

 Braintree

 v0.13.0

 Table of contents

 	CHANGELOG

 	Braintree

 	Modules

 	Braintree

 	Braintree.AddOn

 	Braintree.Address

 	Braintree.AndroidPayCard

 	Braintree.ApplePayCard

 	Braintree.ClientToken

 	Braintree.Construction

 	Braintree.CreditCard

 	Braintree.CreditCardVerification

 	Braintree.Customer

 	Braintree.Discount

 	Braintree.ErrorResponse

 	Braintree.HTTP

 	Braintree.Merchant.Account

 	Braintree.Merchant.Business

 	Braintree.Merchant.Funding

 	Braintree.Merchant.Individual

 	Braintree.PaymentMethod

 	Braintree.PaymentMethodNonce

 	Braintree.PaypalAccount

 	Braintree.Plan

 	Braintree.Search

 	Braintree.SettlementBatchSummary

 	Braintree.SettlementBatchSummary.Record

 	Braintree.Subscription

 	Braintree.Testing.CreditCardNumbers

 	Braintree.Testing.CreditCardNumbers.FailsSandboxVerification

 	Braintree.Testing.Nonces

 	Braintree.Testing.TestTransaction

 	Braintree.Transaction

 	Braintree.TransactionLineItem

 	Braintree.UsBankAccount

 	Braintree.Util

 	Braintree.Webhook

 	Braintree.Webhook.Digest

 	Braintree.Webhook.Validation

 	Braintree.XML.Decoder

 	Braintree.XML.Encoder

 	Braintree.XML.Entity

 	Braintree.ConfigError

CHANGELOG

v0.13.0 2022-10-24
Added
	[Braintree.Webhook] Allow passing options to webhook parser/validator, similar
to other API functions.

	[Braintree.Plan] Expand plan functionality with delete, improved guard
clauses, and better response code formatting.

	[Braintree.Customer] Support ACH Direct Debit payment methods.

Fixed
	[Braintree.HTTP] Fix error in response type specification.
This typespec error wasn't caught given the current dialyzer settings, but
could cause issues for clients expecting things like {:error, :not_found}.

v0.12.1 2021-11-18
Fixed
	Update CA certificate bundle and enable peer verification for all HTTP
requests.

v0.12.0 2021-09-02
Changed
	Bumped the minium Elixir version from 1.7 to 1.9 (it had been a while!)

Added
	[Braintree.Webhook] A new module that provides convenience methods for parsing
Braintree webhook payloads.

	[Braintree] Wrap HTTP calls in telemetry events for instrumentation. All
requests are wrapped in a telemetry events, which emits standard span events:
[:braintree, :request, :start | :stop | :exception | :error]

	[Braintree.Customer] Support ApplePay and AndroidPay

Fixed
	Fix atomizing nested maps with mixed keys.

v0.11.0 2020-05-11
	[Braintree] Allow configuration of sandbox endpoint for testing
	[Braintree.CreditCard] Include billing_address with the CreditCard struct
	[Braintree.Transaction] Add support for android_pay_card and correct field
names to match android_pay_card and apple_pay
	[Braintree.Transaction] Rename customer_details to customer to correctly
reflect API results.
	[Braintree.Search] Fix perform so that it correctly handles transaction
results
	[Braintree.TestTransaction] Make TestTransaction available in all
environments.

v0.10.0 2019-03-26
Enhancements
	[Braintree.HTTP] Support both access_token and public/private keys usage in configuration

v0.9.0 2018-06-18
Enhancements
	[Braintree] Use system tuples as the default for application env
	[Braintree] Add dialyxer and fix all typespecs. Typespecs are now validated
during CI builds
	[Braintree.HTTP] Expose 429 Too Many Requests error with an integer to
status mapping
	[Braintree.TestTransaction] The module is now available in all environments,
not just test
	[Braintree.Address] Support added for address features
	[Braintree.MerchantAccounts] Support added for merchant account features
	[Braintree.Search] Support for searching customers, credit cards and
subscriptions
	[Braintree.XML] Support collections when decoding XML responses

Changes
	[Braintree] Elixir 1.5 is now the minimum supported version
	[Braintree.Transaction] Replace :billing_details with the correctly named
:billing

Bug Fixes
	[Braintree.HTTP] Use Keyword.get_lazy to avoid exceptions when config keys
used for requests aren't set.
	[Braintree.HTTP] Add explicit handling for unprocessable_entity errors
	[Braintree.HTTP] Always coerce the environment to an atom

v0.8.0 2017-08-24
Enhancements
	[Braintree.ErrorResponse] Include full transaction details in the
ErrorResponse struct. This displays the underlying reason a request failed,
helping developers diagnose failing requests.
	[Braintree.HTTP] Ability to optionally pass environment and API keys as
options to all functions doing API calls. The default behaviour of reading
from the global config is kept if those keys are not passed as arguments.
Submitted by @manukall and @nicolasblanco

Changes
	[Braintree.Construction] Use new/1 to build structs, rather than the unusual
construct/1 function.

Bug Fixes
	[Braintree.HTTP] Catch and return 400 Bad Request error tuples, rather than
generating a case clause error.

v0.7.0 2016-09-20
Enhancements
	[Braintree.ClientToken] Set the default client token version to 2.
	[Braintree.Discount] Add support for discounts
	[Braintree.AddOn] Add support for add-ons
	[Braintree.SettlementBatchSummary] Add support for settlement reports
	[Braintree.Subscription] Support updating with update/2
	[Braintree.Subscription] Convert add-on and transaction lists to structs

Changes
	[Braintree.XML] Strictly accept maps for generation, not keyword lists.

Bug Fixes
	[Braintree.XML] Correctly handle decoding entities such as &, >
and <.
	[Braintree.XML] Fix encoding XML array values
	[Braintree.XML] Add encoding of binaries

v0.6.0 2016-08-10
Enhancements
	[Braintree.HTTP] Remove dependency on HTTPoison! Instead Hackney is used
directly.
	[Braintree.HTTP] Configuration options can be provided for Hackney via
http_options.
	[Braintree] Support {:system, VAR} for configs
	[Braintree.XML] Support for parsing top level arrays. Some endpoints, notably
plans, may return an array rather than an object
	[Braintree.Plan] Added module and all/0 for retrieving billing plans
	[Braintree.Customer] Enhanced with find/1
	[Braintree.Subscription] Enhanced with cancel/1 and retry_charge/1

Bug Fixes
	[Braintree.XML.Entity] XML entities are automatically encoded and decoded.
This prevents errors when values contain quotes, ampersands, or other
characters that must be escaped
	[Braintree.Customer] Return a tagged error tuple for delete/1
	[Braintree.Transaction] Use the correct paypal field for Transaction responses

v0.5.0 2016-06-13
	Added: Paypal endpoints for use with the vault flow [TylerCain]
	Added: Construct Paypal accounts from customer responses
	Added: Support submit_for_settlement/2 to Transaction
	Added: Typespec for the Transaction struct
	Fixed: Typespec for the CreditCard struct
	Fixed: Include xmerl in the list of applications to ensure that it is packaged
with exrm releases.

v0.4.0 2016-04-20
	Added: Available only during testing, TestTransaction, which can be used to
transition transactions to different states.
	Added: Add find, void, and refund on Transaction. [Tyler Cain]
	Added: Add support for PaymentMethod, PaymentMethodNonce. [Tyler Cain]
	Added: Basic support for subscription management, starting with create.
[Ryan Bigg]

v0.3.2 2016-02-26
	Fixed: Log unprocessable responses rather than inspecting them to STDOUT.
	Fixed: Convert 404 and 401 responses to error tuples, they are common problems
with misconfiguration.

v0.3.1 2016-02-18
	Fixed: Lookup the certfile path at runtime rather than compile time. This
fixes potential build errors when pre-building releases or packaging on
platforms like Heroku.

v0.3.0 2016-02-17
	Fixed: Raise helpful errors when missing required config
	Added: Client token module for generating new client tokens [Taylor Briggs]

v0.2.0 2016-02-05
	Added: Support for updating and deleting customers.
	Added: A Nonces module for help testing transactions.
	Changed: Include testing support Braintree.Testing.CreditCardNumbers as well as
Braintree.Testing.Nonces in lib/testing, making it available in packaged
releases.
	Fixed: Trying to call XML.load on empty strings returns an empty map.
	Removed: The __using__ macro has been removed from HTTP because the naming
conflicted with delete actions. An equivalent macro will be introduced in
the future.

v0.1.0 2016-02-03
	Initial release with support for Customer.create and Transaction.sale.

