

 bonny

 v1.0.0

 [image: Logo]

 Table of contents

 	README

 	Changelog

 	Controllers

 	CRD Versions

 	Testing

 	The Operator

 	Guides

 	Contributing

 	Migrations

 	Bonny Mix Tasks

 	Modules

 	Bonny

 	Bonny.API.CRD

 	Bonny.API.ResourceEndpoint

 	Bonny.API.Version

 	Bonny.Axn

 	Bonny.Axn.Test

 	Bonny.CRD

 	Bonny.Config

 	Bonny.Controller

 	Bonny.ControllerV2

 	Bonny.Event

 	Bonny.EventRecorder

 	Bonny.Mix.Operator

 	Bonny.Naming

 	Bonny.Operator

 	Bonny.PeriodicTask

 	Bonny.Pluggable.AddManagedByLabelToDescendants

 	Bonny.Pluggable.ApplyDescendants

 	Bonny.Pluggable.ApplyStatus

 	Bonny.Pluggable.Logger

 	Bonny.Pluggable.SkipObservedGenerations

 	Bonny.Resource

 	Bonny.Server.AsyncStreamRunner

 	Bonny.Server.Reconciler

 	Bonny.Server.Scheduler

 	Bonny.Server.Scheduler.Binding

 	Bonny.Server.Watcher

 	Bonny.Sys.Event

 	Bonny.Sys.Logger

 	Bonny.Sys.Telemetry

 	DeploymentEventLogController

 	Mix.Bonny

 	TestScheduler

 	Bonny.Axn.DescendantsAlreadyAppliedError

 	Bonny.Axn.EventsAlreadyEmittedError

 	Bonny.Axn.StatusAlreadyAppliedError

 	Mix Tasks

 	mix bonny.gen.controller

 	mix bonny.gen.dockerfile

 	mix bonny.gen.manifest

 	mix bonny.init

README

[image: Bonny]
[image: Build Status]
[image: Coverage Status]
[image: Module Version]
[image: Hex Docs]
[image: Total Download]
[image: License]
[image: Last Updated]
Bonny: Kubernetes Development Framework
Extend the Kubernetes API with Elixir.
Bonny make it easy to create Kubernetes Operators, Controllers, and Custom Schedulers.
If Kubernetes CRDs and controllers are new to you, read up on the terminology.
Getting Started
Kickstarting your first controller with bonny is very straight-forward. Bonny
comes with some handy mix tasks to help you.
mix new your_operator
Now add bonny to your dependencies in mix.exs
def deps do
 [
 {:bonny, "~> 1.0"}
]
end
Install dependencies and initialize bonny. This task will ask you
to answer a few questions about your operator.
Refer to the kubernetes docs for
API group and API version.
mix deps.get
mix bonny.init
Don't forget to add the generated operator module to your application supervisor.
Configuration
mix bonny.init creates a configuration file config/bonny.exs and imports it to config/config.exs for you.
Configuring Bonny
Configuring bonny is necessary for the manifest generation through mix bonny.gen.manifest.

config :bonny,
 # Function to call to get a K8s.Conn object.
 # The function should return a %K8s.Conn{} struct or a {:ok, %K8s.Conn{}} tuple
 get_conn: {K8s.Conn, :from_file, ["~/.kube/config", [context: "docker-for-desktop"]]},

 # Set the Kubernetes API group for this operator.
 # This can be overwritten using the @group attribute of a controller
 group: "your-operator.example.com",

 # Name must only consist of only lowercase letters and hyphens.
 # Defaults to hyphenated mix app name
 operator_name: "your-operator",

 # Name must only consist of only lowercase letters and hyphens.
 # Defaults to hyphenated mix app name
 service_account_name: "your-operator",

 # Labels to apply to the operator's resources.
 labels: %{
 "kewl": "true"
 },

 # Operator deployment resources. These are the defaults.
 resources: %{
 limits: %{cpu: "200m", memory: "200Mi"},
 requests: %{cpu: "200m", memory: "200Mi"}
 }
Running outside of a cluster
Running an operator outside of Kubernetes is not recommended for production use, but can be very useful when testing.
To start your operator and connect it to an existing cluster, one must first:
	Have configured your operator. The above example is a good place to start.
	Have some way of connecting to your cluster. The most common is to connect using your kubeconfig as in the example:

config.exs
config :bonny,
 get_conn: {K8s.Conn, :from_file, ["~/.kube/config", [context: "optional-alternate-context"]]}
If you've used mix bonny.init to generate your config, it created a YourOperator.Conn module for you. You can edit that instead.
	If RBAC is enabled, you must have permissions for creating and modifying CustomResourceDefinition, ClusterRole, ClusterRoleBinding and ServiceAccount.
	Generate a manifest mix bonny.gen.manifest and install it using kubectl kubectl apply -f manifest.yaml

Now you are ready to run your operator
iex -S mix

Guides
Have a look at the guides that come with this repository. Some can even be opened as a livebook.
	Mix Tasks
	The Operator
	Controllers
	Testing Controllers
	CRD Versions
	Migrations
	Contributing

Talks
	Commandeering Kubernetes @ The Big Elixir 2019	slides
	source code
	video

Example Operators built with an older version of Bonny
	Eviction Operator - Bonny v 0.4
	Hello Operator - Bonny v 0.4
	Todo Operator - Bonny v 0.4

Telemetry
Bonny uses the telemetry to emit event metrics.
Events: Bonny.Sys.Telemetry.events()
[
 [:reconciler, :reconcile, :start],
 [:reconciler, :reconcile, :stop],
 [:reconciler, :reconcile, :exception],
 [:watcher, :watch, :start],
 [:watcher, :watch, :stop],
 [:watcher, :watch, :exception],
 [:scheduler, :binding, :start],
 [:scheduler, :binding, :stop],
 [:scheduler, :binding, :exception],
 [:task, :execution, :start],
 [:task, :execution, :stop],
 [:task, :execution, :exception],
]
Terminology
Custom Resource:
A custom resource is an extension of the Kubernetes API that is not necessarily available on every Kubernetes cluster. In other words, it represents a customization of a particular Kubernetes installation.

CRD Custom Resource Definition:
The CustomResourceDefinition API resource allows you to define custom resources. Defining a CRD object creates a new custom resource with a name and schema that you specify. The Kubernetes API serves and handles the storage of your custom resource.

Controller:
A custom controller is a controller that users can deploy and update on a running cluster, independently of the cluster’s own lifecycle. Custom controllers can work with any kind of resource, but they are especially effective when combined with custom resources. The Operator pattern is one example of such a combination. It allows developers to encode domain knowledge for specific applications into an extension of the Kubernetes API.

Operator:
A set of application specific controllers deployed on Kubernetes and managed via kubectl and the Kubernetes API.
Contributing
I'm thankful for any contribution to this project. Check out the contribution guide
Operator Blog Posts
	Why Kubernetes Operators are a game changer

Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
Unreleased
[1.0.0] - 2022-11-28
With Version 1.0.0, Bonny got a thorough refactoring. Besides this changelog,
you might consider the several guides (e.g. the migration guide)
	Bonny.Operator was introduced as an entry point to the watching and handling
of processes. Your controllers are not more added to the supervision tree by
bonny. Instead you must create an operator and add that to your application's
supervision tree.
	The Pluggable (think Plug)
library is used with Bonny.Axn as token to process ADDED, MODIFIED,
DELETED and reconciliation events by Pluggable pipelines.
	Bonny.ControllerV2 was introduced as a successor to Bonny.Controller. It leverages
Pluggable.StepBuilder (think Plug.Builder) to build a pluggable pipeline.
	Bonny.Event and Bonny.EventRecorder were introducd for Kubernetes
event creation (#156, #5)

Why this refactoring?
	Allows for better CRD and API version definitions
	With a Pluggable architecture, controllers are much easier to test (Think of Plug.Conn tests)
	The Pluggable architecture makes your processing pipelines composable and simpler to customize/extend
	Decoupling of manifest generation and action event processing
	Internally, the amount of macros was reduced which makes Bonny easier to understand and maintain

[1.0.0-rc.3] - 2022-11-19
Fixed
	Bonny.Mix.Operator - fix manifest generation: remove version from apiGroup in ClusterRole.

[1.0.0-rc.2] - 2022-11-15
Added
	Bonny.Pluggable.AddManagedByLabelToDescendants - Adds the app.kubernetes.io/managed-by label to all descendants registered within the pipeline.
	Allow nil and {controller :: module(), init_opts :: keyword()} in the operator's controllers/2 callback.

Fixed
	K8sConn - Implement spec correctly.

Changed
	Bonny.Axn.apply_descendants/N, Bonny.Axn.apply_status/N - Raise upon error.

[1.0.0-rc.1] - 2022-10-31
Added
	Better logs in case of errors while applying status, descendants or events
	Integration tests for these logs

[1.0.0-rc.0] - 2022-10-29
Changed
With Version 1.0.0, Bonny got a thorough refactoring. Besides this changelog,
you might consider the several guides (e.g. the migration guide)
	Bonny.Operator was introduced as an entry point to the watching and handling
of processes. Your controllers are not more added to the supervision tree by
bonny. Instead you must create an operator and add that to your application's
supervision tree.
	The Pluggable (think Plug)
library is used with Bonny.Axn as token to process ADDED, MODIFIED,
DELETED and reconciliation events by Pluggable pipelines.
	Bonny.ControllerV2 was introduced as a successor to Bonny.Controller. It leverages
Pluggable.StepBuilder (think Plug.Builder) to build a pluggable pipeline.
	Bonny.Event and Bonny.EventRecorder were introducd for Kubernetes
event creation (#156, #5)

Why this refactoring?
	Allows for better CRD and API version definitions
	With a Pluggable architecture, controllers are much easier to test (Think of Plug.Conn tests)
	The Pluggable architecture makes your processing pipelines composable and simpler to customize/extend
	Manifest generation and event processing were decoupled
	Internally, the amount of macros was reduced which makes Bonny easier to maintain

Added
	Bonny.Pluggable.SkipObservedGenerations - halts the pipelines for a defined list of actions if the observed generation equals the resource's generation.
	Bonny.Pluggable.ApplyDescendants - applies all the descendants added to the %Bonny.Axn{} struct.
	Bonny.Pluggable.ApplyStatus - applies the status of the given %Bonny.Axn{} struct to the status subresource.
	Bonny.Pluggable.Logger- logs an action event and when status, descendants and events are applied to the cluster. If desired, it makes sense to be placed as first step in your operator pipeline but can also be added to a controller pipeline.
	Bonny.Resource.add_owner_reference/3 used to add the owner reference to resources created by the controller. (#147)
	An integration test suite was added that runs tests against a "real" kubernetes cluster on the CI pipeline (#146, #84)
	Mix task for initializing a new operator mix bonny.init (#160, #67)

Deprecated
	Bonny.Controller was deprecated in favor of the new design with
Bonny.Operator and Bonny.ControllerV2

[0.5.2] - 2022-08-31
Updated
	Use name of application in Deployments instead of service account name. (#142)

Fixed
	CRD manifest generation for apiextensions.k8s.io/v1 (#143, #117, #101)

[0.5.1] - 2022-05-25
Fixed
	Add missing priv folder to package

[0.5.0] - 2022-04-23
Version 0.5.0 comes with some major changes. Please read through the migration guide before upgrading.
Added
	Bonny.Server.AsyncStreamRunner to run streams in a separate process
	Bonny.Sys.Telemetry defines telemetry spans and events

Updated
	Bonny.Server.Watcher and Bonny.Server.Reconciler were rewritten completely. They now prepare streams which are to be run with Bonny.Server.AsyncStreamRunner
	Dependency k8s was updated to version ~> 1.1 and code was refactored accordingly

Deprecated
	Bonny.Sys.Event was deprecated in favor of Bonny.Sys.Telemetry

[0.4.4] - 2021-08-09
Added
	@impl to macros for clean compilation
	error handling for mid-stream errors

[0.4.3] - 2020-06-09
Added
	Configure watched namespace via config.exs or BONNY_POD_NAMESPACE
	BONNY_POD_NAMESPACE supports "magic" value "ALL"

[0.4.1] - 2019-11-26
Added
	Support for reconciling/watching core resources

[0.4.0] - 2019-10-23
Added
	Basic integration w/ Notion for telemetry
	Bonny.Server.Reconciler continually process a list operation
	Bonny.Server.Scheduler write custom kubernetes schedulers
	Added Bonny.PeriodicTask for scheduling periodically executed functions

Changed
	Dockerfile gen uses OTP releases

Removed
	Removed reconcile_batch_size

[0.3.3] - 2019-06-25
Added
	Add additional printer columns
	Bonny.Naming module
	.credo.exs

[0.3.2] - 2019-04-15
Added
	Bonny.Watcher and Bonny.Reconciler telemetry events

[0.3.1] - 2019-04-11
Added
	Support for a reconcile/1 callback
	reconcile_every config option to schedule how often to run
reconciliation
	reconcile_batch_size to set the size of the HTTP GET limit
when fetching batches of items to reconcile
	Added {:error, binary} as a return value of Controller lifecycle methods
	Implemented :telemetry library
	Bonny.Sys.Event.events/0 exposes list of telemetry events
	mix bonny.gen.manifest --local for building manifests w/o a Deployment for
local testing
	cluster_name: :default config options. Now uses k8s cluster registration configuration.

Changed
	Async watcher event dispatch
	Replaced HTTPoison with k8s

Fixed
	Receiving :DOWN messages no longer crashes Watcher #20
	Issue with partially received events #43
	Fix invalid singular name generation from module names "MyMod" -> my_mod; "MyMod" -> mymod

Removed
	Renamed group_version -> api_version
	Renamed Bonny.CRD.plural/1 -> Bonny.CRD.kind/1
	Bypass from test suite
	Impl.parse_metadata/1
	kubeconf_file and kubeconf_opts config options

[0.3.0] - 2019-03-04
Changed
	Replaced k8s_conf library with k8s.

