

 borsh

 v0.1.2

 Table of contents

 	Modules

 	Borsh

 	Borsh.Decode

 	Borsh.Encode

Borsh

BORSH, binary serializer for security-critical projects.
Borsh stands for "Binary Object Representation Serializer for Hashing".
It is meant to be used in security-critical projects as it prioritizes consistency, safety, speed;
and comes with a strict specification.
In short, Borsh is a non self-describing binary serialization format.
It is designed to serialize any objects to canonical and deterministic set of bytes.
General principles of Borsh serialization:
	Integers are encoded in little-endian format.
	The size of dynamic containers (such as hash maps and hash sets) is written as a 32-bit unsigned integer before the values.
	All unordered containers are ordered lexicographically by key, with a tie breaker of the value.
	Structs are serialized in the order of their fields.
	Enums are serialized by storing the ordinal as an 8-bit unsigned integer, followed by the data contained within the enum value (if present).

This is Elixir implementation of the Borsh serializer and deserializer.
Official specification: https://github.com/near/borsh#specification
Usage
 use Borsh,
 schema: [
 signer_id: :string,
 public_key: :borsh,
 nonce: :u64,
 receiver_id: :string,
 block_hash: [32],
 actions: [:borsh]
]
Options
schema:
 Borsh schema itself, structure of fields for serialisation with serialisation formats.
Borsh literal formats
:string - the type represents the string representation of a value. When using the Borsh serialization format, it is encoded as-is, with a 4-byte little-endian header indicating the number of bytes in the string.
:borsh - Struct of the borsh-ed module. The serializer will take this struct and executes struct's module .borsh_encode against this struct and assign binary result to the literal.
[:borsh] - Enum of borsh-ed structs. Each element of this list of :borsh struct must have a Borsh schema
:u64 - Unsigned integer 64-bit size. There are also :u8, :u16, :u32 and :u128
[32] or [64] - A string with 32/64 chars length.

Borsh.Decode

The Borsh.Decode module provides functions for decoding data serialized using the Borsh format.
It defines functions for each supported data type (e.g. :string, :u8, :i64) that can be used
to decode a value of that type from a given bitstring.
The primary function in this module is borsh_decode, which takes a bitstring and the name of a
Borsh-serialized module as arguments. It retrieves the schema for the module and uses it to decode the
data contained in the bitstring. The resulting data is returned as a struct of the module.
Usage
As an example let's use the following struct previuosly serialised into borsh bitstring.
defmodule ParentStruct do
 @type t() :: %__MODULE__{first_name: String.t(), last_name: String.t(), age: integer}

 defstruct [
 :first_name,
 :last_name,
 :age
]

 use Borsh,
 schema: [
 first_name: :string,
 last_name: :string,
 age: :u8
]
end
To use the Borsh.Decode module, you can pass a bitstring and the name of a
Borsh-serialized struct to the borsh_decode function. For example:
bitstr = <<5, 0, 0, 0, 66, 111, 114, 105, 115, 7, 0, 0, 0, 74, 111, 104, 110, 115, 111, 110, 58>>

Borsh.Decode.borsh_decode(bitstr, ParentStruct)
%ParentStruct{first_name: "Boris", last_name: "Johnson", age: 58}

 Anchor for this section

 Summary

 Functions

 borsh_decode(bs, borsh_module)

 Decodes objects according to the schema into the the struct

 Anchor for this section

Functions

 Link to this function

 borsh_decode(bs, borsh_module)

 @spec borsh_decode(bs :: bitstring(), borsh_module :: keyword()) :: struct()

Decodes objects according to the schema into the the struct

Borsh.Encode

This module contains functions for encoding Elixir data structures into BORSH binary format.
Usage
defmodule ParentStruct do
 @type t() :: %__MODULE__{first_name: String.t(), last_name: String.t(), age: integer}

 defstruct [
 :first_name,
 :last_name,
 :age
]

 use Borsh,
 schema: [
 first_name: :string,
 last_name: :string,
 age: :u8
]
end
borsh_struct = %ParentStruct{first_name: "Boris", last_name: "Johnson", age: 58}
Borsh.Encode.encode(borsh_struct)
<<5, 0, 0, 0, 66, 111, 114, 105, 115, 7, 0, 0, 0, 74, 111, 104, 110, 115, 111, 110, 58>>

 Anchor for this section

 Summary

 Functions

 borsh_encode(obj)

 Encodes structs according to the schema into the bitstring

 convert_size(atom)

 Anchor for this section

Functions

 Link to this function

 borsh_encode(obj)

 @spec borsh_encode(obj :: struct()) :: bitstring()

Encodes structs according to the schema into the bitstring

 Link to this function

 convert_size(atom)

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