Braintree

[image: Build Status]
[image: Hex version]
[image: Hex downloads]
[image: Inline docs]
A native Braintree client library for Elixir.
Installation
Add braintree to your list of dependencies in mix.exs:
def deps do
 [{:braintree, "~> 0.13"}]
end
Once that is configured you are all set. Braintree is a library, not an
application, but it does rely on hackney, which must be started. For Elixir
versions < 1.4 you'll need to include it in the list of applications:
def application do
 [applications: [:braintree]]
end
Within your application you will need to configure the merchant id and
authorization keys. You do not want to put this information in your
config.exs file! Either put it in a {prod,dev,test}.secret.exs file which is
sourced by config.exs, or read the values in from the environment:
config :braintree,
 environment: :sandbox,
 master_merchant_id: {:system, "BRAINTREE_MASTER_MERCHANT_ID"},
 merchant_id: {:system, "BRAINTREE_MERCHANT_ID"},
 public_key: {:system, "BRAINTREE_PUBLIC_KEY"},
 private_key: {:system, "BRAINTREE_PRIVATE_KEY"}
Furthermore, the environment defaults to :sandbox, so you'll want to configure
it with :production in prod.exs.
You may optionally pass directly those configuration keys to all functions
performing an API call. In that case, those keys will be used to perform the
call.
You can optionally configure Hackney options with:
config :braintree,
 http_options: [
 timeout: 30_000, # default, in milliseconds
 recv_timeout: 5000 # default, in milliseconds
]
Usage
The online documentation for Ruby/Java/Python etc. will give you a
general idea of the modules and available functionality. Where possible the
namespacing has been preserved.
The CRUD functions for each action module break down like this:
alias Braintree.Customer
alias Braintree.ErrorResponse, as: Error

case Customer.create(%{company: "Whale Corp"}) do
 {:ok, %Customer{} = customer} -> do_stuff_with_customer(customer)
 {:error, %Error{} = error} -> do_stuff_with_error(error)
end
Searching
Search params are constructed with a fairly complex structure of maps. There
isn't a DSL provided, so queries must be constructed by hand. For example, to
search for a customer:
search_params = %{
 first_name: %{is: "Jenna"},
 last_name: %{
 starts_with: "Smith",
 contains: "ith",
 is_not: "Smithsonian"
 },
 email: %{ends_with: "gmail.com"}
}

{:ok, customers} = Braintree.Customer.search(search_params)
Or, to search for pending credit card verifications within a particular dollar
amount:
search_params = %{
 amount: %{
 min: "10.0",
 max: "15.0"
 },
 status: ["approved", "pending"]
}

{:ok, verifications} = Braintree.CreditCardVerification.search(search_params)
Telemetry
If the telemetry application is running, the library will emit telemetry events.
Immediately before the HTTP request is fired, a start event will be fired with the following shape:
 event name: [:braintree, :request, :start]
 measurements: %{system_time: System.system_time()}
 meta data: %{method: method, path: path}
Once the HTTP call completes, a stop event will be fired with the following shape:
 event name: [:braintree, :request, :stop]
 measurements: %{duration: duration}
 meta data: %{method: method, path: path, http_status: status}
If Hackney returns an error, an error event will be fired with the following shape:
 event name: [:braintree, :request, :error]
 measurements: %{duration: duration}
 meta data: %{method: method, path: path, error: error_reason}
If an exception is raised during the Hackney call, an exception event will be fired with the following shape:
 event name: [:braintree, :request, :exception]
 measurements: %{duration: duration}
 meta data: %{method: method, path: path, kind: error_type, reason: error_message, stacktrace: stacktrace}
Testing
You'll need a Braintree sandbox account to run the integration tests. Also, be
sure that your account has Duplicate Transaction Checking disabled.
Merchant Account Features
In order to test the merchant account features, your sandbox account needs to
have a master merchant account and it needs to be added to your environment
variables (only needed in test).
Your environment needs to have the following:
	Add-ons with ids: "bronze", "silver" and "gold"
	Plans with ids: "starter", "business"
	"business" plan needs to include the following add-ons: "bronze" and "silver"

PayPal Account Testing
PayPal testing uses the mocked API flow, which requires linking a sandbox PayPal
account. You can accomplish that by following the directions for linked paypal
testing.
Testing Using Only localhost
You can optionally configure the sandbox endpoint url to point towards a local url and
port for testing which does not need to call out to the Braintree sandbox API.
For example, in your config.exs
config :braintree, :sandbox_endpoint, "localhost:4001"
In conjuction with a libary such as Bypass
you can use this config to define test-specific returns from Braintree calls without
hitting the Braintree sandbox API.
License
MIT License, see LICENSE.txt for details.

Braintree

A native Braintree client library for Elixir. Only a subset of the API is
supported and this is a work in progress. That said, it is already used in
production, and any modules that have been implemented can be used.
For general reference please see:
https://developers.braintreepayments.com/reference/overview

 Anchor for this section

 Summary

 Functions

 get_env(key, default \\ nil)

 Convenience function for retrieving braintree specfic environment values, but
will raise an exception if values are missing.

 put_env(key, value)

 Convenience function for setting braintree application environment
variables.

 Anchor for this section

Functions

 Link to this function

 get_env(key, default \\ nil)

 @spec get_env(atom(), any()) :: any()

Convenience function for retrieving braintree specfic environment values, but
will raise an exception if values are missing.

 example

 Example

iex> Braintree.get_env(:random_value)
** (Braintree.ConfigError) missing config for :random_value

iex> Braintree.get_env(:random_value, "random")
"random"

iex> Application.put_env(:braintree, :random_value, "not-random")
...> value = Braintree.get_env(:random_value)
...> Application.delete_env(:braintree, :random_value)
...> value
"not-random"

iex> System.put_env("RANDOM", "not-random")
...> Application.put_env(:braintree, :system_value, {:system, "RANDOM"})
...> value = Braintree.get_env(:system_value)
...> System.delete_env("RANDOM")
...> value
"not-random"

 Link to this function

 put_env(key, value)

 @spec put_env(atom(), any()) :: :ok

Convenience function for setting braintree application environment
variables.

 example

 Example

iex> Braintree.put_env(:thingy, "thing")
...> Braintree.get_env(:thingy)
"thing"

Braintree.AddOn

Add-ons and discounts are created in the Control Panel. You cannot create or
update them through the API.
Add-ons and discounts can be applied manually on a case-by-case basis, or you
can associate them with certain plans to apply them automatically to new
subscriptions. When creating a subscription, it will automatically inherit
any add-ons and/or discounts associated with the plan. You can override those
details at the time you create or update the subscription.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 all(opts \\ [])

 Returns a list of Braintree::AddOn structs.

 new(params)

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Braintree.AddOn{
 amount: String.t(),
 current_billing_cycle: integer(),
 description: String.t(),
 id: String.t(),
 kind: String.t(),
 name: String.t(),
 never_expires?: boolean(),
 number_of_billing_cycles: integer(),
 quantity: integer()
}

 Anchor for this section

Functions

 Link to this function

 all(opts \\ [])

 @spec all(Keyword.t()) :: {:ok, [t()]} | {:error, Braintree.ErrorResponse.t()}

Returns a list of Braintree::AddOn structs.

 example

 Example

{:ok, addons} = Braintree.AddOns.all()

 Link to this function

 new(params)

Braintree.Address

You can create an address for a customer only although the structure
is also used for a merchant account.
For additional reference see:
https://developers.braintreepayments.com/reference/request/address/create/ruby

 Anchor for this section

 Summary

 Types

 t()

 Functions

 create(customer_id, params \\ %{}, opts \\ [])

 Create an address record, or return an error response after failed validation.

 delete(customer_id, id, opts \\ [])

 You can delete an address using its customer ID and address ID.

 find(customer_id, id, opts \\ [])

 If you want to look up a single address for a customer using the customer ID and
the address ID, use the find method.

 new(params)

 Convert a map into a Address struct.

 update(customer_id, id, params, opts \\ [])

 To update an address, use a customer's ID with an address's ID along with
new attributes. The same validations apply as when creating an address.
Any attribute not passed will remain unchanged.