[0.2.3] - 2019-01-13
Added
	Initial public release.
	Controller lifecycle implementation.
	CRD Watcher.
	mix task: controller generator
	mix task: dockerfile generator
	mix task: k8s manifest generator

Controllers

Mix.install([:kino, :bonny])

Application.put_env(:bonny, :operator_name, "livebook")
Creating your first Controller
When running mix bonny.init, the task asks you to define CRDs and controllers already. It is optional but I advise to do so as it initializes your operator then. To create additional controllers, run mix bonny.gen.controller.
mix bonny.gen.controller does not register the controller with your operator. (Note however, that mix bonny.initdoes!) In order for your controller to do something, you need to add an entry to the controllers/2 callback in your operator. See the operators guide for more information about operators.
Action Event Handlers
A controller is a Pluggable step and uses Pluggable.StepBuilder underneath. When an action event is dispatched, the controller is called and all its steps are executed.Your task is to add steps to the controller which process the action event.
If you used mix bonny.gen.controller to create the controller, a handle_event/2 step and its implementation are added to your controller by the script. Besides that, mix bonny.gen.controller also adds steps for skipping observed generations. See the section about skipping observed generations for more information on those.
defmodule AppleController do
 use Bonny.ControllerV2

 step(:handle_event)

 # apply the resource
 def handle_event(%Bonny.Axn{action: action} = axn, _opts)
 when action in [:add, :modify, :reconcile] do
 IO.inspect(axn.resource)
 success_event(axn)
 end

 # delete the resource
 def handle_event(%Bonny.Axn{action: :delete} = axn, _opts) do
 IO.inspect(axn.resource)
 axn
 end
end
The step(s) you implement are called with a %Bonny.Axn{} token. It contains the action which triggered this event, the resource the event regards and other fields. Use pattern matching or a adispatch mechanism to handle the four different action types:
	add/1 - resource was created in the cluster.
	delete/1 - resource was deleted from the cluster.
	modify/1 - resource was modified in the cluster.
	reconcile/1 - Called on a regular basis in case we missed an action or to fix diverged state.

Your event handlers should return the struct it received as first parameter. However, your controller can use helper functions from the Bonny.Axn module to modify it before returning it.
Descendant Resources
Your controller might create descendant resources for its custom resource. For example, a MyAppController would create deployments and services for a MyApp resource.
Use Bonny.Axn.register_descendant/3 to add such descendants. Descendants are not directly applied to the cluster. They are only registered within the %Bonny.Axn{} token. Note that you need to add step Bonny.Pluggable.ApplyDescendants to either your controller or operator in order to apply descendants to the cluster.
Owner Reference
If your controller creates descendant resources for your custom resource, it is good practice to reference the owner(s). In kubernetes, you do this by adding an entry to .metadata.ownerReferences. Bonny.Axn.register_descendant/3 does that for you unless you pass ommit_owner_ref: true as option.
defmodule MyAppController do
 use Bonny.ControllerV2

 step(:handle_event)

 # apply the resource
 def handle_event(%Bonny.Axn{action: action} = axn, _opts)
 when action in [:add, :modify, :reconcile] do
 depl = %{
 "apiVersion" => "apps/v1",
 "kind" => "Deployment",
 "metadata" => %{"namespace" => "default", "name" => axn.resource["metadata"]["name"]}
 # spec
 }

 svc = %{
 "apiVersion" => "v1",
 "kind" => "Service",
 "metadata" => %{"namespace" => "default", "name" => axn.resource["metadata"]["name"]}
 # spec
 }

 axn
 |> Bonny.Axn.register_descendant(depl)
 |> Bonny.Axn.register_descendant(svc)
 |> success_event()
 end

 # delete the resource
 def handle_event(%Bonny.Axn{action: :delete} = axn, _opts) do
 # nothing to do because of owner reference
 success_event(axn)
 end
end
Let's see the result of the above event handler:
Bonny.Axn.new!(
 action: :add,
 conn: nil,
 resource: %{
 "apiVersion" => "example.com/v1",
 "kind" => "MyApp",
 "metadata" => %{
 "name" => "foo",
 "namespace" => "default",
 "uid" => "e19b6f40-3293-11ed-a261-0242ac120002"
 }
 }
)
|> MyAppController.call([])
|> Map.get(:descendants)
Resource Status
Controllers should use the resource's status to communicate back data to the client. This can be results from underlaying APIs or stats. In your handler, use Bonny.Axn.update_status/2 to update the status.
defmodule StatusController do
 use Bonny.ControllerV2

 step(:handle_event)

 def handle_event(axn, _) do
 axn
 |> Bonny.Axn.update_status(fn status ->
 put_in(status, [Access.key(:some, %{}), :field], "foo")
 end)
 |> Bonny.Axn.success_event()
 end
end
resource = %{
 "apiVersion" => "example.com/v1",
 "kind" => "MyApp",
 "metadata" => %{
 "name" => "foo",
 "namespace" => "default",
 "uid" => "e19b6f40-3293-11ed-a261-0242ac120002"
 }
}

Bonny.Axn.new!(action: :add, conn: nil, resource: resource)
|> StatusController.call([])
|> Map.get(:status)
Kubernetes Events
Kubernetes events provide a way to report back to the client. A Kubernetes event always references the object to which the event relates. For a controller the regarding object would be the handled resource. The user can then use kubectl describe on the custom resource to see the events.
Use Bonny.Axn.success_event/2, Bonny.Axn.failure_event/2 or Bonny.Axn.register_event/6 do register events in the %Bonny.Axn{} struct. Events are going to be applied to the cluster at the end of the Operator pipeline. There is no need to register a step for that.
defmodule MyResourceController do
 use Bonny.ControllerV2

 step(:handle_event)

 def handle_event(axn, _) when axn.action == :add do
 Bonny.Axn.success_event(axn)
 end

 def handle_event(axn, _) when axn.action == :modify do
 Bonny.Axn.failure_event(axn)
 end
end

action = Kino.Input.select("Test Events", add: "Success", modify: "Failure")
resource = %{
 "apiVersion" => "example.com/v1",
 "kind" => "MyApp",
 "metadata" => %{
 "name" => "foo",
 "namespace" => "default",
 "uid" => "e19b6f40-3293-11ed-a261-0242ac120002"
 }
}

action = Kino.Input.read(action)
axn = Bonny.Axn.new!(action: action, conn: nil, resource: resource)
MyResourceController.call(axn, []) |> Map.get(:events)
RBAC Rules
Your controller might need special permissions on the kubernetes cluster. Maybe it needs to be able to read secrets. Or it has to be able to create pods. These permissions need to be reflected in the final manifest generated by mix bonny.gen.manifest through RBAC rules.
You can define such rules one by defining the rbac_rules/0 callback. This callback should return a list of rbac rules of the following spec:
@type rbac_rule :: %{
 apiGroups: list(binary()),
 resources: list(binary()),
 binary()s: list(binary())}
You can use the helper function to_rbac_rule/1 to convert a tuple to an rbac rule. Its spec is:
 @spec to_rbac_rule({
 binary() | list(binary()),
 binary() | list(binary()),
 binary() | list(binary())
 }) :: rbac_rule
defmodule MySecondResourceController do
 use Bonny.ControllerV2

 @impl Bonny.ControllerV2
 def rbac_rules() do
 [
 to_rbac_rule(
 {"apps/v1", "Deployment", ["get", "list", "create", "update", "patch", "delete"]}
)
]
 end
end

MySecondResourceController.rbac_rules()
Skipping Observed Generations
One of the kubernetes operator best practices is observing generations. This blog post explains it really well. It is extremly useful especially when you work with status subresources to not get another modify event for updating the status.
Bonny skips observed generations if you add the Bonny.Pluggable.SkipObservedGenrations step to your controller.
Bonny.Pluggable.SkipObservedGenrations compares the current resource's fields .metadata.generation with the field defined by the :observed_generation_key option (.status.observedGeneration by default). It halts the pipeline if the two values match, i.e. if the resource generation had already been observed.
You can define for which actions this rule applies by adding the option :actions when placing the step. By default this rule applies to [:add, :modify] actions.
Finally, before the resource status is applied, the module copies the value in .metadata.generation to the field defined by the :observed_generation_key option (.status.observedGeneration by default).
Example
This example shows how only :reconcile and :delete events are handled by the controller:
defmodule MyThirdResourceController do
 use Bonny.ControllerV2

 step(Bonny.Pluggable.SkipObservedGenerations,
 # default
 actions: [:add, :modify],
 # default
 observed_generation_key: ["status", "observedGeneration"]
)

 step(:handle_event)

 def handle_event(axn, _) do
 IO.puts("handling #{axn.action} event.")
 axn
 end
end

action =
 Kino.Input.select("Test Events",
 add: "add",
 modify: "modify",
 reconcile: "reconcile",
 delete: "delete"
)
resource = %{
 "apiVersion" => "example.com/v1",
 "kind" => "MyApp",
 "metadata" => %{
 "name" => "foo",
 "namespace" => "default",
 "uid" => "e19b6f40-3293-11ed-a261-0242ac120002",
 "generation" => 1
 },
 "status" => %{"observedGeneration" => 1}
}

axn = Bonny.Axn.new!(action: Kino.Input.read(action), conn: nil, resource: resource)
MyThirdResourceController.call(axn, [])
:ok

CRD Versions

Mix.install([:bonny])

Application.put_env(:bonny, :operator_name, "livebook-operator")
CRD Definition and Versions
When defining your operator (use Bonny.Operator), you have to implement the callback crds/0 where you define your custom resources. A custom resource definition (CRD) is represented by a %Bonny.API.CRD{} struct which defines 4 fields:
	:scope - either :Namespaced or :Cluster

	:group - The API group of your controller / this resource

	:names - A map with 3-4 keys defining the names of this resource.
	plural: name to be used in the URL: /apis/<group>/<version>/<plural> - e.g. crontabs
	singular: singular name to be used as an alias on the CLI and for display - e.g. crontab
	kind: is normally the CamelCased singular type. Your resource manifests use this. - e.g. CronTab
	shortnames: allow shorter string to match your resource on the CLI - e.g. [ct]

	versions: list of API Version modules for this Resource, defaults to the versions in config.exs

defmodule MyOperator.Operator do
 use Bonny.Operator, default_watch_namespace: "default"

 step(:delegate_to_controller)

 def controllers(_watching_namespace, _opts), do: []

 def crds() do
 [
 %Bonny.API.CRD{
 names: %{kind: "CronTab", plural: "crontabs", shortNames: ["ct"], singular: "crontab"},
 group: "example.com",
 versions: [MyOperator.API.V1.CronTab],
 scope: :Namespaces
 }
]
 end
end
We're going to look at version manifest declaration in more detail in just a moment. For now, let's just define a simple API version v1 for the CronTab custom resource with just defaults for all the fields. You do this by defining a module that starts with the API declared in the application configuration (YourOperator.API.V1), followed by the CRD name (CronTab). The module must use Bonny.API.Version which expects you to implement manifest/0.
defmodule MyOperator.API.V1.CronTab do
 use Bonny.API.Version

 @impl Bonny.API.Version
 def manifest() do
 defaults()
 |> struct!(name: "v1", storage: true)
 end
end

YourOperator.API.V1.CronTab.manifest()
Now, if we define a CronTabController, Bonny finds this version and add it to the CRD manifest.
crds =
 [MyOperator.Operator]
 |> Bonny.Mix.Operator.crds()
 |> Ymlr.documents!()

IO.puts(crds)
Version Manifest Declaration
Our V1.CronTab module called the defaults/0 macro from manifest/0. This macro helps initializing a generic version with no schema, subresources or additional printer columns. The storage flag is set to false (see Multi-Version APIs further down). For the other flags :served and :deprecated such as the field :deprecatedWarning, assumptions are made.
An operator run in production might want to define at least a :schema, probably :additionalPrinterColumns and maybe :subresources. All these fields such as flags can be overriden in manifest/0.
defmodule YourOperator.API.V1Alpha1.Widget do
 use Bonny.API.Version

 @impl true
 def manifest() do
 struct!(
 defaults(),
 storage: true,
 schema: %{
 openAPIV3Schema: %{
 type: :object,
 properties: %{
 spec: %{
 type: :object,
 properties: %{
 foos_requested: %{type: :integer}
 }
 },
 status: %{
 type: :object,
 properties: %{
 foos_implemented: %{type: :integer}
 }
 }
 }
 }
 },
 additionalPrinterColumns: [
 %{
 name: "requested_foos",
 type: :integer,
 description: "Number of foos requested",
 jsonPath: ".spec.foos_requested"
 },
 %{
 name: "implemented_foos",
 type: :integer,
 description: "Number of foos implemented",
 jsonPath: ".status.foos_implemented"
 }
],
 subresources: %{
 status: %{}
 }
)
 end
end

YourOperator.API.V1Alpha1.Widget.manifest()
Note that the usage of Bonny.API.Version imports the helper add_observed_generation_status/1 to your module. Use it to add the fields to your manifest required by the Bonny.Pluggable.SkipObservedGeneartions pluggable step. See the controllers guide for further information on this.
Multi-Version APIs
There is some documentation about multi-version apis for the kubebuilder. Obviousely, that one is for creating a kubernetes controller in Go, but it's a good read nontheless. This is how it begins:
Most projects start out with an alpha API that changes release to release. However, eventually, most projects will need to move to a more stable API. Once your API is stable though, you can't make breaking changes to it. That's where API versions come into play.

Conversion
Webhooks are currently not implemented in Bonny. There is the module bonny_plug that can be used to implement them. There might be a neater integration of the two in the future, though.
Bonny already lets you define a version as the hub. The only thing this does right now is it sets the storage flag to true in the generated manifest.
defmodule YourOperator.API.V1.CronTab do
 use Bonny.API.Version,
 hub: true

 @impl Bonny.API.Version
 # storage: true not needed here.
 def manifest(), do: defaults(name: "v1")
end

YourOperator.API.V1.CronTab.manifest()
Storage Versions
Even if you define multiple versions for the same resource, Kubernetes is only going to store the data in one version - the storage version.
Note that multiple versions may exist in storage if they were written before the storage version changes -- changing the storage version only affects how objects are created/updated after the change.

