

 Beamchmark

 v1.4.1

 Table of contents

 	Beamchmark

 	LICENSE

 	Modules

 	Beamchmark

 	Beamchmark.Formatter

 	Beamchmark.Math

 	Beamchmark.Scenario

 	Beamchmark.Suite

 	Beamchmark.Utils

 	Beamchmark.Formatters.Console

 	Beamchmark.Formatters.HTML

 	Beamchmark.Formatters.Utils

 	Beamchmark.Suite.CPU.CpuTask

 	Beamchmark.Suite.Configuration

 	Beamchmark.Suite.Measurements

 	Beamchmark.Suite.Measurements.CpuInfo

 	Beamchmark.Suite.Measurements.MemoryInfo

 	Beamchmark.Suite.Measurements.SchedulerInfo

 	Beamchmark.Suite.Memory.MemoryTask

 	Beamchmark.Suite.SystemInfo

Beamchmark

[image: Hex.pm]
[image: API Docs]
[image: CircleCI]
Tool for measuring EVM performance.
At the moment, the main interest of Beamchmark is scheduler utilization, reductions and the number of context switches.
For more information please refer to API docs.
Currently, Beamchmark is supported on macOS, Linux and partially on Windows.
Beamchmark and Benchee
Beamchmark should be used when you want to measure BEAM performance while it is running your application.
Benchee should be used when you want to benchmark specific function from your code base.
In particular, Benchee will inform you how long your function is executing, while Beamchmark will inform you
how busy BEAM is.
Installation
The package can be installed by adding beamchmark to your list of dependencies in mix.exs:
def deps do
 [
 {:beamchmark, "~> 1.4.1"}
]
end
Usage
Running an application using Beamchmark.Scenario
You create a test scenario by adopting Beamchmark.Scenario behaviour in a module. It has to implement run() function, which will execute for benchmarking.
The examples of using Scenario are located in the examples directory.
To run one of them, simply use the following command:
mix run examples/<example_name>.exs

Running Beamchmark in an attached mode
If you want to measure the performance of an already running BEAM you can run Beamchmark in an attached mode.
However, it is required that the node on which your application is running is a distributed node and has Beamchmark added to its dependencies.
To run an example of Beamchmark in attached mode first start the node, which performance will be measured:
cd examples/attached
mix deps.get
elixir --sname counter@localhost -S mix run start_counter.exs

The node will be visible under counter@localhost name.
Now in another terminal you can start the benchmark:
epmd -daemon
mix run examples/attached/run_attached.exs

Formatters
You can output benchmark results with Beamchmark's built-in formatters or implement a custom one.
Formatters can also compare new results with the previous ones, given they share the same scenario module and
were configured to run for the same amount of time.
Currently, you can output Beamchmark reports in the following ways:
	Beamchmark.Formatters.Console
This is the default formatter, it will print the report on standard output.
================
SYSTEM INFO
================

Elixir version: 1.13.4
OTP version: 24
OS: macOS
Memory: 16 GB
System arch: x86_64-apple-darwin21.3.0
NIF version: 2.16
Cores: 8

================
CONFIGURATION
================

Delay: 5s
Duration: 15s

================
MEASUREMENTS
================

Normal schedulers

1 0.7462382700312585 74.6%
2 0.7552131238891551 75.5%
3 0.7080346117265083 70.8%
4 0.6840002812013201 68.4%
5 0.7357487054135822 73.6%
6 0.7889711402496832 78.9%
7 0.7053186570052465 70.5%
8 0.495807853995791 49.6%
Total: 0.7024165804390681 70.2%

CPU schedulers

9 0.39409732340500314 39.4%
10 0.5194739765841625 51.9%
11 0.45208160433332006 45.2%
12 0.33614215325750824 33.6%
13 0.05474778835410803 5.5%
14 0.31687236471324787 31.7%
15 0.06046101946449905 6.0%
16 0.0 0.0%
Total: 0.2667345287639811 26.7%

