

 Bandit

 v0.7.3

 Table of contents

 	Modules

 	Bandit

 	Bandit.Logger

 	Bandit.PhoenixAdapter

 	Bandit.Telemetry

 	Bandit.BodyAlreadyReadError

 	Bandit.HTTP2.Stream.StreamError

Bandit

Bandit is an HTTP server for Plug and WebSock apps.
As an HTTP server, Bandit's primary goal is to act as 'glue' between client connections managed
by Thousand Island and application code defined
via the Plug and/or
WebSock APIs. As such there really isn't a whole lot of
user-visible surface area to Bandit, and as a consequence the API documentation presented here
is somewhat sparse. This is by design! Bandit is intended to 'just work' in almost all cases;
the only thought users typically have to put into Bandit comes in the choice of which options (if
any) they would like to change when starting a Bandit server. The sparseness of the Bandit API
should not be taken as an indicator of the comprehensiveness or robustness of the project.
Using Bandit With Phoenix
Bandit fully supports Phoenix. Phoenix applications which use WebSockets for
features such as Channels or LiveView require Phoenix 1.7 or later.
Using Bandit to host your Phoenix application couldn't be simpler:
	Add Bandit as a dependency in your Phoenix application's mix.exs:
 {:bandit, ">= 0.7.0"}

	Add the following to your endpoint configuration in config/config.exs:
 config :your_app, YourAppWeb.Endpoint,
 adapter: Bandit.PhoenixAdapter

	That's it! You should now see messages at startup indicating that Phoenix is using Bandit to
serve your endpoint.

For more details about how to configure Bandit within Phoenix, consult the
Bandit.PhoenixAdapter documentation.
Using Bandit With Plug Applications
Using Bandit to host your own Plug is very straightforward. Assuming you have a Plug module
implemented already, you can host it within Bandit by adding something similar to the following
to your application's Application.start/2 function:
def start(_type, _args) do
 children = [
 {Bandit, plug: MyApp.MyPlug, scheme: :http, options: [port: 4000]}
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
end
For details about writing Plug based applications, consult the excellent Plug
documentation for plenty of examples & tips to get started.
Bandit supports the complete Plug API & should work correctly with any Plug-based
application. If you encounter errors using Bandit your Plug app, please do get in touch by
filing an issue on the Bandit GitHub project (especially if the error does not occur with
another HTTP server such as Cowboy).
Config Options
Bandit takes a number of options at startup:
	plug: The plug to handle connections. Can be specified as MyPlug or {MyPlug, plug_opts}
	display_plug: The plug to use when describing the connection in logs. Useful for situations
such as Phoenix code reloading where you have a 'wrapper' plug but wish to refer to the
connection by the endpoint name
	scheme: One of :http or :https. If :https is specified, you will need
 to specify certfile and keyfile in the transport_options subsection of options.
 Defaults to :http
	options: Options to pass to ThousandIsland. For an exhaustive list of options see the
ThousandIsland documentation, however some common options are:	port: The port to bind to. Defaults to 4000
	num_acceptors: The number of acceptor processes to run. This is mostly a performance
tuning knob and can usually be left at the default value of 100
	read_timeout: How long to wait for data from the client before timing out and closing the
connection, specified in milliseconds. Defaults to 60_000 milliseconds
	shutdown_timeout: How long to wait for existing connections to complete before forcibly
shutting them down at server shutdown, specified in milliseconds. Defaults to 15_000
milliseconds. May also be :infinity or :brutal_kill as described in the Supervisor
documentation.
	transport_options: A keyword list of options to be passed into the transport socket's listen function
	transport_module: The name of the module which provides basic socket functions.
This overrides any value set for scheme and is intended for cases where control
over the socket at a fundamental level is needed. You almost certainly don't want to fuss
with this option unless you know exactly what you're doing
	handler_module: The name of the module which Thousand Island will use to handle
requests. This overrides Bandit's built in handler and is intended for cases where control
over requests at a fundamental level is needed. You almost certainly don't want to fuss
with this option unless you know exactly what you're doing