As mentioned above, there are to ways to define the storage version, by passing hub: true as an option to use Bonny.API.Version or by setting storage: true in manifest/0.

Testing

Mix.install([:bonny, :inflex])

Application.put_env(:bonny, :operator_name, "livebook-operator")

ExUnit.start(autorun: false)
The Controller to Test
In this guide we're going to create a simple controller and write a test for it. The controller's custom resource is called ConfigMapToPluralize and we expect the controller to map the resource to a ConfigMap on the cluster. The ConfigMap should contain the same fields as the ConfigMapToPluralize but the fielt's values are pluralized.
Example
For the following ConfigMapToPluralize resource:
apiVersion: example.com/v1
kind: ConfigMapToPluralize
metadata:
 name: foo
 namespace: default
data:
 first: House
 second: Hero
the controller will create the following ConfigMap:
apiVersion: v1
kind: ConfigMap
metadata:
 name: foo
 namespace: default
data:
 first: Houses
 second: Heroes
The CRD API V1
Let's define the API version V1 for the ConfigMapToPluralize CRD. It defines a schema with a property .data which is an object allowing for arbitrary fields with string values.
defmodule V1.ConfigMapToPluralize do
 use Bonny.API.Version,
 hub: true

 def manifest() do
 struct!(
 defaults(),
 schema: %{
 openAPIV3Schema: %{
 type: :object,
 properties: %{
 data: %{
 type: :object,
 additionalProperties: %{
 type: :string
 },
 "x-kubernetes-preserve-unknown-fields": true
 }
 }
 }
 }
)
 end
end
The Controller
The ConfigMapToPluralizeController handles :add and :modify and :reconcile events through the same function where the ConfigMap with pluralized field values is created and registered as descendant.
defmodule ConfigMapToPluralizeController do
 use Bonny.ControllerV2

 step(:handle_event)

 def handle_event(%Bonny.Axn{action: action} = axn, _opts)
 when action in [:add, :modify, :reconcile] do
 %Bonny.Axn{resource: resource} = axn

 name = K8s.Resource.FieldAccessors.name(resource)
 namespace = K8s.Resource.FieldAccessors.namespace(resource)

 new_data =
 resource
 |> Map.get("data")
 |> Enum.map(fn {key, value} ->
 {key, Inflex.pluralize(value)}
 end)
 |> Enum.into(%{})

 cm = %{
 "apiVersion" => "v1",
 "kind" => "ConfigMap",
 "metadata" => %{
 "name" => name,
 "namespace" => namespace
 },
 "data" => new_data
 }

 axn
 |> register_descendant(cm)
 |> success_event()
 end

 def handle_event(axn, _opts) do
 # since we added the owner reference above, there's nothing to do here.
 # Kubernetes will delete the referencing objects i.e. the ConfigMap for us.
 success_event(axn)
 end
end
Testing the controller
Testing a Bonny controller is similar to testing a Phoenix controller. Controllers use the %Bonny.Axn{} token to register descending resources, update resource status and registering Kubernetes events. In our test, we need to assert the state of the returned Bonny.Axn{} struct is as expected.
Helper Module Bonny.Axn.Test
Bonny.Axn.Test is a helper module for tests. It provides a function axn/2 to create a %Bonny.Axn{} token and other helper functions which are imported to your test when using the helper module.
defmodule ConfigMapToPluralizeControllerTest do
 use ExUnit.Case, async: true
 use Bonny.Axn.Test

 # Module Under Test
 alias ConfigMapToPluralizeController, as: MUT

 setup do
 cm_to_pluralize = %{
 "apiVersion" => "example.com/v1",
 "kind" => "ConfigMapToPluralize",
 "metadata" => %{
 "namespace" => "default",
 "name" => "test-1"
 },
 "data" => %{
 "first" => "House",
 "second" => "Hero"
 }
 }

 [
 axn: axn(:add, resource: cm_to_pluralize, conn: %K8s.Conn{})
]
 end

 test "registers descending ConfigMap with pluralized fields", %{axn: axn} do
 assert [cm] = axn |> MUT.call([]) |> descendants()
 assert "Houses" == cm["data"]["first"]
 assert "Heroes" == cm["data"]["second"]
 end

 test "registers a success event", %{axn: axn} do
 assert [event] = axn |> MUT.call([]) |> events()
 assert :Normal == event.event_type
 end
end

ExUnit.run()
Integration Testing
You can also test your code against a real Kubernetes cluster setup locally (e.g. with k3d) and in your CI. You will need to setup a %K8s.Conn{} defines the connection your cluster but is oonly used for the integration tests. Have a look at the follwing files in the Bonny repo:
	test/support/integration_helper.ex - defines a conn/0 function
	test/bonny/controller_v2_integration_test.exs - implements integration tests using the helper above.

The Operator

Mix.install([:kino, :bonny])

defmodule MyApp.API.V1.TestResource do
 use Bonny.API.Version
 def manifest(), do: defaults()
end

defmodule MyApp.Controller.GenericController do
 use Bonny.ControllerV2

 step(:handle_event)
 def handle_event(axn, _), do: axn
end

Logger.configure(level: :info)
About this Livebook
This livebook connects to a kubernetes cluster. Please define here the connection to a cluster you have access to:
{:ok, conn} = K8s.Conn.from_file("~/.kube/config", context: "k3d-bonny-ex")
The Operator
The operator defines custom resources, watch queries and their controllers and serves as the entry point to the watching and handling processes.
Overall, an operator has the following responsibilities:
	to provide a wrapper for starting and stopping the
operator as part of a supervision tree
	To define the resources to be watched together with the
controllers which handle action events on those resources.
	to define an initial pluggable pipeline containing the step :delegate_to_controller for all action events
to pass through
	To define any custom resources ending up in the manifest
generated by mix bonny.gen.manifest

defmodule MyApp.Operator do
 use Bonny.Operator, default_watch_namespace: "default"

 @impl Bonny.Operator
 def crds() do
 [
 %Bonny.API.CRD{
 group: "example.com",
 scope: :Namespaced,
 names: Bonny.API.CRD.kind_to_names("MyCustomResource"),
 versions: [MyApp.API.V1.TestResource]
 }
]
 end

 step(:delegate_to_controller)
 step(Bonny.Pluggable.ApplyStatus)
 step(Bonny.Pluggable.ApplyDescendants)

 @impl Bonny.Operator
 def controllers(watching_namespace, _opts) do
 [
 %{
 query:
 K8s.Client.list("example.com/v1", "MyCustomResource", namespace: watching_namespace),
 controller: MyApp.Controller.GenericController
 },
 %{
 query: K8s.Client.list("apps/v1", "Deployment", namespace: watching_namespace),
 controller: MyApp.Controller.GenericController
 }
]
 end
end
The crds/0 Callback
By implementing the crds/0 callback, you tell Bonny what custom resources your operator defines. It is read only when running mix bonny.gen.manifest in order to generate the operator manifest:
crds =
 [MyApp.Operator]
 |> Bonny.Mix.Operator.crds()
 |> Ymlr.documents!()

IO.puts(crds)
In order to run the operator in this livebook, we have to apply the CRD to the cluster. This step has nothing to do with the operator directly. We just do it in order to run the operator.
crds
|> YamlElixir.read_all_from_string!()
|> Bonny.Resource.apply_async(conn, field_manager: "livebook")
|> Enum.each(fn {_, {:ok, applied_crd}} -> dbg(applied_crd) end)
The controllers/2 Callback
In controllers/2 we define the queries and their event handlers, i.e. controllers. function should return a list where each element of the list is a map with these 2 keys:
	:query - A list operation of type K8s.Operation.t(). Bonny will watch the cluster with this operation and forward all events to the :controller.
	:controller - A controller (See the controller guide) or any other Pluggable step. Accepts a module or a {controller :: module(), init_opts :: keyword()} tuple. If a tuple is given, the init_opts are passed to the controller's init/1 function.

If you managed to define a valid conn above, you can now run the operator defined above in this livebook. The code below starts the operator and shows the supervision tree. Note how the operator starts an EventRecorder and two proceses for each controller defined in controllers/2. These two processes are the Watcher and the Reconciler. The Watcher watches for ADD, MODIFY and DELETE events in the cluster. The Reconciler regularly creates :reconcile events for each resource found in the cluster.
{:ok, supervisor} = Supervisor.start_link([{MyApp.Operator, conn: conn}], strategy: :one_for_one)
Kino.Process.render_sup_tree(supervisor)
Adding the Operator to your Supervisor
Once your operator is implemented, you need to add it to your application supervision tree. You can pass :conn and :watch_namespace as init arguments if you like. If you don't pass them, :conn will be retrieved from the callback in your config.exs and :watch_namespace will fall back to the :default_watch_namespace you configured your operator with.
defmodule MyOperator.Application do
 use Application

 def start(_type, env: env) do
 children = [
 {MichiOperator.Operator, conn: MichiOperator.K8sConn.get(env), watch_namespace: :all}
]

 opts = [strategy: :one_for_one, name: MichiOperator.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
Pluggable Pipeline and Steps
The operator implements a Pluggable pipeline, the controller represents one step in this pipeline but can contain sub-steps as well.
Bonny comes with a few steps to your convenience. In most caes it makes sense to add at least Bonny.Pluggable.ApplyDescendants and Bonny.Pluggable.ApplyStatus to the end of your operator pipeline.
	Bonny.Pluggable.AddManagedByLabelToDescendants - Adds the app.kubernetes.io/managed-by label to all descendants registered within the pipeline.
	Bonny.Pluggable.ApplyDescendants - applies all the descendants added to the %Bonny.Axn{} struct.
	Bonny.Pluggable.ApplyStatus - applies the status of the given %Bonny.Axn{} struct to the status subresource.
	Bonny.Pluggable.Logger- logs an action event and when status, descendants and events are applied to the cluster. If desired, it makes sense to be placed as first step in your operator pipeline but can also be added to a controller pipeline.
	Bonny.Pluggable.SkipObservedGenerations - halts the pipelines for a defined list of actions if the observed generation equals the resource's generation. You'll find further documentation on this module in the Controller guide.

Contributing

Contributing to Bonny is as easy as opening a PR. Please make sure your code is tested and add a Changelog.
Testing
If you're writing tests, you might also want to check out the k8s library testing guide.
Integration Testing
A Makefile is included for help with integration testing against k3d. You're gonna need k3d installed on your machine to run integration tests.
Run make help for a list of commands:
test.integration Run integration tests using k3d `make cluster`
test.watch Run all tests with mix.watch
test Run all tests
Integration environment variables
	TEST_KUBECONFIG path to kubeconfig file for integration tests, default: "./integration.yaml"

Migrations

Migrating from 0.5 to a newer version
In this version of, Bonny comes with slightly a new concept. In this version you have to define an operator and add it to your application's supervision tree. Also, the processing of events are done in a Plug-like pipeline leveraging the Pluggable library. This makes controllers easeir to test but also easier to customize. See for yourself.
Option 1: Use mix bonny.init on a fresh project
The probably easiest way is to start with a plain Elixir project and set up your
operator using mix bonny.init. Since you already know what resources and
controllers you need, this will initiate your operator, CRDs, versions and
controllers for you.
You just have to copy your controller implementation over to the generated
controllers and bring it into a Pluggable form.
Option 2: Manual migration
Step 1: Create your Opeator
Create a new module (e.g. YourProject.Operator) which uses use Bonny.Operator,
implement crds/0 and controllers/2 according to the Operator Guide
and add it to your supervision tree.
Step 2: Create your API versions
For each custom resource your operator defines and each version the resource
supports, create the corresponding module:
lib/your_operator/api/v1/cron_tab.ex
defmodule YourOperator.API.V1.CronTab do
 use Bonny.API.Version

 @impl Bonny.API.Version
 def manifest(), do: struct!(defaults(), storage: true)
end
lib/your_operator/api/v1alpha1/cron_tab.ex
defmodule YourOperator.API.V1Alpha1.CronTab do
 use Bonny.API.Version

 @impl Bonny.API.Version
 def manifest(), do: defaults()
end
Note that one and only one version of the same custom resource has to be flagged with storage: true.
Step 3: Additional Printer Columns
Additional printer columns belong to CRD API versions, not to controllers. Therefore, if your
controller defined additional printer columns, move those over to the version you just created.
Modify manifest/0 for this purpose.
lib/your_operator/api/v1/cron_tab.ex
defmodule YourOperator.API.V1Alpha1.CronTab do
 use Bonny.API.Version

 @impl Bonny.API.Version
 def manifest() do
 struct!(
 defaults(),
 additionalPrinterColumns: [
 %{name: "foos", type: :integer, description: "Number of foos", jsonPath: ".spec.foos"}
]
)
 end
end
Step 4: Update your Controllers
Also see the Controllers Guide
	Change use Bonny.Controller to use Bonny.ControllerV2
	If you have defined additional RBAC rules via @rule {apiGroup, resources_list, verbs_list}, implement the rbac_rules/0.
	If you have defined custom names via @names %{...}, the resource scope (e.g. @scope :cluster) or an API group (e.g. @group "example.com"),
add these values to the CRD in your Operator (see above)
	Bring your controller to a Pluggable form. See the Controllers Guide

After having migrated all controllers, re-generate your manifest using mix bonny.gen.manifest.
Migrating from 0.4 to 0.5
Version 0.5 comes with some major changes. Please read through this migration guide before upgrading.
Elixir Version
With version 0.5, bonny moved Elixir support from \~> 1.9 to \~> 1.10.
Config
The dependency on :k8s was upgraded from ~> 0.4.0 to ~> 1.1. With version 1.0,
:k8s brought some major changes. Mainly the way the connection to the cluster
is configured. While pre 1.0, connections were configured in config.exs, in 1.0
upwards, they had to created and passed to the client by the caller. This change
affects :bonny, too.
Starting with version 0.5, you no longer have to configure :k8s. This means
you can remove this block completely as it has no effect:
config :k8s,
 clusters: ...
With 0.5, :bonny however has to be configured with a new option :get_conn. The value of
this configuration option is supposed to be an MFA tuple that tells bonny how to get
the connection struct. The function is called by bonny and is expected to return
either {:ok, K8s.Conn.t()} or a K8s.Conn.t() directly.
config :bonny,
 get_conn: {MyModule, :get_the_connection},
You can use helpers defined in :k8s to get the connection:
config :bonny,
 get_conn: {K8s.Conn, :from_file, ["~/.kube/config", [context: "optional-alternate-context"]]},
or, when configuring bonny to run in your cluster:
config :bonny,
 get_conn: {K8s.Conn, :from_service_account, []}

