeue, pay attention that requeued messages by default will
be instantly redelivered, which may result in very high unnecessary workload.
One way to handle this is by using Dead Letter Exchanges
and TTL and Expiration.
Metadata
You can retrieve additional information about your message by setting the :metadata option
when starting the producer. This is useful in a handful of situations like when you are
interested in the message headers or in knowing if the message is new or redelivered.
Metadata is added to the metadata field in the Broadway.Message struct.
These are the keys in the metadata map that are always present:
	:amqp_channel - It contains the AMQP.Channel struct. You can use it to do things
like publish messages back to RabbitMQ (for use cases such as RPCs). You should not
do things with the channel other than publish messages with AMQP.Basic.publish/5. Other
operations may result in undesired effects.

Here is the list of all possible values supported by :metadata:
	:delivery_tag - an integer that uniquely identifies the delivery on a channel.
It's used internally in AMQP client library methods, like acknowledging or rejecting a message.

	:redelivered - a boolean representing if the message was already rejected and requeued before.

	:exchange - the name of the exchange the queue was bound to.

	:routing_key - the name of the queue from which the message was consumed.

	:content_type - the MIME type of the message.

	:content_encoding - the MIME content encoding of the message.

	:headers - the headers of the message, which are returned in tuples of type
{String.t(), argument_type(), term()}. The last value of the tuple is the value of
the header. You can find a list of argument types
here.

	:persistent - a boolean stating whether or not the message was published with disk persistence.

	:priority - an integer representing the message priority on the queue.

	:correlation_id - it's a useful property of AMQP protocol to correlate RPC requests.
You can read more about RPC in RabbitMQ
here.

	:message_id - application specific message identifier.

	:timestamp - a timestamp associated with the message.

	:type - message type as a string.

	:user_id - a user identifier that could have been assigned during message publication.
RabbitMQ validated this value against the active connection when the message was published.

	:app_id - publishing application identifier.

	:cluster_id - RabbitMQ cluster identifier.

	:reply_to - name of the reply queue.

Telemetry
This producer emits a few Telemetry
events which are listed below.
	[:broadway_rabbitmq, :amqp, :open_connection, :start | :stop | :exception] spans -
these events are emitted in "span style" when opening an AMQP connection.
See :telemetry.span/3.
All these events have the measurements described in :telemetry.span/3. The events
contain the following metadata:
	:connection_name - the name of the AMQP connection (or nil if it doesn't have a name)
	:connection - the connection info passed when starting the producer (either a URI
or a keyword list of options)

	[:broadway_rabbitmq, :amqp, :ack, :start | :stop | :exception] span - these events
are emitted in "span style" when acking messages on RabbitMQ. See :telemetry.span/3.
All these events have the measurements described in :telemetry.span/3. The events
contain no metadata.

	[:broadway_rabbitmq, :amqp, :reject, :start | :stop | :exception] span - these events
are emitted in "span style" when rejecting messages on RabbitMQ. See :telemetry.span/3.
All these events have the measurements described in :telemetry.span/3. The [..., :start]
event contains the following metadata:
	:requeue - a boolean telling if this "reject" is asking RabbitMQ to requeue the message
or not.

Dead-letter Exchanges
Here's an example of how to use a dead-letter exchange setup with broadway_rabbitmq:
defmodule MyPipeline do
 use Broadway

 @queue "my_queue"
 @exchange "my_exchange"
 @queue_dlx "my_queue.dlx"
 @exchange_dlx "my_exchange.dlx"

 def start_link(_opts) do
 Broadway.start_link(__MODULE__,
 producer: [
 module: {
 BroadwayRabbitMQ.Producer,
 on_failure: :reject,
 after_connect: &declare_rabbitmq_topology/1,
 queue: @queue,
 declare: [
 durable: true,
 arguments: [
 {"x-dead-letter-exchange", :longstr, @exchange_dlx},
 {"x-dead-letter-routing-key", :longstr, @queue_dlx}
]
],
 bindings: [{@exchange, []}],
 },
 concurrency: 2
],
 processors: [default: [concurrency: 4]]
)
 end

 defp declare_rabbitmq_topology(amqp_channel) do
 with :ok <- AMQP.Exchange.declare(amqp_channel, @exchange, :fanout, durable: true),
 :ok <- AMQP.Exchange.declare(amqp_channel, @exchange_dlx, :fanout, durable: true),
 {:ok, _} <- AMQP.Queue.declare(amqp_channel, @queue_dlx, durable: true),
 :ok <- AMQP.Queue.bind(amqp_channel, @queue_dlx, @exchange_dlx) do
 :ok
 end
 end

 @impl true
 def handle_message(_processor, message, _context) do
 # Raising errors or returning a "failed" message here sends the message to the
 # dead-letter queue.
 end
end

 OEBPS/dist/app-db64fcdc429a9b460caa.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