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Braintree.Address{
 company: String.t(),
 country_code_alpha2: String.t(),
 country_code_alpha3: String.t(),
 country_code_numeric: String.t(),
 country_name: String.t(),
 created_at: String.t(),
 customer_id: String.t(),
 extended_address: String.t(),
 first_name: String.t(),
 id: String.t(),
 last_name: String.t(),
 locality: String.t(),
 postal_code: String.t(),
 region: String.t(),
 street_address: String.t(),
 updated_at: String.t()
}

 Anchor for this section

Functions

 Link to this function

 create(customer_id, params \\ %{}, opts \\ [])

 @spec create(binary(), map(), Keyword.t()) ::
 {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

Create an address record, or return an error response after failed validation.

 example

 Example

 = Braintree.Address.create("customer_id", %{
first_name: "Jenna"
 })
 address.company # Braintree

 Link to this function

 delete(customer_id, id, opts \\ [])

 @spec delete(binary(), binary(), Keyword.t()) ::
 :ok | {:error, Braintree.ErrorResponse.t()}

You can delete an address using its customer ID and address ID.

 example

 Example

:ok = Braintree.Address.delete("customer_id", "address_id")

 Link to this function

 find(customer_id, id, opts \\ [])

 @spec find(binary(), binary(), Keyword.t()) ::
 {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

If you want to look up a single address for a customer using the customer ID and
the address ID, use the find method.

 example

 Example

 address = Braintree.Address.find("customer_id", "address_id")

 Link to this function

 new(params)

Convert a map into a Address struct.

 example

 Example

address = Braintree.Address.new(%{"company" => "Braintree"})

 Link to this function

 update(customer_id, id, params, opts \\ [])

 @spec update(binary(), binary(), map(), Keyword.t()) ::
 {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

To update an address, use a customer's ID with an address's ID along with
new attributes. The same validations apply as when creating an address.
Any attribute not passed will remain unchanged.

 example

 Example

{:ok, address} = Braintree.Address.update("customer_id", "address_id", %{
 company: "New Company Name"
})

address.company # "New Company Name"

Braintree.AndroidPayCard

AndroidPayCard structs are not created directly, but are built within
responses from other endpoints, such as Braintree.Customer.
For additional reference see:
https://developers.braintreepayments.com/reference/response/android-pay-card/ruby

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(params)

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Braintree.AndroidPayCard{
 billing_address: term(),
 bin: String.t(),
 created_at: String.t(),
 customer_id: String.t(),
 default: boolean(),
 expiration_month: String.t(),
 expiration_year: String.t(),
 google_transaction_id: String.t(),
 image_url: String.t(),
 is_network_tokenized: boolean(),
 source_card_last_4: String.t(),
 source_card_type: String.t(),
 source_description: String.t(),
 subscriptions: [any()],
 token: String.t(),
 updated_at: String.t(),
 virtual_card_last_4: String.t(),
 virtual_card_type: String.t()
}

 Anchor for this section

Functions

 Link to this function

 new(params)

Braintree.ApplePayCard

ApplePayCard structs are not created directly, but are built within
responsees from other endpoints, such as Braintree.Customer.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(params)

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Braintree.ApplePayCard{
 billing_address: Braintree.Address.t(),
 bin: String.t(),
 card_type: String.t(),
 cardholder_name: String.t(),
 created_at: String.t(),
 customer_id: String.t(),
 default: String.t(),
 expiration_month: String.t(),
 expiration_year: String.t(),
 expired: String.t(),
 image_url: String.t(),
 last_4: String.t(),
 payment_instrument_name: String.t(),
 source_description: String.t(),
 subscriptions: [any()],
 token: String.t(),
 updated_at: String.t()
}

 Anchor for this section

Functions

 Link to this function

 new(params)

Braintree.ClientToken

Generate a token required by the client SDK to communicate with Braintree.
For additional reference see:
https://developers.braintreepayments.com/reference/request/client-token/generate/ruby

 Anchor for this section

 Summary

 Functions

 generate(params \\ %{}, opts \\ [])

 Create a client token, or return an error response.

 Anchor for this section

Functions

 Link to this function

 generate(params \\ %{}, opts \\ [])

 @spec generate(map(), Keyword.t()) ::
 {:ok, binary()} | {:error, Braintree.ErrorResponse.t()}

Create a client token, or return an error response.

 options

 Options

	:version - The default value is 2. Current supported versions are 1, 2,
and 3. Please check your client-side SDKs in use before changing this
value.

 example

 Example

{:ok, token} = Braintree.ClientToken.generate()
Generate a specific token version:
{:ok, token} = Braintree.ClientToken.generate(%{version: 3})

Braintree.Construction

This module provides a use macro to help convert raw HTTP responses into
structs.

 Anchor for this section

 Summary

 Functions

 new(module, params)

 Convert a response into one or more typed structs.

 Anchor for this section

Functions

 Link to this function

 new(module, params)

 @spec new(module(), map() | [map()]) :: struct() | [struct()]

Convert a response into one or more typed structs.

Braintree.CreditCard

CreditCard structs are not created directly, but are built within
responsees from other endpoints, such as Braintree.Customer.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(params)

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Braintree.CreditCard{
 billing_address: Braintree.Address.t(),
 bin: String.t(),
 card_type: String.t(),
 cardholder_name: String.t(),
 commercial: String.t(),
 country_of_issuance: String.t(),
 created_at: String.t(),
 customer_id: String.t(),
 customer_location: String.t(),
 debit: String.t(),
 default: String.t(),
 durbin_regulated: String.t(),
 expiration_month: String.t(),
 expiration_year: String.t(),
 expired: String.t(),
 healthcare: String.t(),
 image_url: String.t(),
 issuing_bank: String.t(),
 last_4: String.t(),
 payroll: String.t(),
 prepaid: String.t(),
 subscriptions: [any()],
 token: String.t(),
 unique_number_identifier: String.t(),
 updated_at: String.t(),
 venmo_sdk: boolean(),
 verifications: [any()]
}

 Anchor for this section

Functions

 Link to this function

 new(params)

Braintree.CreditCardVerification

Manage credit card verifications.
For additional reference see:
https://developers.braintreepayments.com/reference/response/credit-card-verification/ruby

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(params)

 Convert a map into a CreditCardVerification struct.

 search(params, opts \\ [])

 To search for credit card verifications, pass a map of search parameters.

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Braintree.CreditCardVerification{
 amount: String.t(),
 avs_error_response_code: String.t(),
 avs_postal_code_response_code: String.t(),
 avs_street_address_response_code: String.t(),
 billing: Braintree.Address.t(),
 created_at: String.t(),
 credit_card: Braintree.CreditCard.t(),
 currency_iso_code: String.t(),
 cvv_response_code: String.t(),
 gateway_rejection_reason: String.t(),
 id: String.t(),
 merchant_account_id: String.t(),
 processor_response_code: String.t(),
 processor_response_text: String.t(),
 risk_data: map(),
 status: String.t()
}

 Anchor for this section

Functions

 Link to this function

 new(params)

Convert a map into a CreditCardVerification struct.

 example

 Example

verification = Braintree.CreditCardVerification.new(%{"credit_card_card_type" => "Visa"})

 Link to this function

 search(params, opts \\ [])

 @spec search(map(), Keyword.t()) :: {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

To search for credit card verifications, pass a map of search parameters.

 example

 Example:

 search_params = %{amount: %{min: "10.0", max: "15.0"},
 status: ["approved", "pending"]}
 = Braintree.CreditCardVerification.search(search_params)

Braintree.Customer

You can create a customer by itself, with a payment method, or with a
credit card with a billing address.
For additional reference see:
https://developers.braintreepayments.com/reference/request/customer/create/ruby

 Anchor for this section

 Summary

 Types

 t()

 Functions

 create(params \\ %{}, opts \\ [])

 Create a customer record, or return an error response with after failed
validation.

 delete(id, opts \\ [])

 You can delete a customer using its ID. When a customer is deleted, all
associated payment methods are also deleted, and all associated recurring
billing subscriptions are canceled.

 find(id, opts \\ [])

 If you want to look up a single customer using its ID, use the find method.

 new(params)

 Convert a map into a Company struct along with nested payment options. Credit
cards and paypal accounts are converted to a list of structs as well.

 search(params, opts \\ [])

 To search for customers, pass a map of search parameters.

 update(id, params, opts \\ [])

 To update a customer, use its ID along with new attributes. The same
validations apply as when creating a customer. Any attribute not passed will
remain unchanged.