Bonny Mix Tasks

There are a number of mix tasks to help create a Kubernetes operator.
mix help | grep bonny
Initialize your Operator (mix bonny.init)
To add bonny to your existing elixir project (mix new your_operator), this tasks
helps you to generate application configuration and initializing your test suite.
Just run mix bonny.init, the task will ask you questions about your operator
and initialize it.
Controller Generation (mix bonny.gen.controller)
Guides you through the creation of a controller. Normally, a controller of an operator
watches a custom resource defined by that same operator. This is the default flow through
this mix task.
However, you can also create a controller that watches and reacts on events of
core resources or custom resources defined by another operator.
See the controllers guide for further information about controllers.
After the mix task ran through, open up your controller and add functionality for your
resource's lifecycles:
	Apply (or Add/Modify)
	Delete
	Reconcile; periodically called with each every instance of a CRD's resources

Ideally you'd also open up the generated CRD versions and add OpenAPIV3 schema,
additional printer columns, etc.
Your operator can also have multiple controllers if you want to watch multiple
resources in your operator. Just run the mix task again.
Generating Kubernetes manifest for operator (mix bonny.gen.manifest)
This will generate the entire manifest for this operator including:
	CRD manifests
	RBAC
	Service Account
	Operator Deployment

The operator manifest generator requires the image flag to be passed if you plan to deploy the operator in your cluster. This is the docker image URL of your operators docker image created by mix bonny.gen.docker above.
mix bonny.gen.manifest --image ${BONNY_IMAGE}

You may omit the --image flag if you want to generate a manifest without the deployment so that you can develop locally running the operator outside of the cluster.
By default the manifest will generate the service account and deployment in the "default" namespace.
To set the namespace explicitly:
mix bonny.gen.manifest --out - -n test

Alternatively you can apply it directly to kubectl:
mix bonny.gen.manifest --out - -n test | kubectl apply -f - -n test

Generating a dockerfile (mix bonny.gen.dockerfile)
The following command will generate a dockerfile for your operator. This will need to be pushed to a docker repository that your Kubernetes cluster can access.
Again, this Dockerfile is for your operator, not for the pods your operator may deploy.
You can skip this step when developing by running your operator external to the cluster.
mix bonny.gen.dockerfile

export BONNY_IMAGE=YOUR_IMAGE_NAME_HERE
docker build -t ${BONNY_IMAGE} .
docker push ${BONNY_IMAGE}:latest

Bonny

Extend the Kubernetes API and implement CustomResourceDefinitions lifecycles in Elixir.

Bonny.API.CRD

A Custom Resource Definition.
The %Bonny.API.CRD{} struct contains the fields group, resource_type,
scope and version. New definitions can be created directly, using the
new!/1 function.

 Anchor for this section

 Summary

 Types

 names_t()

 Defines the names section of the CRD.

 t()

 A Custom Resource Definition.

 Functions

 kind_to_names(kind, short_names \\ [])

 Build a map of names form the given kind.

 new!(fields)

 Creates a new %Bonny.API.CRD{} struct from the given values. :scope is
optional and defaults to :Namespaced.

 to_manifest(crd)

 Converts the internally used structure to a map representing a kubernetes CRD manifest.

 Anchor for this section

Types

 Link to this type

 names_t()

 View Source

 @type names_t() :: %{
 :singular => binary(),
 :plural => binary(),
 :kind => binary(),
 optional(:shortNames) => [binary()]
}

Defines the names section of the CRD.
	plural: name to be used in the URL: /apis/<group>/<version>/<plural> - e.g. crontabs
	singular: singular name to be used as an alias on the CLI and for display - e.g. crontab
	kind: is normally the CamelCased singular type. Your resource manifests use this. - e.g. CronTab
	shortnames: allow shorter string to match your resource on the CLI - e.g. [ct]

 Link to this type

 t()

 View Source

 @type t() :: %Bonny.API.CRD{
 group: binary(),
 names: names_t(),
 scope: :Namespaced | :Cluster,
 versions: [module()]
}

A Custom Resource Definition.
	scope: either Namespaced or Cluster
	group: group name to use for REST API: /apis/<group>/<version>, defaults to the group in config.exs
	names: see names_t
	versions: list of API Version modules for this Resource, defaults to the versions in config.exs

 Anchor for this section

Functions

 Link to this function

 kind_to_names(kind, short_names \\ [])

 View Source

 @spec kind_to_names(binary(), [binary()]) :: names_t()

Build a map of names form the given kind.

 examples

 Examples

iex> Bonny.API.CRD.kind_to_names("SomeKind")
%{singular: "somekind", plural: "somekinds", kind: "SomeKind", shortNames: []}
 The :inflex library is used to generate the plural form.
iex> Bonny.API.CRD.kind_to_names("Hero")
%{singular: "hero", plural: "heroes", kind: "Hero", shortNames: []}
 Accepts an optional list of abbreviations as second argument.
iex> Bonny.API.CRD.kind_to_names("SomeKind", ["sk", "some"])
%{singular: "somekind", plural: "somekinds", kind: "SomeKind", shortNames: ["sk", "some"]}

 Link to this function

 new!(fields)

 View Source

 @spec new!(keyword()) :: t()

Creates a new %Bonny.API.CRD{} struct from the given values. :scope is
optional and defaults to :Namespaced.

 Link to this function

 to_manifest(crd)

 View Source

 @spec to_manifest(t()) :: map()

Converts the internally used structure to a map representing a kubernetes CRD manifest.

Bonny.API.ResourceEndpoint

Defines the API Endpoint for a Kubernetes resource.
The struct contains the fields group, resource_type, scope and version.
New definitions can be created directly or using the new!/1 function.

 Anchor for this section

 Summary

 Types

 t()

 A Resource API Definition. Also see Kubernetes API terminology.

 Functions

 new!(fields)

 Creates a new %Bonny.API.ResourceEndpoint{} struct from the given values. :scope is
optional and defaults to :Namespaced.

 new!(api_version, kind, scope \\ :Namespaced)

 Creates a new %Bonny.API.ResourceEndpoint{} struct from apiVersion and kind.
The scope can be passed as a third optional parameter.

 resource_api_version(definition)

 Gets apiVersion of the actual resources.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Bonny.API.ResourceEndpoint{
 group: binary() | nil,
 resource_type: binary(),
 scope: :Namespaced | :Cluster,
 version: binary()
}

A Resource API Definition. Also see Kubernetes API terminology.
	group: The API group used for REST API: /apis/<group>/<version>, e.g. "apps" or "example.com"
	resource_type: The plural form of the resource name
	scope: :Namespaced or :Cluster - defaults to :Namespaced
	version: The API version used for REST API: /apis/<group>/<version>, e.g. "v1" or "v1alpha1"

 Anchor for this section

Functions

 Link to this function

 new!(fields)

 View Source

 @spec new!(keyword()) :: t()

Creates a new %Bonny.API.ResourceEndpoint{} struct from the given values. :scope is
optional and defaults to :Namespaced.

 Link to this function

 new!(api_version, kind, scope \\ :Namespaced)

 View Source

 @spec new!(binary(), binary(), :Namespaced | :Cluster) :: t()

Creates a new %Bonny.API.ResourceEndpoint{} struct from apiVersion and kind.
The scope can be passed as a third optional parameter.

 examples

 Examples

iex> Bonny.API.ResourceEndpoint.new!("apps/v1", "Deployment")
%Bonny.API.ResourceEndpoint{group: "apps", resource_type: "deployments", scope: :Namespaced, version: "v1"}

iex> Bonny.API.ResourceEndpoint.new!("v1", "Pod")
%Bonny.API.ResourceEndpoint{group: nil, resource_type: "pods", scope: :Namespaced, version: "v1"}

iex> Bonny.API.ResourceEndpoint.new!("rbac.authorization.k8s.io/v1", "ClusterRoleBinding", :Cluster)
%Bonny.API.ResourceEndpoint{group: "rbac.authorization.k8s.io", resource_type: "clusterrolebindings", scope: :Cluster, version: "v1"}

iex> Bonny.API.ResourceEndpoint.new!("foo/bar/v1", "ClusterRoleBinding", :Cluster)
** (ArgumentError) The api_version "foo/bar/v1" cannot be parsed. It contains more than one slash (/).

 Link to this function

 resource_api_version(definition)

 View Source

 @spec resource_api_version(t()) :: String.t()

Gets apiVersion of the actual resources.

 examples

 Examples

 Returns apiVersion for an operator
iex> Bonny.API.ResourceEndpoint.resource_api_version(%Bonny.API.ResourceEndpoint{group: "hello.example.com", version: "v1", scope: :namespaced, resource_type: "foos"})
"hello.example.com/v1"
 Returns apiVersion for apps resources
iex> Bonny.API.ResourceEndpoint.resource_api_version(%Bonny.API.ResourceEndpoint{group: "apps", version: "v1", scope: :namespaced, resource_type: "foos"})
"apps/v1"
 Returns apiVersion for core resources
iex> Bonny.API.ResourceEndpoint.resource_api_version(%Bonny.API.ResourceEndpoint{group: "", version: "v1", scope: :namespaced, resource_type: "foos"})
"v1"

iex> Bonny.API.ResourceEndpoint.resource_api_version(%Bonny.API.ResourceEndpoint{group: nil, version: "v1", scope: :namespaced, resource_type: "foos"})
"v1"

Bonny.API.Version behaviour

Describes an API version of a custom resource.
The %Bonny.API.Version{} struct contains the fields required to build the
manifest for this version.
This module is meant to be used by a module representing the
API version of a custom resource. The using module has to define
the function manifest/0.
The macro defaults/1 is imported to the using module. It can be used to
simplify getting started. The first argument is the version's name (e.g. "v1").
If no name is passed, The macro will use the using module's name as the
version name.
Note: The :storage flag has to be true for exactly one version of a
CRD.
defmodule MyOperator.API.V1.CronTab do
 use Bonny.API.Version

 def manifest() do
 struct!(defaults(), storage: true)
 end
Use the manifest/0 callback to override the defaults, e.g. add a schema.
Pipe your struct into add_observed_generation_status/1 - which is imported
into the using module - if you use the
Bonny.Pluggable.SkipObservedGenerations step in your controller
defmodule MyOperator.API.V1.CronTab do
 use Bonny.API.Version

 def manifest() do
 struct!(
 defaults(),
 storage: true,
 schema: %{
 openAPIV3Schema: %{
 type: :object,
 properties: %{
 spec: %{
 }
 }
 }
)
 end

 Anchor for this section

 Summary

 Types

 printer_column_t()

 Defines an additional printer column.

 schema_t()

 Defines an OpenAPI V3 Schema.

 subresources_t()

 Defines a version of a custom resource. Refer to the
CRD versioning documentation

 t()

 Callbacks

 manifest()

 Return a %Bonny.API.Version{} struct representing the manifest for this
version of the CRD API.

 Functions

 add_observed_generation_status(version)

 Adds the status subresource if it hasn't been added before
and adds a field .status.observedGeneration of type integer
to the OpenAPIV3Schema.

 defaults()

 Returns a Bonny.API.Version struct with default values. Use this and pipe
it into struct!() to override the defaults in your manifest/0 callback.

 Anchor for this section

Types

 Link to this type

 printer_column_t()

 View Source

 @type printer_column_t() :: %{
 :name => String.t(),
 :type => String.t() | atom(),
 optional(:description) => String.t(),
 jsonPath: String.t()
}

Defines an additional printer column.

 Link to this type

 schema_t()

 View Source

 @type schema_t() :: %{
 schema: %{
 openAPIV3Schema: %{
 :type =>
 :array | :boolean | :date | :integer | :number | :object | :string,
 :description => binary(),
 optional(:format) =>
 :int32
 | :int64
 | :float
 | :double
 | :byte
 | :date
 | :"date-time"
 | :password,
 optional(:properties) => %{required(atom() | binary()) => schema_t()},
 optional(:additionalProperties) => schema_t() | boolean(),
 optional(:items) => schema_t(),
 optional(:"x-kubernetes-preserve-unknown-fields") => boolean(),
 optional(:"x-kubernetes-int-or-string") => boolean(),
 optional(:"x-kubernetes-embedded-resource") => boolean(),
 optional(:"x-kubernetes-validations") => [
 %{:rule => binary(), optional(:message) => binary()}
],
 optional(:pattern) => binary(),
 optional(:anyOf) => schema_t(),
 optional(:allOf) => schema_t(),
 optional(:oneOf) => schema_t(),
 optional(:not) => schema_t(),
 optional(:nullable) => boolean(),
 optional(:default) => any()
 }
 }
}

Defines an OpenAPI V3 Schema.
The typespec might be incomplete. Please open a PR with your additions and links to the relevant documentation, thanks.

 Link to this type

 subresources_t()

 View Source

 @type subresources_t() :: %{
 optional(:status) => %{},
 optional(:scale) => %{
 specReplicasPath: binary(),
 statusReplicasPath: binary(),
 labelSelectorPath: binary()
 }
}

Defines a version of a custom resource. Refer to the
CRD versioning documentation

 Link to this type

 t()

 View Source

 @type t() :: %Bonny.API.Version{
 additionalPrinterColumns: [printer_column_t()],
 deprecated: boolean(),
 deprecationWarning: nil | binary(),
 name: binary(),
 schema: schema_t(),
 served: boolean(),
 storage: boolean(),
 subresources: subresources_t()
}

 Anchor for this section

Callbacks

 Link to this callback

 manifest()

 View Source

 @callback manifest() :: t()

Return a %Bonny.API.Version{} struct representing the manifest for this
version of the CRD API.