IO schedulers

17 0.0 0.0%
18 0.0 0.0%
19 0.0 0.0%
20 0.0 0.0%
21 0.0 0.0%
22 0.0 0.0%
23 0.0 0.0%
24 0.0 0.0%
25 2.7705124922689514e-4 0.0%
26 0.0 0.0%
Total: 2.7705124922689516e-5 0.0%

Weighted

0.9692071705951804 96.9%

Reductions

2847054520

Context Switches

717845

CPU Usage Average

51.2%

CPU Usage Per Core

Core: 0 -> 99.81 %
Core: 1 -> 2.84 %
Core: 2 -> 99.81 %
Core: 3 -> 2.57 %
Core: 4 -> 99.82 %
Core: 5 -> 2.23 %
Core: 6 -> 99.88 %
Core: 7 -> 2.6 %

Memory usage

3.56 GB

================
NEW MEASUREMENTS
================

Normal schedulers

1 0.7391849466705548 73.9% -0.007053323360703745 -0.9383378016085686%
2 0.6451374210660318 64.5% -0.11007570282312329 -14.569536423841058%
3 0.612116497924041 61.2% -0.09591811380246729 -13.559322033898297%
4 0.7119528248221814 71.2% 0.027952543620861303 4.093567251461991%
5 0.7175675964576803 71.8% -0.01818110895590186 -2.4456521739130324%
6 0.667647106911744 66.8% -0.12132403333793917 -15.335868187579223%
7 0.7588791891435591 75.9% 0.05356053213831258 7.659574468085111%
8 0.7007975884343178 70.1% 0.2049897344385268 41.330645161290306%
Total: 0.6941603964287638 69.4% -0.008256184010304257 -1.139601139601126%

CPU schedulers

9 0.40317586539492 40.3% 0.009078541989916866 2.284263959390856%
10 0.0658197960010861 6.6% -0.4536541805830764 -87.28323699421965%
11 0.207488920931131 20.7% -0.24459268340218907 -54.20353982300885%
12 0.4070941615062336 40.7% 0.07095200824872538 21.130952380952394%
13 0.5912324517586194 59.1% 0.5364846634045114 974.5454545454545%
14 4.213003273973723e-8 0.0% -0.3168723225832151 -100%
15 0.5185116282961778 51.9% 0.45805060883167875 765.0%
16 0.014049861167737257 1.4% 0.014049861167737257 nan
Total: 0.27592159089824225 27.6% 0.009187062134261126 3.37078651685394%

IO schedulers

17 0.0 0.0% 0.0 0%
18 0.0 0.0% 0.0 0%
19 0.0 0.0% 0.0 0%
20 0.0 0.0% 0.0 0%
21 0.0 0.0% 0.0 0%
22 0.0 0.0% 0.0 0%
23 0.0 0.0% 0.0 0%
24 0.0 0.0% 0.0 0%
25 0.0 0.0% -2.7705124922689514e-4 0%
26 2.2108785953999204e-4 0.0% 2.2108785953999204e-4 0%
Total: 2.2108785953999205e-5 0.0% -5.596338968690311e-6 0%

Weighted

0.9700717546422247 97.0% 8.6458404704437e-4 0.10319917440659765%

Reductions

2621243405 -225811115 -7.931394127289138%

Context Switches

666449 -51396 -7.159762901462017%

CPU Usage Average

51.88% 0.68% 1.34%

CPU Usage Per Core

Core 0 -> 99.74% -0.07 -0.07 %
Core 1 -> 4.35% 1.51 53.17 %
Core 2 -> 99.83% 0.01 0.01 %
Core 3 -> 3.96% 1.39 53.96 %
Core 4 -> 99.82% 0.01 0.01 %
Core 5 -> 3.75% 1.52 68.44 %
Core 6 -> 99.76% -0.12 -0.12 %
Core 7 -> 3.83% 1.22 46.91 %

Memory usage

3.58 GB 21.96 MB 0.6%

	Beamchmark.Formatters.HTML
The HTML formatter will save the report to an HTML file.
[image: Screenshot of an HTML report]

	Custom formatters
You can implement your custom formatters by overriding Beamchmark.Formatter behaviour.