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Braintree.Customer{
 addresses: [map()],
 android_pay_cards: [Braintree.AndroidPayCard.t()],
 apple_pay_cards: [Braintree.ApplePayCard.t()],
 coinbase_accounts: [map()],
 company: String.t(),
 created_at: String.t(),
 credit_cards: [Braintree.CreditCard.t()],
 custom_fields: map(),
 email: String.t(),
 fax: String.t(),
 first_name: String.t(),
 id: String.t(),
 last_name: String.t(),
 paypal_accounts: [Braintree.PaypalAccount.t()],
 phone: String.t(),
 updated_at: String.t(),
 us_bank_accounts: [Braintree.UsBankAccount.t()],
 website: String.t()
}

 Anchor for this section

Functions

 Link to this function

 create(params \\ %{}, opts \\ [])

 @spec create(map(), Keyword.t()) :: {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

Create a customer record, or return an error response with after failed
validation.

 example

 Example

{:ok, customer} = Braintree.Customer.create(%{
 first_name: "Jen",
 last_name: "Smith",
 company: "Braintree",
 email: "jen@example.com",
 phone: "312.555.1234",
 fax: "614.555.5678",
 website: "www.example.com"
})

customer.company # Braintree

 Link to this function

 delete(id, opts \\ [])

 @spec delete(binary(), Keyword.t()) :: :ok | {:error, Braintree.ErrorResponse.t()}

You can delete a customer using its ID. When a customer is deleted, all
associated payment methods are also deleted, and all associated recurring
billing subscriptions are canceled.

 example

 Example

:ok = Braintree.Customer.delete("customer_id")

 Link to this function

 find(id, opts \\ [])

 @spec find(binary(), Keyword.t()) ::
 {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

If you want to look up a single customer using its ID, use the find method.

 example

 Example

customer = Braintree.Customer.find("customer_id")

 Link to this function

 new(params)

Convert a map into a Company struct along with nested payment options. Credit
cards and paypal accounts are converted to a list of structs as well.

 example

 Example

customer = Braintree.Customer.new(%{"company" => "Soren",
 "email" => "parker@example.com"})

 Link to this function

 search(params, opts \\ [])

 @spec search(map(), Keyword.t()) :: {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

To search for customers, pass a map of search parameters.

 example

 Example:

{:ok, customers} = Braintree.Customer.search(%{first_name: %{is: "Jenna"}})

 Link to this function

 update(id, params, opts \\ [])

 @spec update(binary(), map(), Keyword.t()) ::
 {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

To update a customer, use its ID along with new attributes. The same
validations apply as when creating a customer. Any attribute not passed will
remain unchanged.

 example

 Example

{:ok, customer} = Braintree.Customer.update("customer_id", %{
 company: "New Company Name"
})

customer.company # "New Company Name"

Braintree.Discount

Add-ons and discounts are created in the Control Panel. You cannot create or update them through the API.
Add-ons and discounts can be applied manually on a case-by-case
basis, or you can associate them with certain plans to apply them
automatically to new subscriptions. When creating a subscription,
it will automatically inherit any add-ons and/or discounts
associated with the plan. You can override those details at the
time you create or update the subscription.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 all(opts \\ [])

 Returns a collection of Braintree::Discount objects.

 new(params)

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Braintree.Discount{
 amount: String.t(),
 current_billing_cycle: pos_integer(),
 description: String.t(),
 id: String.t(),
 kind: String.t(),
 name: String.t(),
 never_expires?: boolean(),
 number_of_billing_cycles: pos_integer(),
 quantity: pos_integer()
}

 Anchor for this section

Functions

 Link to this function

 all(opts \\ [])

 @spec all(Keyword.t()) :: {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

Returns a collection of Braintree::Discount objects.

 example

 Example

{:ok, discounts} = Braintree.Discount.all()

 Link to this function

 new(params)

Braintree.ErrorResponse

A general purpose response wrapper that is built for any failed API
response.
See the following pages for details about the various processor responses:
	https://developers.braintreepayments.com/reference/general/processor-responses/authorization-responses
	https://developers.braintreepayments.com/reference/general/processor-responses/settlement-responses
	https://developers.braintreepayments.com/reference/general/processor-responses/avs-cvv-responses

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(params)

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Braintree.ErrorResponse{
 errors: map(),
 message: String.t(),
 params: map(),
 transaction: map()
}

 Anchor for this section

Functions

 Link to this function

 new(params)

Braintree.HTTP

Base client for all server interaction, used by all endpoint specific
modules.
This request wrapper coordinates the remote server, headers, authorization
and SSL options.
Using Braintree.HTTP requires the presence of three config values:
	merchant_id - Braintree merchant id
	private_key - Braintree private key
	public_key - Braintree public key

All three values must be set or a Braintree.ConfigError will be raised at
runtime. All those config values support the {:system, "VAR_NAME"} as a
value - in which case the value will be read from the system environment with
System.get_env("VAR_NAME").

 Anchor for this section

 Summary

 Types

 response()

 Functions

 delete(path)

 delete(path, payload)

 delete(path, payload, opts)

 get(path)

 get(path, payload)

 get(path, payload, opts)

 post(path)

 post(path, payload)

 post(path, payload, opts)

 put(path)

 put(path, payload)

 put(path, payload, opts)

 request(method, path, body \\ %{}, opts \\ [])

 Centralized request handling function. All convenience structs use this
function to interact with the Braintree servers. This function can be used
directly to supplement missing functionality.

 Anchor for this section

Types

 Link to this type

 response()

 @type response() ::
 {:ok, map()}
 | {:error, atom()}
 | {:error, Braintree.ErrorResponse.t()}
 | {:error, binary()}

 Anchor for this section

Functions

 Link to this function

 delete(path)

 @spec delete(binary()) :: response()

 Link to this function

 delete(path, payload)

 @spec delete(binary(), map() | list()) :: response()

 Link to this function

 delete(path, payload, opts)

 @spec delete(binary(), map(), list()) :: response()

 Link to this function

 get(path)

 @spec get(binary()) :: response()

 Link to this function

 get(path, payload)

 @spec get(binary(), map() | list()) :: response()

 Link to this function

 get(path, payload, opts)

 @spec get(binary(), map(), list()) :: response()

 Link to this function

 post(path)

 @spec post(binary()) :: response()

 Link to this function

 post(path, payload)

 @spec post(binary(), map() | list()) :: response()

 Link to this function

 post(path, payload, opts)

 @spec post(binary(), map(), list()) :: response()

 Link to this function

 put(path)

 @spec put(binary()) :: response()

 Link to this function

 put(path, payload)

 @spec put(binary(), map() | list()) :: response()

 Link to this function

 put(path, payload, opts)

 @spec put(binary(), map(), list()) :: response()

 Link to this function

 request(method, path, body \\ %{}, opts \\ [])

 @spec request(atom(), binary(), binary() | map(), Keyword.t()) :: response()

Centralized request handling function. All convenience structs use this
function to interact with the Braintree servers. This function can be used
directly to supplement missing functionality.

 example

 Example

defmodule MyApp.Disbursement do
 alias Braintree.HTTP

 def disburse(params \ %{}) do
 HTTP.request(:get, "disbursements", params)
 end
end

Braintree.Merchant.Account

Represents a merchant account in a marketplace.
For additional reference, see:
https://developers.braintreepayments.com/reference/response/merchant-account/ruby

 Anchor for this section

 Summary

 Types

 t()

 Functions

 create(params \\ %{}, opts \\ [])

 Create a merchant account or return an error response after failed validation

 find(id, opts \\ [])

 If you want to look up a single merchant using ID, use the find method.

 new(params)

 Convert a map into a Braintree.Merchant.Account struct.

 update(id, params, opts \\ [])

 To update a merchant, use its ID along with new attributes.
The same validations apply as when creating a merchant.
Any attribute not passed will remain unchanged.

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Braintree.Merchant.Account{
 business: Braintree.Merchant.Business.t(),
 currency_iso_code: String.t(),
 default: boolean(),
 funding: Braintree.Merchant.Funding.t(),
 id: String.t(),
 individual: Braintree.Merchant.Individual.t(),
 master_merchant_account: String.t(),
 status: String.t()
}

 Anchor for this section

Functions

 Link to this function

 create(params \\ %{}, opts \\ [])

 @spec create(map(), Keyword.t()) :: {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

Create a merchant account or return an error response after failed validation

 example

 Example

 = Braintree.Merchant.Account.create(%{
tos_accepted: true,
 })

 Link to this function

 find(id, opts \\ [])

 @spec find(binary(), Keyword.t()) ::
 {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

If you want to look up a single merchant using ID, use the find method.

 example

 Example

 merchant = Braintree.Merchant.find("merchant_id")

 Link to this function

 new(params)

Convert a map into a Braintree.Merchant.Account struct.

 Link to this function

 update(id, params, opts \\ [])

 @spec update(binary(), map(), Keyword.t()) ::
 {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

To update a merchant, use its ID along with new attributes.
The same validations apply as when creating a merchant.
Any attribute not passed will remain unchanged.

 example

 Example

{:ok, merchant} = Braintree.Merchant.update("merchant_id", %{
 funding_details: %{account_number: "1234567890"}
})

merchant.funding_details.account_number # "1234567890"

Braintree.Merchant.Business

Represents the business section of a merchant account.
For additional reference, see:
https://developers.braintreepayments.com/reference/response/merchant-account/ruby

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(params)

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Braintree.Merchant.Business{
 address: Braintree.Address.t(),
 dba_name: String.t(),
 legal_name: String.t(),
 tax_id: String.t()
}

 Anchor for this section

Functions

 Link to this function

 new(params)

Braintree.Merchant.Funding

Represents the funding section of a merchant account.
For additional reference, see:
https://developers.braintreepayments.com/reference/response/merchant-account/ruby

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(params)

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Braintree.Merchant.Funding{
 account_number_last_4: String.t(),
 descriptor: String.t(),
 destination: String.t(),
 email: String.t(),
 mobile_phone: String.t(),
 routing_number: String.t()
}

 Anchor for this section

Functions

 Link to this function

 new(params)

Braintree.Merchant.Individual

Represents the individual section of a merchant account.
For additional reference, see:
https://developers.braintreepayments.com/reference/response/merchant-account/ruby

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(params)

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Braintree.Merchant.Individual{
 address: Braintree.Address.t(),
 date_of_birth: String.t(),
 email: String.t(),
 first_name: String.t(),
 last_name: String.t(),
 phone: String.t(),
 ssn_last_4: String.t()
}

 Anchor for this section

Functions

 Link to this function

 new(params)

Braintree.PaymentMethod

Create, update, find and delete payment methods. Payment methods
may be a CreditCard or a PaypalAccount.