 Anchor for this section

Functions

 Link to this function

 add_observed_generation_status(version)

 View Source

 @spec add_observed_generation_status(t()) :: t()

Adds the status subresource if it hasn't been added before
and adds a field .status.observedGeneration of type integer
to the OpenAPIV3Schema.

 example

 Example

iex> %Bonny.API.Version{}
...> |> Bonny.API.Version.add_observed_generation_status()
...> |> Map.take([:subresources, :schema])
%{
 subresources: %{status: %{}},
 schema: %{
 openAPIV3Schema: %{
 type: :object,
 properties: %{
 status: %{
 type: :object,
 properties: %{
 observedGeneration: %{type: :integer}
 }
 }
 },
 "x-kubernetes-preserve-unknown-fields": true,
 }
 }
}

 Link to this macro

 defaults()

 View Source

 (macro)

Returns a Bonny.API.Version struct with default values. Use this and pipe
it into struct!() to override the defaults in your manifest/0 callback.

Bonny.Axn

Describes a resource action event.
This is the token passed to all steps of your operator and controller
pipeline.
This module gets imported to your controllers where you should use the
functions register_descendant/3, update_status/2 and the ones to register
events: success_event/2, failure_event/2 and/or register_event/6. Note
that these functions raise exceptions if those resources have already been
applied to the cluster.
The register_before_* functions can be used in Pluggable steps in order
to register callbacks that are called before applying resources to the
cluster. Have a look at Bonny.Pluggable.Logger for a use case.
Action event fields
These fields contain information on the action event that occurred.
	action - the action that triggered this event
	resource - the resource the action was applied to
	conn - the connection to the cluster the event occurred
	operator - the operator that discovered and dispatched the event
	controller - the controller handling the event and its init opts

Reaction fields
	descendants - descending resources defined by the handling controller
	status - the data to be applied to the status subresource
	events - Kubernetes events regarding the resource to be applied to the cluster

Pipeline fields
	halted - the boolean status on whether the pipeline was halted
	assigns - shared user data as a map
	private - shared library data as a map
	states - The states for status, events and descendants

 Anchor for this section

 Summary

 Types

 assigns()

 states()

 t()

 Functions

 apply_descendants(axn, opts \\ [])

 Applies the dependants to the cluster.
If :create_events is true, will create an event for each successful apply.
Always creates events upon failed applies.

 apply_status(axn, apply_opts \\ [])

 Applies the status to the resource's status subresource in the cluster.
If no status was specified, :noop is returned.

 are_descendants_applied(axn)

 are_events_emitted(axn)

 clear_events(axn)

 Empties the list of events without emitting them.

 emit_events(axn)

 Emits the events created for this Axn.

 failure_event(axn, opts \\ [])

 Registers a failure event to the %Axn{} token to be emitted by Bonny.

 identifier(axn)

 Returns an identifier of an action event (resource and action) as tuple.
Can be used in logs and similar.

 is_status_applied(axn)

 new!(fields)

 register_before_apply_descendants(axn, callback)

 Registers a callback to be invoked before descendants are applied to the
cluster.

 register_before_apply_status(axn, callback)

 Registers a callback to be invoked before a status is applied to the
status subresource.

 register_before_emit_event(axn, callback)

 Registers a callback to be invoked before events are emitted to the
cluster.

 register_descendant(axn, descendant, opts \\ [])

 Registers a decending object to be applied.
Owner reference will be added automatically.
Adding the owner reference can be disabled by passing the option
omit_owner_ref: true.

 register_event(axn, related \\ nil, event_type, reason, action, message)

 Registers a Kubernetes event to the %Axn{} token to be emitted by Bonny.

 success_event(axn, opts \\ [])

 Registers a asuccess event to the %Axn{} token to be emitted by Bonny.

 update_status(axn, fun)

 Executes fun for the resource status and applies the new status
subresource. This can be called multiple times.

 Anchor for this section

Types

 Link to this type

 assigns()

 View Source

 @type assigns() :: %{optional(atom()) => any()}

 Link to this type

 states()

 View Source

 @type states() :: integer()

 Link to this type

 t()

 View Source

 @type t() :: %Bonny.Axn{
 action: :add | :modify | :reconcile | :delete,
 assigns: assigns(),
 conn: K8s.Conn.t(),
 controller: {controller :: module(), init_opts :: keyword()} | nil,
 descendants: [Bonny.Resource.t()],
 events: [Bonny.Event.t()],
 halted: boolean(),
 operator: module() | nil,
 private: assigns(),
 resource: Bonny.Resource.t(),
 states: states(),
 status: map() | nil
}

 Anchor for this section

Functions

 Link to this function

 apply_descendants(axn, opts \\ [])

 View Source

 @spec apply_descendants(t(), Keyword.t()) :: t()

Applies the dependants to the cluster.
If :create_events is true, will create an event for each successful apply.
Always creates events upon failed applies.

 options

 Options

:create_events - Whether events should be created upon success. Defaults to true
All further options are passed to K8s.Client.apply/2

 Link to this function

 apply_status(axn, apply_opts \\ [])

 View Source

 @spec apply_status(t(), Keyword.t()) :: t()

Applies the status to the resource's status subresource in the cluster.
If no status was specified, :noop is returned.

 Link to this macro

 are_descendants_applied(axn)

 View Source

 (macro)

 Link to this macro

 are_events_emitted(axn)

 View Source

 (macro)

 Link to this function

 clear_events(axn)

 View Source

 @spec clear_events(t()) :: t()

Empties the list of events without emitting them.

 Link to this function

 emit_events(axn)

 View Source

 @spec emit_events(t()) :: t()

Emits the events created for this Axn.

 Link to this function

 failure_event(axn, opts \\ [])

 View Source

 @spec failure_event(t(), Keyword.t()) :: t()

Registers a failure event to the %Axn{} token to be emitted by Bonny.

 Link to this function

 identifier(axn)

 View Source

 @spec identifier(t()) :: {binary(), binary(), binary()}

Returns an identifier of an action event (resource and action) as tuple.
Can be used in logs and similar.

 Link to this macro

 is_status_applied(axn)

 View Source

 (macro)

 Link to this function

 new!(fields)

 View Source

 @spec new!(Keyword.t()) :: t()

 Link to this function

 register_before_apply_descendants(axn, callback)

 View Source

 @spec register_before_apply_descendants(
 t(),
 ([Bonny.Resource.t()], t() -> [Bonny.Resource.t()])
) :: t()

Registers a callback to be invoked before descendants are applied to the
cluster.
Callbacks are invoked in the reverse order they are defined (callbacks
defined first are invoked last).

 examples

 Examples

To log a message:
require Logger
Bonny.Axn.register_before_apply_status(axn, fn descendants, axn ->
 Enum.each(descendants, &Logger.info("Descending #{&1["kind"]} named #{&1["name"]} is applied to namespace #{&1["metadata"]["namespace"]}"))
 descendants
end)

 Link to this function

 register_before_apply_status(axn, callback)

 View Source

 @spec register_before_apply_status(
 t(),
 (Bonny.Resource.t(), t() -> Bonny.Resource.t())
) :: t()

Registers a callback to be invoked before a status is applied to the
status subresource.
Callbacks are invoked in the reverse order they are defined (callbacks
defined first are invoked last).

 examples

 Examples

To log a message for the status being applied:
require Logger
Bonny.Axn.register_before_apply_status(axn, fn resource, axn ->
 Logger.info("Status of the #{resource["kind"]} named #{resource["metadata"]["name"]} is applied to namespace #{resource["metadata"]["namespace"]}")
 resource
end)

 Link to this function

 register_before_emit_event(axn, callback)

 View Source

 @spec register_before_emit_event(t(), (Bonny.Event.t(), t() -> Bonny.Event.t())) ::
 t()

Registers a callback to be invoked before events are emitted to the
cluster.
Callbacks are invoked in the reverse order they are defined (callbacks
defined first are invoked last).

 examples

 Examples

To log a message:
require Logger
Bonny.Axn.register_before_apply_status(axn, fn events, axn ->
 Logger.info("Event of type #{event.event_type} is emitted")
 events
end)

 Link to this function

 register_descendant(axn, descendant, opts \\ [])

 View Source

 @spec register_descendant(t(), Bonny.Resource.t(), Keyword.t()) :: t()

Registers a decending object to be applied.
Owner reference will be added automatically.
Adding the owner reference can be disabled by passing the option
omit_owner_ref: true.

 Link to this function

 register_event(axn, related \\ nil, event_type, reason, action, message)

 View Source

 @spec register_event(
 t(),
 Bonny.Resource.t() | nil,
 Bonny.Event.event_type(),
 binary(),
 binary(),
 binary()
) :: t()

Registers a Kubernetes event to the %Axn{} token to be emitted by Bonny.

 Link to this function

 success_event(axn, opts \\ [])

 View Source

 @spec success_event(t(), Keyword.t()) :: t()

Registers a asuccess event to the %Axn{} token to be emitted by Bonny.

 Link to this function

 update_status(axn, fun)

 View Source

 @spec update_status(t(), (map() -> map())) :: t()

Executes fun for the resource status and applies the new status
subresource. This can be called multiple times.
fun should be a function of arity 1. It will be passed the
current status object and expected to return the updated one.
If no current status exists, an empty map is passed to fun

Bonny.Axn.Test

Conveniences for testing Axn steps.
This module can be used in your test cases, like this:
use ExUnit.Case, async: true
use Bonny.Axn.Test
Using this module will:
	import all the functions from this module
	import all the functions from the Bonny.Axn module
	import all the functions from the Pluggable.Token module

 Anchor for this section

 Summary

 Functions

 assigns(axn)

 axn(action, fields \\ [])

 descendants(axn)

 events(axn)

 status(axn)

 Anchor for this section

Functions

 Link to this function

 assigns(axn)

 View Source

 @spec assigns(Bonny.Axn.t()) :: map()

 Link to this function

 axn(action, fields \\ [])

 View Source

 @spec axn(atom(), Keyword.t()) :: Bonny.Axn.t()

 Link to this function

 descendants(axn)

 View Source

 @spec descendants(Bonny.Axn.t()) :: [Bonny.Resource.t()]

 Link to this function

 events(axn)

 View Source

 @spec events(Bonny.Axn.t()) :: [Bonny.Event.t()]

 Link to this function

 status(axn)

 View Source

 @spec status(Bonny.Axn.t()) :: map()

Bonny.CRD

Represents the spec portion of a Kubernetes CustomResourceDefinition manifest.
The CustomResourceDefinition API resource allows you to define custom resources. Defining a CRD object creates a new custom resource with a name and schema that you specify. The Kubernetes API serves and handles the storage of your custom resource.

 Anchor for this section

 Summary

 Types

 t()

 CRD Spec

 Functions

 api_version(crd)

 Gets group version from CRD spec

 default_columns()

 Default CLI printer columns.

 kind(crd)

 CRD Kind or plural name

 to_manifest(crd, api_version \\ "apiextensions.k8s.io/v1beta1")

 Generates the map equivalent of the Kubernetes CRD YAML manifest

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Bonny.CRD{
 additional_printer_columns: [columns_t()],
 group: String.t() | nil,
 names: names_t(),
 scope: :namespaced | :cluster,
 version: String.t()
}

CRD Spec

 Anchor for this section

Functions

 Link to this function

 api_version(crd)

 View Source

 @spec api_version(t()) :: String.t()

Gets group version from CRD spec

 examples

 Examples

 Returns apiVersion for an operator
iex> Bonny.CRD.api_version(%Bonny.CRD{group: "hello.example.com", version: "v1", scope: :namespaced, names: %{}})
"hello.example.com/v1"
 Returns apiVersion for apps resources
iex> Bonny.CRD.api_version(%Bonny.CRD{group: "apps", version: "v1", scope: :namespaced, names: %{}})
"apps/v1"
 Returns apiVersion for core resources
iex> Bonny.CRD.api_version(%Bonny.CRD{group: "", version: "v1", scope: :namespaced, names: %{}})
"v1"

iex> Bonny.CRD.api_version(%Bonny.CRD{group: nil, version: "v1", scope: :namespaced, names: %{}})
"v1"

 Link to this function

 default_columns()

 View Source

 @spec default_columns() :: [map()]

Default CLI printer columns.
These are added to the CRDs columns when columns are set.
The kubernetes API returns these by default when they are not set.

 Link to this function

 kind(crd)

 View Source

 @spec kind(t()) :: binary()

CRD Kind or plural name

 examples

 Examples

iex> Bonny.CRD.kind(%Bonny.CRD{names: %{plural: "greetings"}, scope: :namespaced, group: "test", version: "v1"})
"greetings"

 Link to this function

 to_manifest(crd, api_version \\ "apiextensions.k8s.io/v1beta1")

 View Source

 @spec to_manifest(t(), String.t()) :: map()

Generates the map equivalent of the Kubernetes CRD YAML manifest

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
 creationTimestamp: null
 name: widgets.example.com
spec:
 group: example.com
 names:
 kind: Widget
 plural: widgets
 scope: Namespaced
 version: v1

Bonny.Config

Operator configuration interface

 Anchor for this section

 Summary

 Functions

 api_version()

 Kubernetes APIVersion used. Defaults to apiextensions.k8s.io/v1

 conn()

 K8s.Conn name used for this operator.

 controllers()

 List of all controller modules to watch.

 group()

 Kubernetes API Group of this operator

 instance_name()

 The name of the operator instance.

 labels()

 Labels to apply to all operator resources.

 name()

 The name of the operator.

 namespace()

 The namespace to watch for Namespaced CRDs.

 service_account()

 Kubernetes service account name to run operator as.

 versions()

 Kubernetes API Versions of this operator

 Anchor for this section

Functions

 Link to this function

 api_version()

 View Source

 @spec api_version() :: binary()

Kubernetes APIVersion used. Defaults to apiextensions.k8s.io/v1

 Link to this function

 conn()

 View Source

 @spec conn() :: K8s.Conn.t()

K8s.Conn name used for this operator.