Copyright and License
Copyright 2021,

 LICENSE - Beamchmark v1.4.1

LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright 2020 Software Mansion

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 Beamchmark - Beamchmark v1.4.1

Beamchmark

Top level module providing Beamchmark.run/2 and Beamchmark.run_attached/2 API.
Beamchmark measures EVM performance while it is running user Beamchmark.Scenario.
Metrics being measured
Scheduler Utilization
At the moment, the main interest of Beamchmark is scheduler utilization which tells
how much given scheduler was busy.
Scheduler is busy when:
	Executing process code
	Executing linked-in driver or NIF code
	Executing BIFs, or any other runtime handling
	Garbage collecting
	Handling any other memory management

Scheduler utilization is measured using Erlang's :scheduler module which uses :erlang.statistics/1
under the hood and it is represented as a floating point value between 0.0 and 1.0 and percent.
Beamchmark measures following types of scheduler utilization:
	normal/cpu/io - average utilization of single scheduler of given type
	total normal/cpu/io - average utilization of all schedulers of given type. E.g total normal equals 1.0 when
each of normal schedulers have been active all the time
	total - average utilization of all schedulers
	weighted - average utilization of all schedulers weighted against maximum amount of available CPU time

For more information please refer to :erlang.statistics/1 (under :scheduler_wall_time) or :scheduler.utilization/1.
Other
Other metrics being measured:
	reductions - total reductions number
	context switches - total context switches number

 Anchor for this section

 Summary

 Types

 options_t()

 Configuration for Beamchmark.

 Functions

 run(scenario, opts \\ [])

 Runs scenario and benchmarks EVM performance.

 run_attached(node_name, opts \\ [])

 Executes Beamchmark.run/2 on a given node.

 Anchor for this section

Types

 Link to this type

 options_t()

 View Source

 @type options_t() :: [
 name: String.t(),
 duration: pos_integer(),
 cpu_interval: pos_integer(),
 memory_interval: pos_integer(),
 delay: non_neg_integer(),
 formatters: [Beamchmark.Formatter.t()],
 compare?: boolean(),
 output_dir: Path.t()
]

Configuration for Beamchmark.
	name - name of the benchmark. It can be used by formatters.
	duration - time in seconds Beamchmark will be benchmarking EVM. Defaults to 60 seconds.
	cpu_interval - time in milliseconds Beamchmark will be benchmarking cpu usage. Defaults to 1000 milliseconds. Needs to be greater than or equal to interfere_timeout.
	memory_interval - time in milliseconds Beamchmark will be benchmarking memory usage. Defaults to 1000 milliseconds. Needs to be greater than or equal to interfere_timeout.
	delay - time in seconds Beamchmark will wait after running scenario and before starting benchmarking. Defaults to 0 seconds.
	formatters - list of formatters that will be applied to the result. By default contains only [Beamchmark.Formatters.Console].
	compare? - boolean indicating whether formatters should compare results for given scenario with the previous one. Defaults to true.
	output_dir - directory where results of benchmarking will be saved. Defaults to "beamchmark" directory under location provided by System.tmp_dir!/0.

 Anchor for this section

Functions

 Link to this function

 run(scenario, opts \\ [])

 View Source

 @spec run(Beamchmark.Scenario.t(), options_t()) :: :ok

Runs scenario and benchmarks EVM performance.
If compare? option equals true, invocation of this function will also compare new measurements with the last ones.
Measurements will be compared only if they share the same scenario module, delay and duration.

 Link to this function

 run_attached(node_name, opts \\ [])

 View Source

 @spec run_attached(node(), options_t()) :: :ok

Executes Beamchmark.run/2 on a given node.
This function can be used to measure performance of an already running node.
The node which we are connecting to has to be a distributed node.