 Anchor for this section

 Summary

 Functions

 create(params \\ %{}, opts \\ [])

 Create a payment method record, or return an error response with after failed
validation.

 delete(token, opts \\ [])

 Delete a payment method record, or return an error response if token invalid

 find(token, opts \\ [])

 Find a payment method record, or return an error response if token invalid

 update(token, params \\ %{}, opts \\ [])

 Update a payment method record, or return an error response with after failed
validation.

 Anchor for this section

Functions

 Link to this function

 create(params \\ %{}, opts \\ [])

 @spec create(map(), Keyword.t()) ::
 {:ok, Braintree.CreditCard.t()}
 | {:ok, Braintree.PaypalAccount.t()}
 | {:ok, Braintree.UsBankAccount.t()}
 | {:error, Braintree.ErrorResponse.t()}

Create a payment method record, or return an error response with after failed
validation.

 example

 Example

{:ok, customer} = Braintree.Customer.create(%{
 first_name: "Jen",
 last_name: "Smith"
})

{:ok, credit_card} = Braintree.PaymentMethod.create(%{
 customer_id: customer.id,
 payment_method_nonce: Braintree.Testing.Nonces.transactable
})

credit_card.type # "Visa"

 Link to this function

 delete(token, opts \\ [])

 @spec delete(String.t(), Keyword.t()) :: :ok | {:error, Braintree.ErrorResponse.t()}

Delete a payment method record, or return an error response if token invalid

 example

 Example

{:ok, "Success"} = Braintree.PaymentMethod.delete(token)

 Link to this function

 find(token, opts \\ [])

 @spec find(String.t(), Keyword.t()) ::
 {:ok, Braintree.CreditCard.t()}
 | {:ok, Braintree.PaypalAccount.t()}
 | {:ok, Braintree.UsBankAccount.t()}
 | {:error, Braintree.ErrorResponse.t()}

Find a payment method record, or return an error response if token invalid

 example

 Example

{:ok, payment_method} = Braintree.PaymentMethod.find(token)

payment_method.type # CreditCard

 Link to this function

 update(token, params \\ %{}, opts \\ [])

 @spec update(String.t(), map(), Keyword.t()) ::
 {:ok, Braintree.CreditCard.t()}
 | {:ok, Braintree.PaypalAccount.t()}
 | {:error, Braintree.ErrorResponse.t()}

Update a payment method record, or return an error response with after failed
validation.

 example

 Example

{:ok, customer} = Braintree.Customer.create(%{
 first_name: "Jen",
 last_name: "Smith"
})

{:ok, credit_card} = Braintree.PaymentMethod.create(%{
 customer_id: customer.id,
 cardholder_name: "CH Name",
 payment_method_nonce: Braintree.Testing.Nonces.transactable
})

{:ok, payment_method} = Braintree.PaymentMethod.update(
 credit_card.token,
 %{cardholder_name: "NEW"}
)

payment_method.cardholder_name # "NEW"

Braintree.PaymentMethodNonce

Create a payment method nonce from an existing payment method token

 Anchor for this section

 Summary

 Types

 t()

 Functions

 create(payment_method_token, opts \\ [])

 Create a payment method nonce from token

 find(nonce, opts \\ [])

 Find a payment method nonce, or return an error response if token invalid

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Braintree.PaymentMethodNonce{
 consumed: boolean(),
 default: String.t(),
 description: String.t(),
 details: map(),
 is_locked: boolean(),
 nonce: String.t(),
 security_questions: [any()],
 three_d_secure_info: String.t(),
 type: String.t()
}

 Anchor for this section

Functions

 Link to this function

 create(payment_method_token, opts \\ [])

 @spec create(String.t(), Keyword.t()) ::
 {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

Create a payment method nonce from token

 example

 Example

{:ok, payment_method_nonce} = Braintree.PaymentMethodNonce.create(token)

payment_method_nonce.nonce

 Link to this function

 find(nonce, opts \\ [])

 @spec find(String.t(), Keyword.t()) ::
 {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

Find a payment method nonce, or return an error response if token invalid

 example

 Example

{:ok, payment_method} = Braintree.PaymentMethodNonce.find(token)

payment_method.type #CreditCard

Braintree.PaypalAccount

Find, update and delete Paypal Accounts using PaymentMethod token

 Anchor for this section

 Summary

 Types

 t()

 Functions

 delete(token, opts \\ [])

 Delete a paypal account record using token or return an error
response if the token is invalid.

 find(token, opts \\ [])

 Find a paypal account record using token or return an error
response if the token is invalid.

 new(params)

 update(token, params, opts \\ [])

 Update a paypal account record using token or return an error
response if the token is invalid.

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Braintree.PaypalAccount{
 billing_agreement_id: String.t(),
 created_at: String.t(),
 customer_id: String.t(),
 default: boolean(),
 email: String.t(),
 image_url: String.t(),
 is_channel_initated: boolean(),
 payer_info: String.t(),
 subscriptions: [any()],
 token: String.t(),
 updated_at: String.t()
}

 Anchor for this section

Functions

 Link to this function

 delete(token, opts \\ [])

 @spec delete(String.t(), Keyword.t()) ::
 {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

Delete a paypal account record using token or return an error
response if the token is invalid.

 example

 Example

{:ok, paypal_account} = Braintree.PaypalAccount.delete(token)

 Link to this function

 find(token, opts \\ [])

 @spec find(String.t(), Keyword.t()) ::
 {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

Find a paypal account record using token or return an error
response if the token is invalid.

 example

 Example

{:ok, paypal_account} = Braintree.PaypalAccount.find(token)

 Link to this function

 new(params)

 Link to this function

 update(token, params, opts \\ [])

 @spec update(String.t(), map(), Keyword.t()) ::
 {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

Update a paypal account record using token or return an error
response if the token is invalid.

 example

 Example

{:ok, paypal_account} = Braintree.PaypalAccount.update(
 token,
 %{options: %{make_default: true}
)

Braintree.Plan

Plans represent recurring billing plans in a Braintree merchant account.
The API for plans is read only.
For additional reference see:
https://developers.braintreepayments.com/reference/request/plan/all/ruby

 Anchor for this section

 Summary

 Types

 t()

 Functions

 all(opts \\ [])

 Get a list of all the plans defined in the merchant account. If there are
no plans an empty list is returned.

 create(params, opts \\ [])

 Create a new plan under a merchant account.

 delete(id, opts \\ [])

 Delete a plan defined in the merchant account by the plan id.
A plan can't be deleted if it has any former or current subscriptions associated with it.
If there is no plan with the specified id, {:error, :not_found} is returned.

 find(id, opts \\ [])

 Get a specific plan defined in the merchant account by the plan id. If there is
no plan with the specified id, {:error, :not_found} is returned.

 new(params)

 update(id, params, opts \\ [])

 Updates a specific plan defined in the merchant account by the plan id. If there is
no plan with the specified id, {:error, :not_found} is returned.

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Braintree.Plan{
 add_ons: [any()],
 balance: String.t(),
 billing_day_of_month: String.t(),
 billing_frequency: String.t(),
 created_at: String.t(),
 currency_iso_code: String.t(),
 description: String.t(),
 discounts: [any()],
 id: String.t(),
 name: String.t(),
 number_of_billing_cycles: String.t(),
 price: String.t(),
 trial_duration: String.t(),
 trial_duration_unit: String.t(),
 trial_period: String.t(),
 updated_at: String.t()
}

 Anchor for this section

Functions

 Link to this function

 all(opts \\ [])

 @spec all(Keyword.t()) :: {:ok, [t()]} | {:error, Braintree.ErrorResponse.t()}

Get a list of all the plans defined in the merchant account. If there are
no plans an empty list is returned.

 example

 Example

{:ok, plans} = Braintree.Plan.all()

 Link to this function

 create(params, opts \\ [])

 @spec create(map(), Keyword.t()) :: {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

Create a new plan under a merchant account.

 example

 Example

{:ok, plan} = Braintree.Plan.create(%{
 name: "a plan",
 billing_frequency: 3,
 currency_iso_code: "USD",
 price: "10.00"
})

 Link to this function

 delete(id, opts \\ [])

 @spec delete(String.t(), Keyword.t()) :: :ok | {:error, Braintree.ErrorResponse.t()}

Delete a plan defined in the merchant account by the plan id.
A plan can't be deleted if it has any former or current subscriptions associated with it.
If there is no plan with the specified id, {:error, :not_found} is returned.