 Link to this function

 controllers()

 View Source

 @spec controllers() :: [atom()]

List of all controller modules to watch.
This must be set in config.exs:
config :bonny, controllers: [MyController1, MyController2]

 Link to this function

 group()

 View Source

 @spec group() :: binary()

Kubernetes API Group of this operator

 Link to this function

 instance_name()

 View Source

 @spec instance_name() :: binary()

The name of the operator instance.
This is set via environment variable BONNY_POD_NAME

 Link to this function

 labels()

 View Source

 @spec labels() :: map()

Labels to apply to all operator resources.
Note: These are only applied to the resources that compose the operator itself,
not the resources created by the operator.
This can be set in config.exs:
config :bonny, labels: %{foo: "bar", quz: "baz"}

 Link to this function

 name()

 View Source

 @spec name() :: binary()

The name of the operator.
Name must consist of only lowercase letters and hyphens.
Defaults to hyphenated mix project app name. E.g.: :hello_operator becomes hello-operator

 Link to this function

 namespace()

 View Source

 @spec namespace() :: binary()

The namespace to watch for Namespaced CRDs.
Defaults to default
This can be set via environment variable:
BONNY_POD_NAMESPACE=prod # specific namespace
or
BONNY_POD_NAMESPACE=__ALL__ # all namespaces
iex -S mix

Or via config.exs:
config :bonny, namespace: "mynamespace" # specific namespace
or
config :bonny; namespace: :all # all namespaces
Configuration via environment variable always takes precedence over config.exs.
Bonny sets BONNY_POD_NAMESPACE on all Kubernetes deployments to the namespace the operator is deployed in.

 Link to this function

 service_account()

 View Source

 @spec service_account() :: binary()

Kubernetes service account name to run operator as.
Note: if a kube config file is provided, this service account will still be created
and assigned to pods, but the config file auth will be used when making requests to the Kube API.
Name must consist of only lowercase letters and hyphens.
Defaults to hyphenated mix project app name. E.g.: :hello_operator becomes hello-operator

 Link to this function

 versions()

 View Source

 @spec versions() :: binary()

Kubernetes API Versions of this operator

Bonny.Controller behaviour

Bonny.Controller defines controller behaviours and generates boilerplate for generating Kubernetes manifests.
A custom controller is a controller that users can deploy and update on a running cluster, independently of the cluster’s own lifecycle. Custom controllers can work with any kind of resource, but they are especially effective when combined with custom resources. The Operator pattern is one example of such a combination. It allows developers to encode domain knowledge for specific applications into an extension of the Kubernetes API.

Controllers allow for simple add, modify, delete, and reconcile handling of custom resources in the Kubernetes API.

 Anchor for this section

 Summary

 Callbacks

 add(map)

 conn()

 Bonny.Controller comes with a default implementation which returns Bonny.Config.config()

 delete(map)

 list_operation()

 Should return an operation to list resources for watching and reconciliation.

 modify(map)

 reconcile(map)

 Functions

 list_operation(controller)

 Anchor for this section

Callbacks

 Link to this callback

 add(map)

 View Source

 @callback add(map()) :: :ok | :error

 Link to this callback

 conn()

 View Source

 @callback conn() :: K8s.Conn.t()

Bonny.Controller comes with a default implementation which returns Bonny.Config.config()

 Link to this callback

 delete(map)

 View Source

 @callback delete(map()) :: :ok | :error

 Link to this callback

 list_operation()

 View Source

 @callback list_operation() :: K8s.Operation.t()

Should return an operation to list resources for watching and reconciliation.
Bonny.Controller comes with a default implementation

 Link to this callback

 modify(map)

 View Source

 @callback modify(map()) :: :ok | :error

 Link to this callback

 reconcile(map)

 View Source

 @callback reconcile(map()) :: :ok | :error

 Anchor for this section

Functions

 Link to this function

 list_operation(controller)

 View Source

 @spec list_operation(module()) :: K8s.Operation.t()

Bonny.ControllerV2 behaviour

Controllers handle action events observed by a resource watch query.
Controllers must be registered at the operator together with the resource
watch query. The operator will then delegate events observed by that query for
processing to this controller
Controllers use the Pluggable.StepBuilder to build a step in the processing
pipeline. In order to use it, a step has to be defined and implemented in the
controller. The step must have the following spec
step_name(Bonny.Axn.t(), keyword()) :: Bonny.Axn.t()
The modules Bonny.Axn module is imported to your controller. In your event
handler step you should use the functions Bonny.Axn.register_descendant/3,
Bonny.Axn.update_status/2 and the ones to register events:
Bonny.Axn.success_event/2, Bonny.Axn.failure_event/2 and/or
Bonny.Axn.register_event/6. Note that these functions raise
exceptions if those resources have already been applied to the cluster.
Example
Match against the struct's :action field which is one of :add, :modify,
:reconcile or :delete to provide an implementation for each case.
defmodule MyOperator.Controller.CronTabController do

 # other steps
 step :handle_event
 # other steps

 # apply the resource
 def handle_event(%Bonny.Axn{action: action, resource: resource} = axn, _opts)
 when action in [:add, :modify, :reconcile] do
 success_event(axn)
 end

 def handle_event(%Bonny.Axn{action: :delete, resource: resource} = axn, _opts) do
 #
 axn
 end
end
Registering your descendants with the %Bonny.Axn{} token makes your
controller easier to test. Be sure to add Bonny.Pluggable.ApplyDescendants
as step to your operator in order for the descendants to be applied to the
cluster.
defmodule MyOperator.Controller.CronTabController do

 # other steps
 step :handle_event
 # other steps

 # apply the resource
 def handle_event(axn, _opts) do
 deployment = generate_deployment(axn.resource)

 axn
 |> register_descendant(deployment)
 |> success_event()
 end
end
Use Bonny.Axn.update_status/2 to store API responses or other status data in the
resource status. Be sure to enable the status subresource in your CRD version
module.
defmodule MyOperator.Controller.CronTabController do

 # other steps
 step :handle_event
 # other steps

 # apply the resource
 def handle_event(axn, _opts) do
 response = apply_state(axn.resource)

 axn
 |> update_status(fn status ->
 Map.put(status, "response", response)
 end)
 |> success_event()
 end
end

 Anchor for this section

 Summary

 Types

 api()

 rbac_rule()

 resource()

 verb()

 Callbacks

 rbac_rules()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(init_args)

 to_rbac_rule(arg)

 Anchor for this section

Types

 Link to this type

 api()

 View Source

 @type api() :: binary()

 Link to this type

 rbac_rule()

 View Source

 @type rbac_rule() :: %{apiGroups: [api()], resources: [resource()], verbs: [verb()]}

 Link to this type

 resource()

 View Source

 @type resource() :: binary()

 Link to this type

 verb()

 View Source

 @type verb() :: binary()

 Anchor for this section

Callbacks

 Link to this callback

 rbac_rules()

 View Source

 @callback rbac_rules() :: [rbac_rule()]

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(init_args)

 View Source

 Link to this function

 to_rbac_rule(arg)

 View Source

 @spec to_rbac_rule({api() | [api()], resource() | [resource()], verb() | [verb()]}) ::
 rbac_rule()

Bonny.Event

Represents a kubernetes event.
Documentation: https://kubernetes.io/docs/reference/kubernetes-api/cluster-resources/event-v1/

 Anchor for this section

 Summary

 Types

 event_type()

 Kubernetes events currently support these types.

 t()

 See https://kubernetes.io/docs/reference/kubernetes-api/cluster-resources/event-v1/ for field explanations.

 Functions

 new!(fields)

 Creates an event.

 new!(regarding, related \\ nil, event_type, reason, action, message, opts \\ [])

 Anchor for this section

Types

 Link to this type

 event_type()

 View Source

 @type event_type() :: :Normal | :Warning

Kubernetes events currently support these types.

 Link to this type

 t()

 View Source

 @type t() :: %Bonny.Event{
 action: binary(),
 event_type: event_type(),
 message: binary(),
 now: DateTime.t(),
 reason: binary(),
 regarding: map(),
 related: map(),
 reporting_controller: binary(),
 reporting_instance: binary()
}

See https://kubernetes.io/docs/reference/kubernetes-api/cluster-resources/event-v1/ for field explanations.

 Anchor for this section

Functions

 Link to this function

 new!(fields)

 View Source

 @spec new!(Keyword.t()) :: t()

Creates an event.
Options: :reporting_controller, :reporting_instance

 Link to this function

 new!(regarding, related \\ nil, event_type, reason, action, message, opts \\ [])

 View Source

 @spec new!(
 Bonny.Resource.t(),
 Bonny.Resource.t() | nil,
 event_type(),
 binary(),
 binary(),
 binary(),
 Keyword.t()
) :: t()

Bonny.EventRecorder

Records kubernetes events regarding objects controlled by this operator.

 Anchor for this section

 Summary

 Types

 event_key()

 A map to identify an event.

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 emit(event, operator, conn)

 Create a kubernetes event in the cluster.
Documentation: https://kubernetes.io/docs/reference/kubernetes-api/cluster-resources/event-v1/

 start_link(opts)

 Anchor for this section

Types

 Link to this type

 event_key()

 View Source

 @type event_key() :: %{
 action: binary(),
 reason: binary(),
 reporting_controller: binary(),
 regarding: binary(),
 related: binary()
}

A map to identify an event.

 Anchor for this section

Functions

 Link to this function

 child_spec(arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 emit(event, operator, conn)

 View Source

 @spec emit(Bonny.Event.t(), atom(), K8s.Conn.t()) :: K8s.Client.Runner.Base.result_t()

Create a kubernetes event in the cluster.
Documentation: https://kubernetes.io/docs/reference/kubernetes-api/cluster-resources/event-v1/

 Link to this function

 start_link(opts)

 View Source

 @spec start_link(Keyword.t()) :: Agent.on_start()

Bonny.Mix.Operator

Encapsulates Kubernetes resource manifests for an operator

 Anchor for this section

 Summary

 Functions

 cluster_role(operators)

 ClusterRole manifest

 cluster_role_binding(namespace)

 ClusterRoleBinding manifest

 crds(operators)

 CRD manifests

 deployment(image, namespace)

 Deployment manifest

 find_operators()

 rbac_rules(operators)

 service_account(namespace)

 ServiceAccount manifest

 Anchor for this section

Functions

 Link to this function

 cluster_role(operators)

 View Source

 @spec cluster_role([atom()]) :: map()

ClusterRole manifest

 Link to this function

 cluster_role_binding(namespace)

 View Source

 @spec cluster_role_binding(binary()) :: map()

ClusterRoleBinding manifest

 Link to this function

 crds(operators)

 View Source

 @spec crds([atom()]) :: [map()]

CRD manifests

 Link to this function

 deployment(image, namespace)

 View Source

 @spec deployment(binary(), binary()) :: map()

Deployment manifest

 Link to this function

 find_operators()

 View Source

 @spec find_operators() :: [atom()]

 Link to this function

 rbac_rules(operators)

 View Source

 Link to this function

 service_account(namespace)

 View Source

 @spec service_account(binary()) :: map()

ServiceAccount manifest

Bonny.Naming

Naming functions

 Anchor for this section

 Summary

 Functions

 module_to_kind(mod)

 Converts an elixir module name to a string for use as the CRD's kind.

 module_version(mod)

 Extract the CRD API version from the module name. Defaults to "v1"

 Anchor for this section

Functions

 Link to this function

 module_to_kind(mod)

 View Source

 @spec module_to_kind(atom()) :: String.t()

Converts an elixir module name to a string for use as the CRD's kind.

 examples

 Examples

iex> Bonny.Naming.module_to_kind(Pod)
"Pod"

iex> Bonny.Naming.module_to_kind(Controllers.V1.Pod)
"Pod"

 Link to this function

 module_version(mod)

 View Source

 @spec module_version(atom()) :: String.t()

Extract the CRD API version from the module name. Defaults to "v1"

 examples

 Examples

iex> Bonny.Naming.module_version(Pod)
"v1"

iex> Bonny.Naming.module_version(Controllers.V1.Pod)
"v1"

iex> Bonny.Naming.module_version(Controllers.V1Alpha1.Pod)
"v1alpha1"

Bonny.Operator behaviour

Defines a Bonny operator.
The operator defines custom resources, watch queries and their
controllers and serves as the entry point to the watching and handling of
processes.
Overall, an operator has the following responsibilities:
	to provide a wrapper for starting and stopping the
operator as part of a supervision tree

	To define the resources to be watched together with the
controllers which handle action events on those resources.

	to define an initial pluggable pipeline for all action events
to pass through

	To define any custom resources ending up in the manifest
generated by mix bonny.gen.manifest

Operators
An operator is defined with the help of Bonyy.Operator. The step
:delegate_to_controller has do be part of the pipeline. It is the step that
calls the handling controller for a given action event:
defmodule MyOperatorApp.Operator do
 use Bonny.Operator, default_watching_namespace: "default"

 # step ...
 step :delegate_to_controller
 # step ...

 def controllers(watching_namespace, _opts) do
 [
 %{
 query: K8s.Client.list("my-controller.io", "MyCustomResource", namespace: nil)
 controller: MyOperator.Controller.MyCustomResourceController
 }
]
 end

end

 Anchor for this section

 Summary

 Types

 controller_spec()

 Callbacks

 controllers(binary, t)

 crds()

 Anchor for this section

Types

 Link to this type

 controller_spec()

 View Source

 @type controller_spec() :: %{
 optional(:controller) => module() | {module(), keyword()},
 query: K8s.Operation.t()
}

 Anchor for this section

Callbacks

 Link to this callback

 controllers(binary, t)

 View Source

 @callback controllers(binary(), Keyword.t()) :: [controller_spec()]

 Link to this callback

 crds()

 View Source

 @callback crds() :: [Bonny.API.CRD.t()]