 Beamchmark.Formatter - Beamchmark v1.4.1

Beamchmark.Formatter behaviour

The module defines a behaviour that will be used to format and output Beamchmark.Suite.
You can adopt this behaviour to implement custom formatters.
The module contains helper functions for validating and applying formatters defined in configuration
of Beamchmark.Suite.

 Anchor for this section

 Summary

 Types

 options_t()

 Options given to formatters (defined by formatters authors).

 t()

 Represents a module implementing Beamchmark.Formatter behaviour.

 Callbacks

 format(t, options_t)

 Takes the suite and transforms it into some internal representation, that later on will be passed to
write/2.

 format(t, t, options_t)

 Works like format/2, but can provide additional information by comparing the latest suite with the
previous one (passed as the second argument).

 write(any, options_t)

 Takes the return value of format/1 or format/2 and outputs it in a convenient form (stdout, file, UI...).

 Functions

 output(suite)

 Takes the suite and uses its formatters to output it. If the suite was configured with compare? flag enabled,
the previous suite will be also provided to the formatters.

 Anchor for this section

Types

 Link to this type

 options_t()

 View Source

 @type options_t() :: Keyword.t()

Options given to formatters (defined by formatters authors).

 Link to this type

 t()

 View Source

 @type t() :: module()

Represents a module implementing Beamchmark.Formatter behaviour.

 Anchor for this section

Callbacks

 Link to this callback

 format(t, options_t)

 View Source

 @callback format(Beamchmark.Suite.t(), options_t()) :: any()

Takes the suite and transforms it into some internal representation, that later on will be passed to
write/2.

 Link to this callback

 format(t, t, options_t)

 View Source

 @callback format(Beamchmark.Suite.t(), Beamchmark.Suite.t(), options_t()) :: any()

Works like format/2, but can provide additional information by comparing the latest suite with the
previous one (passed as the second argument).

 Link to this callback

 write(any, options_t)

 View Source

 @callback write(any(), options_t()) :: :ok

Takes the return value of format/1 or format/2 and outputs it in a convenient form (stdout, file, UI...).

 Anchor for this section

Functions

 Link to this function

 output(suite)

 View Source

 @spec output(Beamchmark.Suite.t()) :: :ok

Takes the suite and uses its formatters to output it. If the suite was configured with compare? flag enabled,
the previous suite will be also provided to the formatters.

 Beamchmark.Math - Beamchmark v1.4.1

Beamchmark.Math

The module contains helper math types and utility functions.

 Anchor for this section

 Summary

 Types

 percent_diff_t()

 Represents a percent difference.

 percent_t()

 Represents a percent.

 Functions

 percent_diff(base, new)

 Anchor for this section

Types

 Link to this type

 percent_diff_t()

 View Source

 @type percent_diff_t() :: percent_t() | :nan

Represents a percent difference.
This can be either percent_t/0 or :nan when trying to compare value with 0.

 Link to this type

 percent_t()

 View Source

 @type percent_t() :: float()

Represents a percent.

 Anchor for this section

Functions

 Link to this function

 percent_diff(base, new)

 View Source

 @spec percent_diff(number(), number()) :: percent_diff_t()

 Beamchmark.Scenario - Beamchmark v1.4.1

Beamchmark.Scenario behaviour

Scenario to run during benchmarking. Defines a behaviour that needs to be adopted by benchmarked modules.
Beamchmark will call the implementation of run/0 in a new process, shutting it down once it completes all
measurements. The implementation should run for a longer period of time (possibly infinite) than measurements,
so that the EVM isn't benchmarked while it's idle. For the same reason, it is recommended to raise immediately
in case the implementation fails.

 Anchor for this section

 Summary

 Types

 t()

 Represents a module implementing Beamchmark.Scenario behaviour.

 Callbacks

 run()

 The function that will be called during benchmarking.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: module()

Represents a module implementing Beamchmark.Scenario behaviour.