	http_1_options: Options to configure the HTTP/1 stack in Bandit. Valid options are:	enabled: Whether or not to serve HTTP/1 requests. Defaults to true
	max_request_line_length: The maximum permitted length of the request line
(expressed as the number of bytes on the wire) in an HTTP/1.1 request. Defaults to 10_000 bytes
	max_header_length: The maximum permitted length of any single header (combined
key & value, expressed as the number of bytes on the wire) in an HTTP/1.1 request. Defaults to 10_000 bytes
	max_header_count: The maximum permitted number of headers in an HTTP/1.1 request.
Defaults to 50 headers
	max_requests: The maximum number of requests to serve in a single
HTTP/1.1 connection before closing the connection. Defaults to 0 (no limit)
	compress: Whether or not to attempt compression of responses via content-encoding
negotiation as described in
RFC9110§8.4. Defaults to true
	deflate_opts: A keyword list of options to set on the deflate library. Possible options
are:	level: The compression level to use for deflation. May be one of none, default,
best_compression, best_speed, or an integer in 0..9. See :zlib
documentation for more information.
Defaults to default
	window_bits: The base-2 log of the size of the histroy buffer. Largers values compress
better, but use more memory. Defaults to 15
	memory_level: The memory level to use for deflation. May be an integer in 1..9. See
:zlib documentation for more
information. Defaults to 8
	strategy: The strategy to use for deflation. May be one of default, filtered,
huffman_only, or rle. See :zlib
documentation for more
information. Defaults to default

	http_2_options: Options to configure the HTTP/2 stack in Bandit. Valid options are:	enabled: Whether or not to serve HTTP/2 requests. Defaults to true
	max_header_key_length: The maximum permitted length of any single header key
(expressed as the number of decompressed bytes) in an HTTP/2 request. Defaults to 10_000 bytes
	max_header_value_length: The maximum permitted length of any single header value
(expressed as the number of decompressed bytes) in an HTTP/2 request. Defaults to 10_000 bytes
	max_header_count: The maximum permitted number of headers in an HTTP/2 request.
Defaults to 50 headers
	max_requests: The maximum number of requests to serve in a single
HTTP/2 connection before closing the connection. Defaults to 0 (no limit)
	default_local_settings: Options to override the default values for local HTTP/2
settings. Values provided here will override the defaults specified in RFC9113§6.5.2.
	compress: Whether or not to attempt compression of responses via content-encoding
negotiation as described in
RFC9110§8.4. Defaults to true
	deflate_opts: A keyword list of options to set on the deflate library. Possible options
are the same as the deflate_opts option under the http_1_options section above

	websocket_options: Options to configure the WebSocket stack in Bandit. Valid options are:	enabled: Whether or not to serve WebSocket upgrade requests. Defaults to true
	max_frame_size: The maximum size of a single WebSocket frame (expressed as
a number of bytes on the wire). Defaults to 0 (no limit)
	validate_text_frames: Whether or not to validate text frames as being UTF-8. Strictly
speaking this is required per RFC6455§5.6, however it can be an expensive operation and one
that may be safely skipped in some situations. Defaults to true
	compress: Whether or not to allow per-message deflate compression globally. Note that
upgrade requests still need to set the compress: true option in connection_opts on
a per-upgrade basis for compression to be negotiated (see 'WebSocket Support' section below
for details). Defaults to true
	deflate_opts: A keyword list of options to set on the deflate library. Possible options
are the same as the deflate_opts option under the http_1_options section above, with the
exception that the window_bits parameter is not available

Setting up an HTTPS Server
By far the most common stumbling block encountered with configuration involves setting up an
HTTPS server. Bandit is comparatively easy to set up in this regard, with a working example
looking similar to the following:
def start(_type, _args) do
 bandit_options = [
 port: 4000,
 transport_options: [
 certfile: Path.join(__DIR__, "path/to/cert.pem"),
 keyfile: Path.join(__DIR__, "path/to/key.pem")
]
]

 children = [
 {Bandit, plug: MyApp.MyPlug, scheme: :https, options: bandit_options}
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
end
WebSocket Support
Bandit supports WebSocket implementations via the
WebSock and
WebSockAdapter libraries, which
provide a generic abstraction for WebSockets (very similar to how Plug is a generic abstraction
on top of HTTP). Bandit fully supports all aspects of these libraries.
Applications should validate that the connection represents a valid WebSocket request
before attempting an upgrade (Bandit will validate the connection as part of the upgrade
process, but does not provide any capacity for an application to be notified if the upgrade is
not successful). If an application wishes to negotiate WebSocket subprotocols or otherwise set
any response headers, it should do so before upgrading.

 Anchor for this section

 Summary

 Types

 plug()

 A Plug definition

 Functions

 child_spec(arg)

 start_link(arg)

 Starts a Bandit server using the provided arguments. See "Config Options' above for specific
options to pass to this function.

 Anchor for this section

Types

 Link to this type

 plug()

 View Source

 @type plug() :: {module(), keyword()}

A Plug definition

 Anchor for this section

Functions

 Link to this function

 child_spec(arg)

 View Source

 @spec child_spec(keyword()) :: Supervisor.child_spec()

 Link to this function

 start_link(arg)

 View Source

Starts a Bandit server using the provided arguments. See "Config Options' above for specific
options to pass to this function.