 Link to this function

 find(id, opts \\ [])

 @spec find(String.t(), Keyword.t()) ::
 {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

Get a specific plan defined in the merchant account by the plan id. If there is
no plan with the specified id, {:error, :not_found} is returned.

 example

 Example

{:ok, plan} = Braintree.Plan.find("existing plan_id")

{:error, :not_found} = Braintree.Plan.find("non-existing plan_id")

 Link to this function

 new(params)

 Link to this function

 update(id, params, opts \\ [])

 @spec update(String.t(), map(), Keyword.t()) ::
 {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

Updates a specific plan defined in the merchant account by the plan id. If there is
no plan with the specified id, {:error, :not_found} is returned.

 example

 Example

{:ok, updated_plan} = Braintree.Plan.find("existing plan_id", %{name: "new_name"})

{:error, :not_found} = Braintree.Plan.find("non-existing plan_id")

Braintree.Search

This module performs advanced search on a resource.
For additional reference see:
https://developers.braintreepayments.com/reference/general/searching/search-fields/ruby

 Anchor for this section

 Summary

 Functions

 perform(params, resource, initializer, opts \\ [])

 Perform an advanced search on a given resource and create new structs
based on the initializer given.

 Anchor for this section

Functions

 Link to this function

 perform(params, resource, initializer, opts \\ [])

 @spec perform(map(), String.t(), (... -> any()), Keyword.t()) ::
 {:ok, [any()]} | {:error, Braintree.ErrorResponse.t()}

Perform an advanced search on a given resource and create new structs
based on the initializer given.

 example

 Example

 search_params = %{first_name: %{is: "Jenna"}}
 {:ok, customers} = Braintree.Search.perform(search_params, "customers", &Braintree.Customer.new/1)

Braintree.SettlementBatchSummary

The settlement batch summary displays the total sales and credits for each
batch for a particular date. The transactions can be grouped by a single
custom field's values.
https://developers.braintreepayments.com/reference/request/settlement-batch-summary/generate/ruby

 Anchor for this section

 Summary

 Types

 t()

 Functions

 generate(settlement_date, custom_field \\ nil, opts \\ [])

 Generate a report of all settlements for a particular date. The
field used for custom grouping will always be set as
custom_field, regardless of its name.

 new(params)

 Convert a map including records into a summary struct with a list
of record structs.

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Braintree.SettlementBatchSummary{
 records: [Braintree.SettlementBatchSummary.Record.t()]
}

 Anchor for this section

Functions

 Link to this function

 generate(settlement_date, custom_field \\ nil, opts \\ [])

 @spec generate(binary(), binary() | nil, Keyword.t()) ::
 {:ok, [t()]} | {:error, Braintree.ErrorResponse.t()}

Generate a report of all settlements for a particular date. The
field used for custom grouping will always be set as
custom_field, regardless of its name.

 example

 Example

Braintree.SettlementBatchSummary("2016-9-5", "custom_field_1")

 Link to this function

 new(params)

Convert a map including records into a summary struct with a list
of record structs.

Braintree.SettlementBatchSummary.Record

A record contains details for a transaction in a summary.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(params)

 Convert a list of records into structs, including any custom fields that
were used as the grouping value.

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Braintree.SettlementBatchSummary.Record{
 amount_settled: String.t(),
 card_type: String.t(),
 count: String.t(),
 kind: String.t(),
 merchant_account_id: String.t()
}

 Anchor for this section

Functions

 Link to this function

 new(params)

Convert a list of records into structs, including any custom fields that
were used as the grouping value.

Braintree.Subscription

Manage customer subscriptions to recurring billing plans.
For additional reference see:
https://developers.braintreepayments.com/reference/request/subscription/create/ruby

 Anchor for this section

 Summary

 Types

 t()

 Functions

 cancel(subscription_id, opts \\ [])

 Cancel an existing subscription by subscription_id. A cancelled subscription
cannot be reactivated, you would need to create a new one.

 create(params \\ %{}, opts \\ [])

 Create a subscription, or return an error response with after failed
validation.

 find(subscription_id, opts \\ [])

 Find an existing subscription by subscription_id

 new(params)

 Convert a map into a Subscription struct. Add_ons and transactions
are converted to a list of structs as well.

 retry_charge(subscription_id, amount \\ nil, opts \\ [])

 You can manually retry charging past due subscriptions.

 search(params, opts \\ [])

 To search for subscriptions, pass a map of search parameters.

 update(id, params, opts \\ [])

 To update a subscription, use its ID along with new attributes. The same
validations apply as when creating a subscription. Any attribute not passed will
remain unchanged.

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Braintree.Subscription{
 add_ons: [Braintree.AddOn.t()],
 balance: String.t(),
 billing_day_of_month: String.t(),
 billing_period_end_date: String.t(),
 billing_period_start_date: String.t(),
 created_at: String.t(),
 current_billing_cycle: String.t(),
 days_past_due: String.t(),
 descriptor: String.t(),
 discounts: [any()],
 failure_count: String.t(),
 first_billing_date: String.t(),
 id: String.t(),
 merchant_account_id: String.t(),
 never_expires: String.t(),
 next_bill_amount: String.t(),
 next_billing_date: String.t(),
 next_billing_period_amount: String.t(),
 number_of_billing_cycles: String.t(),
 paid_through_date: String.t(),
 payment_method_token: String.t(),
 plan_id: String.t(),
 price: String.t(),
 status: String.t(),
 status_history: [any()],
 transactions: [Braintree.Transaction.t()],
 trial_duration: String.t(),
 trial_duration_unit: String.t(),
 trial_period: String.t(),
 updated_at: String.t()
}

 Anchor for this section

Functions

 Link to this function

 cancel(subscription_id, opts \\ [])

 @spec cancel(String.t(), Keyword.t()) ::
 {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

Cancel an existing subscription by subscription_id. A cancelled subscription
cannot be reactivated, you would need to create a new one.

 example

 Example

{:ok, subscription} = Subscription.cancel("123")

 Link to this function

 create(params \\ %{}, opts \\ [])

 @spec create(map(), Keyword.t()) :: {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

Create a subscription, or return an error response with after failed
validation.

 example

 Example

{:ok, sub} = Braintree.Subscription.create(%{
 payment_method_token: card.token,
 plan_id: "starter"
})

 Link to this function

 find(subscription_id, opts \\ [])

 @spec find(String.t(), Keyword.t()) ::
 {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

Find an existing subscription by subscription_id

 example

 Example

{:ok, subscription} = Subscription.find("123")

 Link to this function

 new(params)

Convert a map into a Subscription struct. Add_ons and transactions
are converted to a list of structs as well.

 example

 Example

subscripton = Braintree.Subscription.new(%{"plan_id" => "business",
 "status" => "Active"})

 Link to this function

 retry_charge(subscription_id, amount \\ nil, opts \\ [])

 @spec retry_charge(String.t(), String.t() | nil, Keyword.t()) ::
 {:ok, Braintree.Transaction.t()} | {:error, Braintree.ErrorResponse.t()}

You can manually retry charging past due subscriptions.
By default, we will use the subscription balance when retrying the
transaction. If you would like to use a different amount you can optionally
specify the amount for the transaction.
A successful manual retry of a past due subscription will always reduce
the balance of that subscription to $0, regardless of the amount of the
retry.

 example

 Example

{:ok, transaction} = Braintree.Subscription.retry_charge(sub_id)
{:ok, transaction} = Braintree.Subscription.retry_charge(sub_id, "24.00")

 Link to this function

 search(params, opts \\ [])

 @spec search(map(), Keyword.t()) :: {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

To search for subscriptions, pass a map of search parameters.

 example

 Example:

 = Braintree.Subscription.search(%{plan_id: %{is: "starter"}})

 Link to this function

 update(id, params, opts \\ [])

 @spec update(binary(), map(), Keyword.t()) ::
 {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

To update a subscription, use its ID along with new attributes. The same
validations apply as when creating a subscription. Any attribute not passed will
remain unchanged.

 example

 Example

{:ok, subscription} = Braintree.Subscription.update("subscription_id", %{
 plan_id: "new_plan_id"
})
subscription.plan_id # "new_plan_id"

Braintree.Testing.CreditCardNumbers

The functions contained in this module provide credit card numbers that
should be used when working in the sandbox environment. The sandbox will not
accept any credit card numbers other than the ones listed below.
See http://www.braintreepayments.com/docs/ruby/reference/sandbox

 Anchor for this section

 Summary

 Functions

 all()

 am_exes()

 carte_blanches()

 diners_clubs()

 discovers()

 jcbs()

 master_cards()

 unknowns()

 visas()

 Anchor for this section

Functions

 Link to this function

 all()

 Link to this function

 am_exes()

 Link to this function

 carte_blanches()

 Link to this function

 diners_clubs()

 Link to this function

 discovers()

 Link to this function

 jcbs()

 Link to this function

 master_cards()

 Link to this function

 unknowns()

 Link to this function

 visas()

Braintree.Testing.CreditCardNumbers.FailsSandboxVerification

These are vendor specific numbers that will always fail verification.