 Anchor for this section

Callbacks

 Link to this callback

 run()

 View Source

 @callback run() :: any()

The function that will be called during benchmarking.

 Beamchmark.Suite - Beamchmark v1.4.1

Beamchmark.Suite

The module defines a struct representing a single run of benchmark. It is also responsible for running the
benchmark and saving/loading the results.
The results are serialized and stored in output_dir / scenario name / delay_duration directory, where
scenario name is the name of module implementing scenario (without separating dots) and output_dir,
delay, duration are fetched from the suite's configuration.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 init(configuration)

 init(scenario, configuration)

 run(suite)

 save(suite)

 try_load_base(suite)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Beamchmark.Suite{
 configuration: Beamchmark.Suite.Configuration.t(),
 measurements: Beamchmark.Suite.Measurements.t() | nil,
 scenario: Beamchmark.Scenario.t() | nil,
 system_info: Beamchmark.Suite.SystemInfo.t()
}

 Anchor for this section

Functions

 Link to this function

 init(configuration)

 View Source

 @spec init(Beamchmark.Suite.Configuration.t()) :: t()

 Link to this function

 init(scenario, configuration)

 View Source

 @spec init(Beamchmark.Scenario.t(), Beamchmark.Suite.Configuration.t()) :: t()

 Link to this function

 run(suite)

 View Source

 @spec run(t()) :: t()

 Link to this function

 save(suite)

 View Source

 @spec save(t()) :: :ok

 Link to this function

 try_load_base(suite)

 View Source

 @spec try_load_base(t()) :: {:ok, t()} | {:error, File.posix()}

 Beamchmark.Utils - Beamchmark v1.4.1

Beamchmark.Utils

The module defines utility functions for Beamchmark.

 Anchor for this section

 Summary

 Functions

 get_os_name()

 Anchor for this section

Functions

 Link to this function

 get_os_name()

 View Source

 @spec get_os_name() :: :FreeBSD | :Linux | :Windows | :macOS

 Beamchmark.Formatters.Console - Beamchmark v1.4.1

Beamchmark.Formatters.Console

The module formats Beamchmark.Suite and outputs it using Mix.shell/0.

 Beamchmark.Formatters.HTML - Beamchmark v1.4.1

Beamchmark.Formatters.HTML

The module formats Beamchmark.Suite and outputs it to an HTML file.

 Anchor for this section

 Summary

 Types

 options_t()

 Configuration for Beamchmark.Formatters.HTML.

 Anchor for this section

Types

 Link to this type

 options_t()

 View Source

 @type options_t() :: [
 output_path: Path.t(),
 auto_open?: boolean(),
 inline_assets?: boolean()
]

Configuration for Beamchmark.Formatters.HTML.
	output_path – path to the file, where the report will be saved. Defaults to "index.html".
	auto_open? – if true, opens the report in system's default browser. Defaults to true.
	inline_assets? – if true, pastes contents of .css and .js assets directly into HTML. Defaults to false.

 Beamchmark.Formatters.Utils - Beamchmark v1.4.1

Beamchmark.Formatters.Utils

The module provides functions common for multiple formatters.

 Anchor for this section

 Summary

 Functions

 format_memory(mem, decimal_places \\ 0)

 Takes memory in bytes and returns it as human-readable string.

 Anchor for this section

Functions

 Link to this function

 format_memory(mem, decimal_places \\ 0)

 View Source

 @spec format_memory(integer() | :unknown, non_neg_integer()) :: String.t()

Takes memory in bytes and returns it as human-readable string.

 Beamchmark.Suite.CPU.CpuTask - Beamchmark v1.4.1

Beamchmark.Suite.CPU.CpuTask

This module contains the CPU benchmarking task.
Measurements are performed using :cpu_sup.util/1
Currently (according to docs), as busy processor states we identify:
	user
	nice_user (low priority use mode)
	kernel

 Anchor for this section

 Summary

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 start_link(cpu_interval, duration)

 Anchor for this section

Functions

 Link to this function

 child_spec(arg)

 View Source

Returns a specification to start this module under a supervisor.
arg is passed as the argument to Task.start_link/1 in the :start field
of the spec.
For more information, see the Supervisor module,
the Supervisor.child_spec/2 function and the Supervisor.child_spec/0 type.