Bonny.PeriodicTask

Register periodically run tasks.
Use for running tasks as a part of reconciling a CRD with a lifetime, duration, or interval field.
Note: Must be started by your operator.
Add Bonny.PeriodicTask.sttart_link(:ok) to your application.
Functions are expected to return one of:
	:ok - task will be passed to subsequent calls
	{:ok, new_state} state field will be updated in task and provided to next call
	{:stop, reason} task will be removed from execution loop. Use for tasks opting out of being re-run
	any() - any other result is treated as an error, and the execution loop will be halted

Examples
 Registering a task
iex> Bonny.PeriodicTask.new(:pod_evictor, {PodEvictor, :evict, [reconcile_payload_map]}, 5000)
 Unregistering a task
iex> Bonny.PeriodicTask.unregister(:pod_evictor)

 Anchor for this section

 Summary

 Types

 t()

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 new(id, handler, interval \\ 5000)

 Registers and starts a new task given Bonny.PeriodicTask attributes

 register(task)

 Registers and starts a new Bonny.PeriodicTask

 start_link(any)

 unregister(id)

 Unregisters and stops a Bonny.PeriodicTask

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Bonny.PeriodicTask{
 handler: (... -> any()) | mfa(),
 id: binary() | atom(),
 interval: pos_integer(),
 jitter: float(),
 state: any()
}

 Anchor for this section

Functions

 Link to this function

 child_spec(arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 new(id, handler, interval \\ 5000)

 View Source

 @spec new(binary() | atom(), mfa() | (... -> any()), pos_integer()) ::
 {:ok, pid()} | {:error, term()}

Registers and starts a new task given Bonny.PeriodicTask attributes

 Link to this function

 register(task)

 View Source

 @spec register(t()) :: {:ok, pid()} | {:error, term()}

Registers and starts a new Bonny.PeriodicTask

 Link to this function

 start_link(any)

 View Source

 @spec start_link(any()) :: :ignore | {:error, any()} | {:ok, pid()}

 Link to this function

 unregister(id)

 View Source

 @spec unregister(t() | atom()) :: any()

Unregisters and stops a Bonny.PeriodicTask

Bonny.Pluggable.AddManagedByLabelToDescendants

Adds the app.kubernetes.io/managed-by label to all descendants registered
within the pipeline.
Add this to your operator or controllers to set this label to a value of
your choice.
Options
	:managed_by - Required. The value the label should be set to.

Examples
step Bonny.Pluggable.AddManagedByLabelToDescendants,
 managed_by: Bonny.Config.name()

Bonny.Pluggable.ApplyDescendants

Applies all the descendants added to the %Bonny.Axn{} struct.
Options
	:events_for_actions - List of actions for which events will be created
upon successful apply. Defaults to [:add, :modify] (Reconcile actions
are triggered regularly which would create lots of events for no actions.)
	:force and :field_manager - Options forwarded to K8s.Client.apply().

Examples
step Bonny.Pluggable.ApplyDescendants,
 events_for_actions: [:add, :modify, :reconcile],
 field_manager: "MyOperator",
 force: true

Bonny.Pluggable.ApplyStatus

Applies the status of the given %Bonny.Axn{} struct to the status subresource.
Options
	:force and :field_manager - Options forwarded to K8s.Client.apply().

Examples
step Bonny.Pluggable.ApplyStatus, field_manager: "MyOperator", force: true

Bonny.Pluggable.Logger

A pluggable step for logging basic action event information in the format:
{"NAMESPACE/OBJECT_NAME", API_VERSION, "Kind=KIND, Action=ACTION"}
Example:
{"default/my-object", "example.com/v1", "Kind=MyCustomResource, Action=:add"} - Processing event
{"default/my-object", "example.com/v1", "Kind=MyCustomResource, Action=:add"} - Applying status
{"default/my-object", "example.com/v1", "Kind=MyCustomResource, Action=:add"} - Emitting Normal event
{"default/my-object", "example.com/v1", "Kind=MyCustomResource, Action=:add"} - Applying descendant {"default/nginx", "apps/v1", "Kind=Deployment"}
To use it, just add a step to the desired module.
step Bonny.Pluggable.Logger, level: :debug
Options
	:level - The log level at which this plug should log its request info.
Default is :info.
The list of supported levels
is available in the Logger documentation.

 Anchor for this section

 Summary

 Functions

 call(axn, level)

 Callback implementation for Pluggable.call/2.

 init(opts)

 Callback implementation for Pluggable.init/1.

 Anchor for this section

Functions

 Link to this function

 call(axn, level)

 View Source

Callback implementation for Pluggable.call/2.

 Link to this function

 init(opts)

 View Source

Callback implementation for Pluggable.init/1.

Bonny.Pluggable.SkipObservedGenerations

Halts the pipelines for a defined list of actions if the observed generation
equals the resource's generation. It also sets the observed generation value
before applying the resource status to the cluster.
Options
	:actions - The actions for which this rule applies. Defaults to [:add, :modify].
	:observed_generation_key - The resource status key where the observed generation is stored. This will be passed to Kernel.get_in(). Defaults to ["status", "observedGeneration"].

Usage
step Bonny.Pluggable.SkipObservedGenerations,
 actions: [:add, :modify, :reconcile],
 observed_generation_key: ~w(status internal observedGeneration)

Bonny.Resource

Helper functions for dealing with kubernetes resources.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 add_owner_reference(resource, owner, opts \\ [])

 Add an owner reference to the given resource.

 apply(resource, conn, opts)

 Applies the given resource to the cluster.

 apply_async(resources, conn, opts \\ [])

 Applies the given resource to the cluster.

 apply_status(resource, conn, opts \\ [])

 Applies the status subresource of the given resource to the cluster.
If the given resource doesn't contain a status object, nothing is done and
:noop is returned.

 drop_managed_fields(resource)

 Removes .metadata.managedFields from the resource.

 gvkn(resource)

 Returns a tuple in the form

 resource_reference(resource)

 Get a reference to the given resource

 set_label(resource, label, value)

 Set a label on the given resource.

 set_observed_generation(resource)

 Sets .status.observedGeneration to .metadata.generation

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: map()

 Anchor for this section

Functions

 Link to this function

 add_owner_reference(resource, owner, opts \\ [])

 View Source

 @spec add_owner_reference(t(), map(), keyword(boolean())) :: t()

Add an owner reference to the given resource.

 example

 Example

iex> owner = %{
...> "apiVersion" => "example.com/v1",
...> "kind" => "Orange",
...> "metadata" => %{
...> "name" => "annoying",
...> "namespace" => "default",
...> "uid" => "e19b6f40-3293-11ed-a261-0242ac120002"
...> }
...> }
...> resource = %{
...> "apiVersion" => "v1",
...> "kind" => "Pod",
...> "metadata" => %{"name" => "nginx", "namespace" => "default"}
...> # spec
...> }
...> Bonny.Resource.add_owner_reference(resource, owner)
%{
 "apiVersion" => "v1",
 "kind" => "Pod",
 "metadata" => %{
 "name" => "nginx",
 "namespace" => "default",
 "ownerReferences" => [%{
 "apiVersion" => "example.com/v1",
 "blockOwnerDeletion" => false,
 "controller" => true,
 "kind" => "Orange",
 "name" => "annoying",
 "uid" => "e19b6f40-3293-11ed-a261-0242ac120002"
 }]
 }
}

 Link to this function

 apply(resource, conn, opts)

 View Source

 @spec apply(t(), K8s.Conn.t(), Keyword.t()) :: K8s.Client.Runner.Base.result_t()

Applies the given resource to the cluster.

 Link to this function

 apply_async(resources, conn, opts \\ [])

 View Source

 @spec apply_async([t()], K8s.Conn.t(), Keyword.t()) :: [
 {t(), K8s.Client.Runner.Base.result_t()}
]

Applies the given resource to the cluster.

 Link to this function

 apply_status(resource, conn, opts \\ [])

 View Source

 @spec apply_status(t(), K8s.Conn.t(), Keyword.t()) ::
 K8s.Client.Runner.Base.result_t() | :noop

Applies the status subresource of the given resource to the cluster.
If the given resource doesn't contain a status object, nothing is done and
:noop is returned.

 Link to this function

 drop_managed_fields(resource)

 View Source

 @spec drop_managed_fields(t()) :: t()

Removes .metadata.managedFields from the resource.

 Link to this function

 gvkn(resource)

 View Source

 @spec gvkn(t()) :: {binary(), binary(), binary()}

Returns a tuple in the form
	{apiVersion, kind, namespace/name} for namespaced resources
	{apiVersion, kind, name} for cluster scoped resources

 Link to this function

 resource_reference(resource)

 View Source

Get a reference to the given resource

 example

 Example

iex> resource = %{
...> "apiVersion" => "example.com/v1",
...> "kind" => "Orange",
...> "metadata" => %{
...> "name" => "annoying",
...> "namespace" => "default",
...> "uid" => "e19b6f40-3293-11ed-a261-0242ac120002"
...> }
...> }
...> Bonny.Resource.resource_reference(resource)
%{
 "apiVersion" => "example.com/v1",
 "kind" => "Orange",
 "name" => "annoying",
 "namespace" => "default",
 "uid" => "e19b6f40-3293-11ed-a261-0242ac120002"
}

 Link to this function

 set_label(resource, label, value)

 View Source

 @spec set_label(t(), binary(), binary()) :: t()

Set a label on the given resource.

 example

 Example

iex> resource = %{
...> "apiVersion" => "v1",
...> "kind" => "Pod",
...> "metadata" => %{"name" => "nginx", "namespace" => "default"}
...> # spec
...> }
...> Bonny.Resource.set_label(resource, "app.kubernetes.io/managed-by", "my-operator")
%{
 "apiVersion" => "v1",
 "kind" => "Pod",
 "metadata" => %{
 "name" => "nginx",
 "namespace" => "default",
 "labels" => %{
 "app.kubernetes.io/managed-by" => "my-operator"
 }
 }
}

 Link to this function

 set_observed_generation(resource)

 View Source

 @spec set_observed_generation(t()) :: t()

Sets .status.observedGeneration to .metadata.generation

Bonny.Server.AsyncStreamRunner

Runs the given stream in a separate process. Prepare your stream and add this Runner to your supervision tree
in order to control it (e.g. restart after the stream ends).
Example
prepare a stream
stream =
 conn
 |> K8s.Client.stream(operation)
 |> Stream.filter(&filter_resources/1)
 |> Stream.map(&process_stream/1)

children = [
 {Bonny.Server.AsyncStreamRunner,
 name: ReconcileServer,
 stream: K8s.Client.stream(conn, operation),
 termination_delay: 30_000,
]

Supervisor.init(children, strategy: :one_for_one)
Options
	:stream - The (prepared) stream to run
	:name (optional) - Register this process under the given name.
	:termination_delay (optional) - After the stream ends, how many
milliseconds to wait before the process terminates (and might be
restarted by the Supervisor). Per default there's no delay

 Anchor for this section

 Summary

 Functions

 child_spec(args)

 run(stream, termination_delay)

 start_link(args)

 Anchor for this section

Functions

 Link to this function

 child_spec(args)

 View Source

 @spec child_spec(keyword()) :: Supervisor.child_spec()

 Link to this function

 run(stream, termination_delay)

 View Source

 @spec run(Enumerable.t(), non_neg_integer()) :: no_return()

 Link to this function

 start_link(args)

 View Source

 @spec start_link(keyword()) :: {:ok, pid()}

Bonny.Server.Reconciler behaviour

Creates a stream that, when run, streams a list of resources and calls reconcile/1
on the given controller for each resource in the stream in parallel.
Example
reconciliation_stream = Bonny.Server.Reconciler.get_stream(controller)
Task.async(fn -> Stream.run(reconciliation_stream) end)

 Anchor for this section

 Summary

 Callbacks

 reconcile(map)

 Functions

 get_raw_stream(conn, reconcile_operation, stream_opts \\ [])

 get_stream(module, conn, reconcile_operation, stream_opts \\ [])

 Prepares a stream wich maps each resoruce returned by the reconcile_operation to
a function reconcile/1 on the given module. If given, the stream_opts are passed
to K8s.Client.stream/3

 Anchor for this section

Callbacks

 Link to this callback

 reconcile(map)

 View Source

 @callback reconcile(map()) :: :ok | {:ok, any()} | {:error, any()}

 Anchor for this section

Functions

 Link to this function

 get_raw_stream(conn, reconcile_operation, stream_opts \\ [])

 View Source

 @spec get_raw_stream(K8s.Conn.t(), K8s.Operation.t(), keyword()) :: Enumerable.t()

 Link to this function

 get_stream(module, conn, reconcile_operation, stream_opts \\ [])

 View Source

 @spec get_stream(module(), K8s.Conn.t(), K8s.Operation.t(), keyword()) ::
 Enumerable.t(Bonny.Resource.t())

Prepares a stream wich maps each resoruce returned by the reconcile_operation to
a function reconcile/1 on the given module. If given, the stream_opts are passed
to K8s.Client.stream/3

Bonny.Server.Scheduler behaviour

Kubernetes custom scheduler interface. Built on top of Reconciler.
The only function that needs to be implemented is select_node_for_pod/2. All others defined by behaviour have default implementations.
Examples
 Will schedule each unschedule pod with spec.schedulerName=cheap-node to a node with a label cheap=true.
 nodes is a stream that can be lazily filtered:
defmodule CheapNodeScheduler do
 use Bonny.Server.Scheduler, name: "cheap-node"

 @impl Bonny.Server.Scheduler
 def select_node_for_pod(_pod, nodes) do
 nodes
 |> Stream.filter(fn(node) ->
 is_cheap = K8s.Resource.label(node, "cheap")
 is_cheap == "true"
 end)
 |> Enum.take(1)
 |> List.first
 end
end

CheapNodeScheduler.start_link()
 Will schedule each unschedule pod with spec.schedulerName=random-node to a random node:
defmodule RandomNodeScheduler do
 use Bonny.Server.Scheduler, name: "random-node"

 @impl Bonny.Server.Scheduler
 def select_node_for_pod(_pod, nodes) do
 Enum.random(nodes)
 end
end

RandomNodeScheduler.start_link()
 Override nodes/0 default implementation (pods/0 can be overridden too).
 Schedules pod on a random GPU node:
defmodule GpuScheduler do
 use Bonny.Server.Scheduler, name: "gpu-node"

 @impl Bonny.Server.Scheduler
 def select_node_for_pod(_pod, nodes) do
 Enum.random(nodes)
 end

 @impl Bonny.Server.Scheduler
 def nodes() do
 label = "my.label.on.gpu.instances"
 conn = Bonny.Config.conn()

 op = K8s.Client.list("v1", :nodes)
 K8s.Client.stream(conn, op, params: %{labelSelector: label})
 end
end

GpuScheduler.start_link()

 Anchor for this section

 Summary

 Callbacks

 conn()

 field_selector()

 Field selector for selecting unscheduled pods waiting to be scheduled by this scheduler.

 name()

 Name of the scheduler.

 nodes(t)

 List of nodes available to this scheduler.

 select_node_for_pod(map, list)

 Selects the best node for the current pod.