Bandit.Logger

Logging conveniences for Bandit servers
Allows dynamically adding and altering the log level used to trace connections
within a Bandit server via the use of telemetry hooks. Should you wish
to do your own logging or tracking of these events, a complete list of the
telemetry events emitted by Bandit is described in the module documentation
for Bandit.Telemetry.
The logging included in this module is concerned specifically with protocol level events.
Should you wish to log lower level transport concens, there are similar functions to these in
the ThousandIsland.Logger module. Corresponding telemetry events are described in the
module documentation for ThousandIsland.Telemetry.

 Anchor for this section

 Summary

 Types

 log_level()

 Supported log levels

 Functions

 attach_logger(atom)

 Start logging Bandit at the specified log level. Valid values for log
level are :error and :info. Enabling a given log level implicitly enables all higher log
levels as well.

 detach_logger(atom)

 Stop logging Thousand Island at the specified log level. Disabling a given log
level implicitly disables all lower log levels as well.

 Anchor for this section

Types

 Link to this type

 log_level()

 View Source

 @type log_level() :: :error | :info

Supported log levels

 Anchor for this section

Functions

 Link to this function

 attach_logger(atom)

 View Source

 @spec attach_logger(log_level()) :: :ok | {:error, :already_exists}

Start logging Bandit at the specified log level. Valid values for log
level are :error and :info. Enabling a given log level implicitly enables all higher log
levels as well.

 Link to this function

 detach_logger(atom)

 View Source

 @spec detach_logger(log_level()) :: :ok | {:error, :not_found}

Stop logging Thousand Island at the specified log level. Disabling a given log
level implicitly disables all lower log levels as well.

Bandit.PhoenixAdapter

A Bandit adapter for Phoenix.
WebSocket support requires a version of Phoenix with Plug upgrade support, which is available
as part of Phoenix 1.7 and later. This module will work fine on earlier versions of Phoenix,
just without WebSocket support.
To use this adapter, your project will need to include Bandit as a dependency; see
https://hex.pm/bandit for details on the currently supported version of Bandit to include. Once
Bandit is included as a dependency of your Phoenix project, add the following to your endpoint
configuration in config/config.exs:
config :your_app, YourAppWeb.Endpoint,
 adapter: Bandit.PhoenixAdapter
Endpoint configuration
Configuring Bandit within your Phoenix app is done in largely the same way as configuration for
Cowboy works. For the most part, your existing configuration within your /config/*.exs files
will work unchanged, although some of the more exotic options are different. Bandit supports the
following parameters within the :http and :https parameters:
	:http: the configuration for the HTTP server. Accepts the following options:
	port: The port to run on. Defaults to 4000. Note that if a Unix domain socket is
specified in the ip option, the value of port must be 0.
	ip: The address to bind to. Can be specified as a 4-element tuple such as {127, 0, 0, 1}
for IPv4 addresses, an 8-element tuple for IPv6 addresses, or using {:local, path} to bind
to a Unix domain socket. Defaults to the Bandit default of {0, 0, 0, 0, 0, 0, 0, 0}.
	transport_options: Any valid value from ThousandIsland.Transports.TCP
	http_1_options: Any valid value from the http_1_options section of Bandit's config documentation
	http_2_options: Any valid value from the http_2_options section of Bandit's config documentation
	websocket_options: Any valid value from the websocket_options section of Bandit's config documentation

Defaults to false, which will cause Bandit to not start an HTTP server.

	:https: the configuration for the HTTPS server. Accepts the following options:
	port: The port to run on. Defaults to 4040. Note that if a Unix domain socket is
specified in the ip option, the value of port must be 0.
	ip: The address to bind to. Can be specified as a 4-element tuple such as {127, 0, 0, 1}
for IPv4 addresses, an 8-element tuple for IPv6 addresses, or using {:local, path} to bind
to a Unix domain socket. Defaults to the Bandit default of {0, 0, 0, 0, 0, 0, 0, 0}.
	transport_options: Any valid value from ThousandIsland.Transports.SSL
	http_1_options: Any valid value from the http_1_options section of Bandit's config documentation
	http_2_options: Any valid value from the http_2_options section of Bandit's config documentation
	websocket_options: Any valid value from the websocket_options section of Bandit's config documentation

Defaults to false, which will cause Bandit to not start an HTTPS server.