 Link to this function

 start_link(cpu_interval, duration)

 View Source

 @spec start_link(cpu_interval :: pos_integer(), duration :: pos_integer()) :: Task.t()

 Beamchmark.Suite.Configuration - Beamchmark v1.4.1

Beamchmark.Suite.Configuration

The module defines a structure used to configure Beamchmark.Suite. For more information
about customizing Beamchmark, refer to Beamchmark.options_t/0.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 get_configuration(opts, default_config)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Beamchmark.Suite.Configuration{
 attached?: boolean(),
 compare?: boolean(),
 cpu_interval: pos_integer(),
 delay: non_neg_integer(),
 duration: pos_integer(),
 formatters: [Beamchmark.Formatter.t()],
 memory_interval: pos_integer(),
 metadata: map(),
 name: String.t() | nil,
 output_dir: Path.t()
}

 Anchor for this section

Functions

 Link to this function

 get_configuration(opts, default_config)

 View Source

 @spec get_configuration(Keyword.t(), t()) :: t()

 Beamchmark.Suite.Measurements - Beamchmark v1.4.1

Beamchmark.Suite.Measurements

The module is responsible for gathering BEAM statistics during benchmarking.

 Anchor for this section

 Summary

 Types

 context_switches_t()

 reductions_t()

 t()

 Functions

 diff(base, new)

 gather(duration, cpu_interval, memory_interval)

 Anchor for this section

Types

 Link to this type

 context_switches_t()

 View Source

 @type context_switches_t() :: non_neg_integer()

 Link to this type

 reductions_t()

 View Source

 @type reductions_t() :: non_neg_integer()

 Link to this type

 t()

 View Source

 @type t() :: %Beamchmark.Suite.Measurements{
 context_switches: context_switches_t(),
 cpu_info: Beamchmark.Suite.Measurements.CpuInfo.t(),
 memory_info: Beamchmark.Suite.Measurements.MemoryInfo.t(),
 reductions: reductions_t(),
 scheduler_info: Beamchmark.Suite.Measurements.SchedulerInfo.t()
}

 Anchor for this section

Functions

 Link to this function

 diff(base, new)

 View Source

 @spec diff(t(), t()) :: t()

 Link to this function

 gather(duration, cpu_interval, memory_interval)

 View Source

 @spec gather(pos_integer(), pos_integer(), pos_integer()) :: t()

 Beamchmark.Suite.Measurements.CpuInfo - Beamchmark v1.4.1

Beamchmark.Suite.Measurements.CpuInfo

Module representing statistics about cpu usage.
Method of measuring:
	Take a snapshot of cpu usage every cpu_interval milliseconds
	Calculate the average cpu usage of processor (combining each core usage)
	At the end combine the results and calculate the average

Warning!
 This module can give unstable cpu usage values when measuring a short time because of a high cpu volatility.
 TODO Can be improved by taking average of 5-10 values for each snapshot

 Anchor for this section

 Summary

 Types

 cpu_snapshot_t()

 All information gathered via single snapshot + processor average

 t()

 All information gathered via all snapshots
all_average is average from all snapshots

 Functions

 diff(base, new)

 from_cpu_snapshots(cpu_snapshots)

 Converts list of cpu_snapshot_t to Elixir.Beamchmark.Suite.Measurements.CpuInfo.t()
By calculating the average

 Anchor for this section

Types

 Link to this type

 cpu_snapshot_t()

 View Source

 @type cpu_snapshot_t() :: %{
 timestamp: pos_integer(),
 cpu_usage: %{
 required(core_id :: integer()) => usage :: Beamchmark.Math.percent_t()
 },
 average_all_cores: average_all_cores :: Beamchmark.Math.percent_t()
}