 Functions

 bind(conn, pod, node)

 Binds a pod to a node

 field_selector(scheduler_name)

 Kubernetes API fieldSelector value for unbound pods waiting on the given scheduler.

 nodes(conn)

 Returns a list of all nodes in the cluster.

 reconcile(scheduler, pod)

 Anchor for this section

Callbacks

 Link to this callback

 conn()

 View Source

 @callback conn() :: K8s.Conn.t()

 Link to this callback

 field_selector()

 View Source

 @callback field_selector() :: binary()

Field selector for selecting unscheduled pods waiting to be scheduled by this scheduler.
Default implementation is all unscheduled pods assigned to this scheduler.

 Link to this callback

 name()

 View Source

 @callback name() :: binary()

Name of the scheduler.

 Link to this callback

 nodes(t)

 View Source

 @callback nodes(K8s.Conn.t()) :: {:ok, Enumerable.t()} | {:error, any()}

List of nodes available to this scheduler.
Default implementation is all nodes in cluster.

 Link to this callback

 select_node_for_pod(map, list)

 View Source

 @callback select_node_for_pod(map(), [map()]) :: map()

Selects the best node for the current pod.
Takes the current unscheduled pod and a Stream of nodes. pod is provided in the event that taints or affinities would need to be respected by the scheduler.
Returns the node to schedule on.

 Anchor for this section

Functions

 Link to this function

 bind(conn, pod, node)

 View Source

 @spec bind(K8s.Conn.t(), map(), map()) :: {:ok, map()} | {:error, atom()}

Binds a pod to a node

 Link to this function

 field_selector(scheduler_name)

 View Source

 @spec field_selector(binary()) :: binary()

Kubernetes API fieldSelector value for unbound pods waiting on the given scheduler.

 Link to this function

 nodes(conn)

 View Source

 @spec nodes(K8s.Conn.t()) :: {:ok, [map()]} | {:error, any()}

Returns a list of all nodes in the cluster.

 Link to this function

 reconcile(scheduler, pod)

 View Source

 @spec reconcile(module(), map()) :: :ok

Bonny.Server.Scheduler.Binding

Kubernetes binding interface.
Currently undocumented in Kubernetes docs.
Links
	Example using curl
	Example using golang

 Anchor for this section

 Summary

 Functions

 create(conn, pod, node)

 Creates the pod's /binding subresource through K8s.

 new(pod, node)

 Returns a map representing a Binding kubernetes resource

 Anchor for this section

Functions

 Link to this function

 create(conn, pod, node)

 View Source

 @spec create(K8s.Conn.t(), map(), map()) ::
 {:ok, HTTPoison.Response.t()} | {:error, HTTPoison.Error.t()}

Creates the pod's /binding subresource through K8s.

 Link to this function

 new(pod, node)

 View Source

 @spec new(map(), map()) :: map()

Returns a map representing a Binding kubernetes resource

 example

 Example

iex> pod = %{"metadata" => %{"name" => "nginx", "namespace" => "default"}}
...> node = %{"metadata" => %{"name" => "kewl-node"}}
iex> Bonny.Server.Scheduler.Binding.new(pod, node)
%{"apiVersion" => "v1", "kind" => "Binding", "metadata" => %{"name" => "nginx", "namespace" => "default"}, "target" => %{"apiVersion" => "v1", "kind" => "Node", "name" => "kewl-node"}}

Bonny.Server.Watcher

Creates the stream for watching resources in kubernetes and prepares its processing.
Watching a resource in kubernetes results in a stream of add/modify/delete events.
This module uses K8s.Client.watch_and_stream/3 to create such a stream and maps
events to a controller's event handler. It is then up to the caller to run the
resulting stream.
Example
watch_stream = Bonny.Server.Watcher.get_stream(controller)
Task.async(fn -> Stream.run(watch_stream) end)

 Anchor for this section

 Summary

 Types

 action()

 watch_event()

 Functions

 get_raw_stream(conn, watch_operation)

 get_stream(controller, conn, watch_operation)

 Anchor for this section

Types

 Link to this type

 action()

 View Source

 @type action() :: :add | :modify | :delete

 Link to this type

 watch_event()

 View Source

 @type watch_event() :: {action(), Bonny.Resource.t()}

 Anchor for this section

Functions

 Link to this function

 get_raw_stream(conn, watch_operation)

 View Source

 @spec get_raw_stream(K8s.Conn.t(), K8s.Operation.t()) :: Enumerable.t(watch_event())

 Link to this function

 get_stream(controller, conn, watch_operation)

 View Source

 @spec get_stream(module(), K8s.Conn.t(), K8s.Operation.t()) ::
 Enumerable.t(Bonny.Resource.t())

Bonny.Sys.Event

Telemetry event definitions for this library

 Anchor for this section

 Summary

 Functions

 events()

 deprecated

 See Bonny.Sys.Telemetry.events/0.

 Anchor for this section

Functions

 Link to this function

 events()

 View Source

 This function is deprecated. Use Bonny.Sys.Telemetry instead.

 @spec events() :: list()

See Bonny.Sys.Telemetry.events/0.

Bonny.Sys.Logger

Attaches telemetry events to the Elixir Logger

 Anchor for this section

 Summary

 Functions

 attach()

 Attaches telemetry events to the Elixir Logger

 Anchor for this section

Functions

 Link to this function

 attach()

 View Source

 @spec attach() :: :ok

Attaches telemetry events to the Elixir Logger

Bonny.Sys.Telemetry

Telemetry event definitions for this library

 Anchor for this section

 Summary

 Functions

 events()

 Anchor for this section

Functions

 Link to this function

 events()

 View Source

 @spec events() :: list()

DeploymentEventLogController

This is a goofy config, but it makes this work in dev w/o having to POST an Example CRD.
This controller simply logs lifecycle events on Deployments.

 Anchor for this section

 Summary

 Functions

 call(token, opts)

 Callback implementation for Pluggable.call/2.

 handle_event(axn, opts)

 init(opts)

 Callback implementation for Pluggable.init/1.

 rbac_rules()

 Callback implementation for Bonny.ControllerV2.rbac_rules/0.

 track_event(type, resource)

 Anchor for this section

Functions

 Link to this function

 call(token, opts)

 View Source

Callback implementation for Pluggable.call/2.

 Link to this function

 handle_event(axn, opts)

 View Source

 Link to this function

 init(opts)

 View Source

Callback implementation for Pluggable.init/1.

 Link to this function

 rbac_rules()

 View Source

Callback implementation for Bonny.ControllerV2.rbac_rules/0.

 Link to this function

 track_event(type, resource)

 View Source

Mix.Bonny

Mix task helpers

 Anchor for this section

 Summary

 Functions

 add_or_create_with(mode, target, content_to_add, new_file_content, check)

 app_dir_name()

 app_name()

 Get the OTP app name

 append_or_create_with(target, content_to_append, new_file_content, check)

 Appends append_content to target. If target does not exist, a new
file with new_file_content is created.

 copy(source, target)

 ensure_module_name(string)

 Capitalizes the string if it does not begin with a capital letter.

 error(message)

 hyphenated_app_name()

 Get the OTP app name with dashes

 no_umbrella!()

 parse_args(args, defaults, cli_opts \\ [])

 Parse CLI input

 prepend_or_create_with(target, content_to_prepend, new_file_content, check)

 Prepends append_content to target. If target does not exist, a new
file with new_file_content is created.

 render(source, target)

 Render text to a file.

 render_template(source, target, bindings)

 template(name)

 Anchor for this section

Functions

 Link to this function

 add_or_create_with(mode, target, content_to_add, new_file_content, check)

 View Source

 @spec add_or_create_with(:append | :prepend, binary(), binary(), binary(), binary()) ::
 term()

 Link to this function

 app_dir_name()

 View Source

 @spec app_dir_name() :: binary()

 Link to this function

 app_name()

 View Source

 @spec app_name() :: binary()

Get the OTP app name

 Link to this function

 append_or_create_with(target, content_to_append, new_file_content, check)

 View Source

 @spec append_or_create_with(binary(), binary(), binary(), binary()) :: term()

Appends append_content to target. If target does not exist, a new
file with new_file_content is created.

 Link to this function

 copy(source, target)

 View Source

 @spec copy(binary(), binary()) :: term()

 Link to this function

 ensure_module_name(string)

 View Source

Capitalizes the string if it does not begin with a capital letter.

 Link to this function

 error(message)

 View Source

 Link to this function

 hyphenated_app_name()

 View Source

 @spec hyphenated_app_name() :: binary()

Get the OTP app name with dashes

 Link to this function

 no_umbrella!()

 View Source

 @spec no_umbrella!() :: any()

 Link to this function

 parse_args(args, defaults, cli_opts \\ [])

 View Source

 @spec parse_args([binary()], Keyword.t(), Keyword.t()) ::
 {Keyword.t(), [binary()], [{binary(), nil | binary()}]}

Parse CLI input

 Link to this function

 prepend_or_create_with(target, content_to_prepend, new_file_content, check)

 View Source

 @spec prepend_or_create_with(binary(), binary(), binary(), binary()) :: term()

Prepends append_content to target. If target does not exist, a new
file with new_file_content is created.

 Link to this function

 render(source, target)

 View Source

 @spec render(binary(), binary()) :: term()

Render text to a file.
Special handling for the path "-" will render to STDOUT

 Link to this function

 render_template(source, target, bindings)

 View Source

 @spec render_template(binary(), binary(), keyword()) :: term()

 Link to this function

 template(name)

 View Source

 @spec template(binary()) :: binary()

TestScheduler

 Anchor for this section

 Summary

 Functions

 child_spec(args \\ [])

 conn()

 Callback implementation for Bonny.Server.Scheduler.conn/0.

 field_selector()

 Kubernetes HTTP API fieldSelector.

 name()

 Scheduler name

 nodes(conn)

 List of nodes available to this scheduler.

 select_node_for_pod(pod, nodes)

 Callback implementation for Bonny.Server.Scheduler.select_node_for_pod/2.

 Anchor for this section

Functions

 Link to this function

 child_spec(args \\ [])

 View Source

 @spec child_spec(keyword()) :: Supervisor.child_spec()

 Link to this function

 conn()

 View Source

Callback implementation for Bonny.Server.Scheduler.conn/0.

 Link to this function

 field_selector()

 View Source

Kubernetes HTTP API fieldSelector.

 Link to this function

 name()

 View Source

Scheduler name

 Link to this function

 nodes(conn)

 View Source

List of nodes available to this scheduler.

 Link to this function

 select_node_for_pod(pod, nodes)

 View Source

Callback implementation for Bonny.Server.Scheduler.select_node_for_pod/2.

Bonny.Axn.DescendantsAlreadyAppliedError exception

Error raised when trying to register a descendant or apply the descendants
when already applied.

Bonny.Axn.EventsAlreadyEmittedError exception

Error raised when trying to register an event or emit evnts when already
emitted.

Bonny.Axn.StatusAlreadyAppliedError exception

Error raised when trying to update or apply an already applied status

mix bonny.gen.controller

Generates a new CRD controller
An operator can have multiple controllers. Each controller handles the lifecycle of a custom resource.
mix bonny.gen.controller

Open up your controller and add functionality for your resources lifecycle:
	Add
	Modify
	Delete
	Reconcile

If you selected to add a CRD, also edit the generated CRD version module.

 Anchor for this section

 Summary

 Functions

 get_input(input)

 run(args)

 Callback implementation for Mix.Task.run/1.

 Anchor for this section

Functions

 Link to this function

 get_input(input)

 View Source

 Link to this function

 run(args)

 View Source

 @spec run([binary()]) :: Keyword.t()

Callback implementation for Mix.Task.run/1.

mix bonny.gen.dockerfile

Generates a Dockerfile for this operator

 Anchor for this section

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Anchor for this section

Functions

 Link to this function

 run(args)

 View Source

 @spec run([binary()]) :: nil | :ok

Callback implementation for Mix.Task.run/1.

mix bonny.gen.manifest

Generates the Kubernetes YAML manifest for this operator
mix bonny.gen.manifest expects a docker image name if deploying to a cluster. You may optionally provide a namespace.
Examples
The image switch is required.
Options:
	--image (docker image to deploy)
	--namespace (of service account and deployment; defaults to "default")
	--out (path to save manifest; defaults to "manifest.yaml")

Deploying to kubernetes:

docker build -t $(YOUR_IMAGE_URL) .
docker push $(YOUR_IMAGE_URL)

mix bonny.gen.manifest --image $(YOUR_IMAGE_URL):latest --namespace default
kubectl apply -f manifest.yaml -n default

To skip the deployment for running an operator outside of the cluster (like in development) simply omit the --image flag:
mix bonny.gen.manifest

 Anchor for this section

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Anchor for this section

Functions

 Link to this function

 run(args)

 View Source

 @spec run(list()) :: any()

Callback implementation for Mix.Task.run/1.

mix bonny.init

Initialized an operator wiht bonny.
	Initializes application configuration
	Generates helper files for tests

 Anchor for this section

 Summary

 Functions

 get_input(input \\ [])

 run(args)

 Callback implementation for Mix.Task.run/1.

 Anchor for this section

Functions

 Link to this function

 get_input(input \\ [])

 View Source

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