Bandit.Telemetry

The following telemetry spans are emitted by bandit
[:bandit, :request, *]
Represents Bandit handling a specific client HTTP request
This span is started by the following event:
	[:bandit, :request, :start]
 Represents the start of the span
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	connection_telemetry_span_context: The span context of the Thousand Island :connection
span which contains this request

This span is ended by the following event:
	[:bandit, :request, :stop]
 Represents the end of the span
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units
	duration: The span duration, in :native units
	conn: The Plug.Conn representing this connection
	req_header_end_time: The time that header reading completed, in :native units
	req_body_start_time: The time that request body reading started, in :native units.
	req_body_end_time: The time that request body reading completed, in :native units
	req_line_bytes: The length of the request line, in octets. Includes all line breaks.
Not included for HTTP/2 requests
	req_header_bytes: The length of the request headers, in octets. Includes all line
breaks. Not included for HTTP/2 requests
	req_body_bytes: The length of the request body, in octets
	resp_start_time: The time that the response started, in :native units
	resp_end_time: The time that the response completed, in :native units. Not included
for chunked responses
	resp_line_bytes: The length of the reponse line, in octets. Includes all line breaks.
Not included for HTTP/2 requests
	resp_header_bytes: The length of the reponse headers, in octets. Includes all line
breaks. Not included for HTTP/2 requests
	resp_body_bytes: The length of the reponse body, in octets. If the response is
compressed, this is the size of the compressed payload as sent on the wire. Set to 0 for
chunked responses
	resp_uncompressed_body_bytes: The length of the original, uncompressed body. Only
included for responses which are compressed
	resp_compression_method: The method of compression, as sent in the Content-Encoding
header of the response. Only included for responses which are compressed

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	connection_telemetry_span_context: The span context of the Thousand Island :connection
span which contains this request
	error: The error that caused the span to end, if it ended in error

The following events may be emitted within this span:
	[:bandit, :request, :exception]
 The request for this span ended unexpectedly
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	connection_telemetry_span_context: The span context of the Thousand Island :connection
span which contains this request
	kind: The kind of unexpected condition, typically :exit
	exception: The exception which caused this unexpected termination
	stacktrace: The stacktrace of the location which caused this unexpected termination

[:bandit, :websocket, *]
Represents Bandit handling a WebSocket connection
This span is started by the following event:
	[:bandit, :websocket, :start]
 Represents the start of the span
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units
	compress: Details about the compression configuration for this connection

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	origin_telemetry_span_context: The span context of the Bandit :request span from which
this connection originated
	connection_telemetry_span_context: The span context of the Thousand Island :connection
span which contains this request

This span is ended by the following event:
	[:bandit, :websocket, :stop]
 Represents the end of the span
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units
	duration: The span duration, in :native units
	recv_text_frame_count: The number of text frames received
	recv_text_frame_bytes: The total number of bytes received in the payload of text frames
	recv_binary_frame_count: The number of binary frames received
	recv_binary_frame_bytes: The total number of bytes received in the payload of binary frames
	recv_ping_frame_count: The number of ping frames received
	recv_ping_frame_bytes: The total number of bytes received in the payload of ping frames
	recv_pong_frame_count: The number of pong frames received
	recv_pong_frame_bytes: The total number of bytes received in the payload of pong frames
	recv_connection_close_frame_count: The number of connection close frames received
	recv_connection_close_frame_bytes: The total number of bytes received in the payload of connection close frames
	recv_continuation_frame_count: The number of continuation frames received
	recv_continuation_frame_bytes: The total number of bytes received in the payload of continuation frames
	send_text_frame_count: The number of text frames sent
	send_text_frame_bytes: The total number of bytes sent in the payload of text frames
	send_binary_frame_count: The number of binary frames sent
	send_binary_frame_bytes: The total number of bytes sent in the payload of binary frames
	send_ping_frame_count: The number of ping frames sent
	send_ping_frame_bytes: The total number of bytes sent in the payload of ping frames
	send_pong_frame_count: The number of pong frames sent
	send_pong_frame_bytes: The total number of bytes sent in the payload of pong frames
	send_connection_close_frame_count: The number of connection close frames sent
	send_connection_close_frame_bytes: The total number of bytes sent in the payload of connection close frames
	send_continuation_frame_count: The number of continuation frames sent
	send_continuation_frame_bytes: The total number of bytes sent in the payload of continuation frames

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	origin_telemetry_span_context: The span context of the Bandit :request span from which
this connection originated
	connection_telemetry_span_context: The span context of the Thousand Island :connection
span which contains this request
	error: The error that caused the span to end, if it ended in error

 Anchor for this section

 Summary

 Types

 t()

 Functions

 monotonic_time()

 See System.monotonic_time/0.

 span_exception(span, kind, exception, stacktrace)

 Anchor for this section

Types

 Link to this opaque

 t()

 View Source

 (opaque)

 @opaque t()

 Anchor for this section

Functions

 Link to this function

 monotonic_time()

 View Source

See System.monotonic_time/0.

 Link to this function

 span_exception(span, kind, exception, stacktrace)

 View Source

Bandit.BodyAlreadyReadError exception

Raised by Bandit adapters if a body is attempted to be read more than once per request

Bandit.HTTP2.Stream.StreamError exception

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