All information gathered via single snapshot + processor average

 Link to this type

 t()

 View Source

 @type t() :: %Beamchmark.Suite.Measurements.CpuInfo{
 average_all: Beamchmark.Math.percent_t() | float(),
 average_by_core: %{
 required(core_id :: number()) =>
 usage :: Beamchmark.Math.percent_t() | float()
 },
 cpu_snapshots: [cpu_snapshot_t()] | nil
}

All information gathered via all snapshots
all_average is average from all snapshots

 Anchor for this section

Functions

 Link to this function

 diff(base, new)

 View Source

 @spec diff(t(), t()) :: t()

 Link to this function

 from_cpu_snapshots(cpu_snapshots)

 View Source

 @spec from_cpu_snapshots([cpu_snapshot_t()]) :: t()

Converts list of cpu_snapshot_t to Elixir.Beamchmark.Suite.Measurements.CpuInfo.t()
By calculating the average

 Beamchmark.Suite.Measurements.MemoryInfo - Beamchmark v1.4.1

Beamchmark.Suite.Measurements.MemoryInfo

Module representing statistics about memory usage.

 Anchor for this section

 Summary

 Types

 bytes_t()

 memory_snapshot_t()

 t()

 Functions

 diff(base, new)

 from_memory_snapshots(memory_snapshots)

 Anchor for this section

Types

 Link to this type

 bytes_t()

 View Source

 @type bytes_t() :: non_neg_integer()

 Link to this type

 memory_snapshot_t()

 View Source

 @type memory_snapshot_t() :: %{
 timestamp: pos_integer(),
 total: bytes_t(),
 processes: bytes_t(),
 processes_used: bytes_t(),
 system: bytes_t(),
 atom: bytes_t(),
 atom_used: bytes_t(),
 binary: bytes_t(),
 code: bytes_t(),
 ets: bytes_t()
}

 Link to this type

 t()

 View Source

 @type t() :: %Beamchmark.Suite.Measurements.MemoryInfo{
 average: memory_snapshot_t(),
 memory_snapshots: [memory_snapshot_t()] | nil
}

 Anchor for this section

Functions

 Link to this function

 diff(base, new)

 View Source

 @spec diff(t(), t()) :: t()

 Link to this function

 from_memory_snapshots(memory_snapshots)

 View Source

 @spec from_memory_snapshots([memory_snapshot_t()]) :: t()

 Beamchmark.Suite.Measurements.SchedulerInfo - Beamchmark v1.4.1

Beamchmark.Suite.Measurements.SchedulerInfo

Module representing different statistics about scheduler usage.

 Anchor for this section

 Summary

 Types

 sched_usage_t()

 t()

 total_sched_usage_t()

 weighted_sched_usage_t()

 Functions

 diff(base, new)

 from_sched_util_result(sched_util_result)

 Anchor for this section

Types

 Link to this type

 sched_usage_t()

 View Source

 @type sched_usage_t() :: %{
 required(sched_id :: integer()) =>
 {util :: float(),
 percent :: Beamchmark.Math.percent_t() | Beamchmark.Math.percent_diff_t()}
}

 Link to this type

 t()

 View Source

 @type t() :: %Beamchmark.Suite.Measurements.SchedulerInfo{
 cpu: sched_usage_t(),
 io: sched_usage_t(),
 normal: sched_usage_t(),
 total: total_sched_usage_t(),
 total_cpu: total_sched_usage_t(),
 total_io: total_sched_usage_t(),
 total_normal: total_sched_usage_t(),
 weighted: weighted_sched_usage_t()
}

 Link to this type

 total_sched_usage_t()

 View Source

 @type total_sched_usage_t() ::
 {util :: float(),
 percent :: Beamchmark.Math.percent_t() | Beamchmark.Math.percent_diff_t()}

 Link to this type

 weighted_sched_usage_t()

 View Source

 @type weighted_sched_usage_t() ::
 {util :: float(),
 pe