 Anchor for this section

 Summary

 Functions

 all()

 am_ex()

 discover()

 master_card()

 visa()

 Anchor for this section

Functions

 Link to this function

 all()

 Link to this function

 am_ex()

 Link to this function

 discover()

 Link to this function

 master_card()

 Link to this function

 visa()

Braintree.Testing.Nonces

A collection of static payment nonces provided to simplify testing server
side code.
Nonces are preferred over credit card numbers when testing payment methods.
Only a subset of nonces are defined here, for the full list see the sandbox
documentation about payment method nonces.

 Anchor for this section

 Summary

 Functions

 abstract_transactable()

 android_pay_amex_nonce()

 android_pay_discover_nonce()

 android_pay_mastercard_nonce()

 android_pay_visa_nonce()

 apple_pay_am_ex()

 apple_pay_master_card()

 apple_pay_visa()

 coinbase()

 consumed()

 paypal_future_payment()

 transactable()

 Anchor for this section

Functions

 Link to this function

 abstract_transactable()

 Link to this function

 android_pay_amex_nonce()

 Link to this function

 android_pay_discover_nonce()

 Link to this function

 android_pay_mastercard_nonce()

 Link to this function

 android_pay_visa_nonce()

 Link to this function

 apple_pay_am_ex()

 Link to this function

 apple_pay_master_card()

 Link to this function

 apple_pay_visa()

 Link to this function

 coinbase()

 Link to this function

 consumed()

 Link to this function

 paypal_future_payment()

 Link to this function

 transactable()

Braintree.Testing.TestTransaction

Create transactions for testing purposes only.
Transition to settled, settlement_confirmed, or settlement_declined states.

 Anchor for this section

 Summary

 Functions

 settle(transaction_id)

 Use a transaction_id to transition to settled status. This
allows for testing of refunds.

 settlement_confirm(transaction_id)

 Use a transaction_id to transition to settled_confirmed status

 settlement_decline(transaction_id)

 Use a transaction_id to transition to settlement_declined status

 Anchor for this section

Functions

 Link to this function

 settle(transaction_id)

 @spec settle(String.t()) :: {:ok, any()} | {:error, Braintree.ErrorResponse.t()}

Use a transaction_id to transition to settled status. This
allows for testing of refunds.

 example

 Example

 = TestTransaction.settle(transaction_id: "123")
transaction.status # "settled"

 Link to this function

 settlement_confirm(transaction_id)

 @spec settlement_confirm(String.t()) ::
 {:ok, any()} | {:error, Braintree.ErrorResponse.t()}

Use a transaction_id to transition to settled_confirmed status

 example

 Example

 = TestTransaction.settlement_confirm(
transaction_id: "123")
transaction.status # "settlement_confirmed"

 Link to this function

 settlement_decline(transaction_id)

 @spec settlement_decline(String.t()) ::
 {:ok, any()} | {:error, Braintree.ErrorResponse.t()}

Use a transaction_id to transition to settlement_declined status

 example

 Example

 = TestTransaction.settlement_decline(
transaction_id: "123")
transaction.status # "settlement_declined"

Braintree.Transaction

Create a new sale.
To create a transaction, you must include an amount and either a
payment_method_nonce or a payment_method_token.
https://developers.braintreepayments.com/reference/response/transaction/ruby

 Anchor for this section

 Summary

 Types

 t()

 Functions

 find(transaction_id, opts \\ [])

 Find an existing transaction by transaction_id

 new(params)

 Convert a map into a Transaction struct.

 refund(transaction_id, params, opts \\ [])

 Use a transaction_id and optional amount to issue a refund
for that transaction

 sale(params, opts \\ [])

 Use a payment_method_nonce or payment_method_token to make a one time
charge against a payment method.

 submit_for_settlement(transaction_id, params, opts \\ [])

 Use a transaction_id and optional amount to settle the transaction.
Use this if submit_for_settlement was false while creating the charge using sale.

 void(transaction_id, opts \\ [])

 Use a transaction_id to issue a void for that transaction

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Braintree.Transaction{
 add_ons: [Braintree.AddOn.t()],
 additional_processor_response: String.t(),
 amount: number(),
 android_pay_card: map(),
 apple_pay: map(),
 avs_error_response_code: String.t(),
 avs_postal_code_response_code: String.t(),
 avs_street_address_response_code: String.t(),
 billing: map(),
 channel: String.t(),
 coinbase_details: String.t(),
 created_at: String.t(),
 credit_card: map(),
 currency_iso_code: String.t(),
 custom_fields: map(),
 customer: map(),
 cvv_response_code: String.t(),
 descriptor: map(),
 disbursement_details: map(),
 discounts: [any()],
 disputes: [any()],
 escrow_status: String.t(),
 gateway_rejection_reason: String.t(),
 id: String.t(),
 merchant_account_id: String.t(),
 order_id: String.t(),
 payment_instrument_type: String.t(),
 paypal: map(),
 plan_id: String.t(),
 processor_authorization_code: String.t(),
 processor_response_code: String.t(),
 processor_response_text: String.t(),
 processor_settlement_response_code: String.t(),
 processor_settlement_response_text: String.t(),
 purchase_order_number: String.t(),
 recurring: String.t(),
 refund_ids: String.t(),
 refunded_transaction_id: String.t(),
 risk_data: String.t(),
 service_fee_amount: number(),
 settlement_batch_id: String.t(),
 shipping: map(),
 status: String.t(),
 status_history: String.t(),
 subscription_details: map(),
 subscription_id: String.t(),
 tax_amount: number(),
 tax_exempt: boolean(),
 type: String.t(),
 updated_at: String.t(),
 voice_referral_number: String.t()
}

 Anchor for this section

Functions

 Link to this function

 find(transaction_id, opts \\ [])

 @spec find(String.t(), Keyword.t()) ::
 {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

Find an existing transaction by transaction_id

 example

 Example

{:ok, transaction} = Transaction.find("123")

 Link to this function

 new(params)

Convert a map into a Transaction struct.
Add_ons are converted to a list of structs as well.

 example

 Example

transaction =
 Braintree.Transaction.new(%{
"subscription_id" => "subxid",
"status" => "submitted_for_settlement"
 })

 Link to this function

 refund(transaction_id, params, opts \\ [])

 @spec refund(String.t(), map(), Keyword.t()) ::
 {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

Use a transaction_id and optional amount to issue a refund
for that transaction

 example

 Example

{:ok, transaction} = Transaction.refund("123", %{amount: "100.00"})

transaction.status # "refunded"

 Link to this function

 sale(params, opts \\ [])

 @spec sale(map(), Keyword.t()) :: {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

Use a payment_method_nonce or payment_method_token to make a one time
charge against a payment method.

 example

 Example

{:ok, transaction} = Transaction.sale(%{
 amount: "100.00",
 payment_method_nonce: @payment_method_nonce,
 options: %{submit_for_settlement: true}
})

transaction.status # "settling"

 Link to this function

 submit_for_settlement(transaction_id, params, opts \\ [])

 @spec submit_for_settlement(String.t(), map(), Keyword.t()) ::
 {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

Use a transaction_id and optional amount to settle the transaction.
Use this if submit_for_settlement was false while creating the charge using sale.

 example

 Example

{:ok, transaction} = Transaction.submit_for_settlement("123", %{amount: "100"})
transaction.status # "settling"

 Link to this function

 void(transaction_id, opts \\ [])

 @spec void(String.t(), Keyword.t()) ::
 {:ok, t()} | {:error, Braintree.ErrorResponse.t()}

Use a transaction_id to issue a void for that transaction

 example

 Example

{:ok, transaction} = Transaction.void("123")

transaction.status # "voided"

Braintree.TransactionLineItem

For fetching line items for a given transaction.
https://developers.braintreepayments.com/reference/response/transaction-line-item/ruby

 Anchor for this section

 Summary

 Types

 t()

 Functions

 find_all(transaction_id, opts \\ [])

 Find transaction line items for the given transaction id.

 new(params)

 Converts a list of transaction line item maps into a list of transaction line items.

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Braintree.TransactionLineItem{
 commodity_code: String.t(),
 description: String.t(),
 discount_amount: String.t(),
 kind: String.t(),
 name: String.t(),
 product_code: String.t(),
 quantity: String.t(),
 tax_amount: String.t(),
 total_amount: String.t(),
 unit_amount: String.t(),
 unit_of_measure: String.t(),
 unit_tax_amount: String.t(),
 url: String.t()
}

 Anchor for this section

Functions

 Link to this function

 find_all(transaction_id, opts \\ [])

 @spec find_all(String.t(), Keyword.t()) ::
 {:ok, [t()]} | {:error, Braintree.ErrorResponse.t()}

Find transaction line items for the given transaction id.

 example

 Example

{:ok, transaction_line_items} = TransactionLineItem.find("123")

 Link to this function

 new(params)

 @spec new(%{required(line_items :: String.t()) => [map()]}) :: [t()]

Converts a list of transaction line item maps into a list of transaction line items.

 example

 Example

transaction_line_items =
 Braintree.TransactionLineItem.new(%{
"name" => "item name",
"total_amount" => "100.00"
})

Braintree.UsBankAccount

UsBankAccount structs are not created directly, but are built within
responses from other endpoints, such as Braintree.Customer.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(params)

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Braintree.UsBankAccount{
 account_holder_name: String.t(),
 account_number: String.t(),
 account_type: String.t(),
 ach_mandate: map(),
 bank_name: String.t(),
 business_name: String.t(),
 created_at: String.t(),
 customer_global_id: String.t(),
 customer_id: String.t(),
 default: String.t(),
 first_name: String.t(),
 global_id: String.t(),
 image_url: String.t(),
 last_4: String.t(),
 last_name: String.t(),
 ownership_type: String.t(),
 routing_number: String.t(),
 token: String.t(),
 updated_at: String.t(),
 vaulted_in_blue: String.t(),
 verifications: [any()],
 verified: boolean(),
 verified_by: String.t()
}

 Anchor for this section

Functions

 Link to this function

 new(params)

Braintree.Util

General purpose utility functions.

 Anchor for this section

 Summary

 Functions

 atomize(map)

 Recursively convert a map of string keys into a map with atom keys. Intended
to prepare responses for conversion into structs. Note that it converts any
string into an atom, whether it existed or not.

 hyphenate(value)

 Converts underscored values to hyphenated strings.

 underscorize(value)

 Converts hyphenated values to underscore delimited strings.

 Anchor for this section

Functions

 Link to this function

 atomize(map)

 @spec atomize(map()) :: map()

Recursively convert a map of string keys into a map with atom keys. Intended
to prepare responses for conversion into structs. Note that it converts any
string into an atom, whether it existed or not.
For unknown maps with unknown keys this is potentially dangerous, but should
be fine when used with known Braintree endpoints.

 example

 Example

iex> Braintree.Util.atomize(%{"a" => 1, "b" => %{"c" => 2}})
%{a: 1, b: %{c: 2}}

iex> Braintree.Util.atomize(%{a: 1, b: %{"c" => 2}})
%{a: 1, b: %{c: 2}}

 Link to this function

 hyphenate(value)

 @spec hyphenate(String.t() | atom()) :: String.t()

Converts underscored values to hyphenated strings.

 examples

 Examples

iex> Braintree.Util.hyphenate("brain_tree")
"brain-tree"

iex> Braintree.Util.hyphenate(:brain_tree)
"brain-tree"

 Link to this function

 underscorize(value)

 @spec underscorize(String.t() | atom()) :: String.t()

Converts hyphenated values to underscore delimited strings.

 examples

 Examples

iex> Braintree.Util.underscorize("brain-tree")
"brain_tree"

iex> Braintree.Util.underscorize(:"brain-tree")
"brain_tree"

Braintree.Webhook

This module provides convenience methods for parsing Braintree webhook payloads.

 Anchor for this section

 Summary

 Functions

 parse(signature, payload, opts \\ [])

 Return a map containing the payload and signature from the braintree webhook event.

 Anchor for this section

Functions

 Link to this function

 parse(signature, payload, opts \\ [])

 @spec parse(String.t() | nil, String.t() | nil, Keyword.t()) ::
 {:ok, map()} | {:error, String.t()}

Return a map containing the payload and signature from the braintree webhook event.

Braintree.Webhook.Digest

This module provides convenience methods to help validate Braintree signatures and associated payloads for webhooks.

 Anchor for this section

 Summary

 Functions

 hexdigest(private_key, message)

 Returns the message as a hex-encoded string to validate it matches the signature from the braintree webhook event.

 secure_compare(left, right)

 A wrapper function that does a secure comparision accounting for timing attacks.

 Anchor for this section

Functions

 Link to this function

 hexdigest(private_key, message)

 @spec hexdigest(String.t() | nil, String.t() | nil) :: String.t()

Returns the message as a hex-encoded string to validate it matches the signature from the braintree webhook event.

 Link to this function

 secure_compare(left, right)

 @spec secure_compare(String.t(), String.t()) :: boolean()

A wrapper function that does a secure comparision accounting for timing attacks.

Braintree.Webhook.Validation

This module provides convenience methods to help validate Braintree signatures and associated payloads for webhooks.

 Anchor for this section

 Summary

 Functions

 validate_signature(signature, payload, opts \\ [])

 Validate the webhook signature and payload from braintree.

 Anchor for this section

Functions

 Link to this function

 validate_signature(signature, payload, opts \\ [])

 @spec validate_signature(String.t() | nil, String.t() | nil, Keyword.t()) ::
 :ok | {:error, String.t()}

Validate the webhook signature and payload from braintree.

Braintree.XML.Decoder

XML dumping tailored to encoding params sent by Braintree.

 Anchor for this section

 Summary

 Types

 xml()

 Functions

 load(xml)

 Converts an XML document, or fragment, into a map. Type annotation
attributes are respected, but all other attributes are ignored.

 Anchor for this section

Types

 Link to this type

 xml()

 @type xml() :: binary()

 Anchor for this section

Functions

 Link to this function

 load(xml)

 @spec load(xml()) :: map()

Converts an XML document, or fragment, into a map. Type annotation
attributes are respected, but all other attributes are ignored.

 examples

 Examples

iex> Braintree.XML.Decoder.load("<a><b type='integer'>1<c>2</c>")
%{"a" => %{"b" => 1, "c" => "2"}}

iex> Braintree.XML.Decoder.load("<a><b type='string'>José")
%{"a" => %{"b" => "José"}}

iex> Braintree.XML.Decoder.load("<a><b type='string'>First & Last")
%{"a" => %{"b" => "First & Last"}}

iex> Braintree.XML.Decoder.load("<a><b type='string'>"air quotes"")
%{"a" => %{"b" => ~s("air quotes")}}

Braintree.XML.Encoder

XML encoding tailored to dumping Braintree compatible params.

 Anchor for this section

 Summary

 Types

 xml()

 Functions

 dump(map)

 Converts a map into the equivalent XML representation.

 Anchor for this section

Types

 Link to this type

 xml()

 @type xml() :: binary()

 Anchor for this section

Functions

 Link to this function

 dump(map)

 @spec dump(map()) :: xml()

Converts a map into the equivalent XML representation.

 examples

 Examples

iex> Braintree.XML.Encoder.dump(%{a: %{b: 1, c: 2}})
~s|<?xml version="1.0" encoding="UTF-8" ?>\n<a>\n1\n<c>2</c>\n|

iex> Braintree.XML.Encoder.dump(%{a: %{b: "<tag>"}})
~s|<?xml version="1.0" encoding="UTF-8" ?>\n<a>\n<tag>\n|

Braintree.XML.Entity

XML entity conversion for known entities.

 Anchor for this section

 Summary

 Functions

 decode(string)

 Replace all escaped HTML entities, except those that would produce invalid XML

 encode(string)

 Encode all illegal XML characters by replacing them with corresponding
entities.

 Anchor for this section

Functions

 Link to this function

 decode(string)

 @spec decode(String.t()) :: String.t()

Replace all escaped HTML entities, except those that would produce invalid XML

 examples

 Examples

iex> Braintree.XML.Entity.decode("<tag>")
"<tag>"

iex> Braintree.XML.Entity.decode("Søren")
"Søren"

iex> Braintree.XML.Entity.decode("Normal")
"Normal"

iex> Braintree.XML.Entity.decode("First & Last")
"First & Last"

iex> Braintree.XML.Entity.decode(""air quotes"")
~s("air quotes")

 Link to this function

 encode(string)

 @spec encode(String.t()) :: String.t()

Encode all illegal XML characters by replacing them with corresponding
entities.

 examples

 Examples

iex> Braintree.XML.Entity.encode("<tag>")
"<tag>"

iex> Braintree.XML.Entity.encode("Here & There")
"Here & There"

Braintree.ConfigError exception

Raised at runtime when a config variable is missing.

 Anchor for this section

 Summary

 Functions

 exception(msg)

 Build a new ConfigError exception.

 Anchor for this section

Functions

 Link to this function

 exception(msg)

Build a new ConfigError exception.

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

