

 bakeware

 v0.2.1

 [image: Logo]

 Table of contents

 	Bakeware

 	Changelog

 	Modules

 	Bakeware

 	Bakeware.CPIO

 	Bakeware.Script

Bakeware
[image: CircleCI]
[image: Hex version]
[image: Hex Docs]
[image: Total Download]
[image: License]
[image: Last updated]
Compile Elixir applications into single, easily distributed executable binaries
[image: The Bakeware oven]
Bakeware was made over a weekend at SpawnFest 2020
and thanks to the response from the community, we're working on finishing it
off. While it's not ready for production, it's definitely ready for
experimentation - just expect APIs to change in the near-term. If you'd like
to help, please let us know and stay tuned!

Bakeware extends Mix
releases with the ability
to turn Elixir projects into single binaries that can be copied and directly
run. No need to install Erlang or untar files. The binaries look and feel like
the build-products from other languages.
Here's a quick list of features:
	Simple - add the bakeware dependency and the Bakeware assembler to your Mix
release settings
	Supports OSX and Linux (We wrote the code with Windows and the BSDs in mind,
so support for those platforms may not be far off)
	Zstandard compression for smaller
binaries
	Optional support for automatic software updates (work in progress)
	Command-line argument passing conveniences
	Lots of examples

This README contains the basics of making your applications work with Bakeware
and reference material for when you need to dig into how it works.
Since everything was written quickly and the integration is fairly
straightforward, we recommend that you take a look at the examples. The examples
are bare bones Elixir scripts, OTP applications, Phoenix applications and more
with small changes to their mix.exs files and instructions for running that
you can try out for yourself.
Using
Mix release
Bakeware supports tieing in executable binary assembly into a Mix release
as a step by using the Bakeware.assemble/1 function.
This will assemble the necessary components to create a Bakeware executable
that can be distributed across machines to run the script/application without
extra environment setup (such as installing Elixir/Erlang, etc)
To use, add this to your release as a step after assembly:
def release do
 [
 demo: [
 steps: [:assemble, &Bakeware.assemble/1]
]
]
end
Bakeware adds the following options in the release scoped to :bakeware key:
	:compression_level - Zstandard compression level (1 to 19) where higher
numbers generally result in better compression, but are slower to build
	:start_command - The start script command to run when invoked. This defaults
to "start", but can be changed to "start_iex", for example, if you want a
prompt. See Mix.Release
for supported commands.

def release do
 [
 demo: [
 bakeware: [
 compression_level: 1,
 start_command: "daemon"
]
]
]
end
Scripting
Bakeware supports an API similar to Erlang's escript for implementing a main
function. Here's an example module:
defmodule MyApp.Main do
 use Bakeware.Script

 @impl Bakeware.Script
 def main(_args) do
 IO.puts "Hello, World!"
 0
 end
end
The return value sets the scripts exit status (0 for success and other values
for errors). Other value types are supported. See
:erlang.halt/2 for how these
work.
Next, add this module to your mix.exs's application description. This usually
looks something like this:
 def application do
 [
 extra_applications: [:logger],
 mod: {Myapp.Main, []}
]
 end
Why does the module get added to :mod? Everything with Bakeware operates on
OTP Releases. The macros in Bakeware.Script add the scaffolding to invoke your
main/1 function from the release.
Tips
Minimizing executable size
Bakeware binaries appear to have a lower bound of about 12 MB in size. We expect
that they can be made smaller out-of-the-box, but here are a few things you can
do:
	Make sure zstd is installed to enable compression during assembly:

	MacOS: brew install zstd
	Ubuntu: apt-get install zstd
	Windows: choco install zstandard

	Build using MIX_ENV=prod. The default is MIX_ENV=dev, so be sure that the
environment variable is set.
	Run rm -fr _build and then mix release. During development cruft builds
up in the release directory. Bakeware can't tell the difference between the
important files and the cruft, so executables will slowly grow in size if you
don't do a clean build.
	Inspect your _build/prod/rel/<name> directory and especially under lib
for files or dependencies that you might be including on accident.
	Make sure that compile-time dependencies are marked as runtime: false in
your mix.exs so that they're not included
	Try raising the compression Zstandard compression level by setting
:compression_level in the mix.exs release config

Erlang distribution
Bakeware uses Mix releases and
inherits the default of starting of Erlang distribution. If you're using
Bakeware for commandline or other short-lived applications, this unnecessarily
starts Erlang distribution servers running and prevents two application
instances from running at a time.
To disable, run mix release.init to create starter env.sh.eex and
env.bat.eex files in the rel directory. Then edit the files to set
RELEASE_DISTRIBUTION=none.
Creating cross-platform binaries
Bakeware binaries include the Erlang runtime but there are still dependencies on
the host system. These include the C runtime and other libraries referenced by
the Erlang runtime and any NIFs and ports in your application. Luckily, the
binary ABIs of many libraries are very stable, but if distributing to a wide
audience, it's useful to build on a system with older library versions. Python
has a useful pointers in their packaging
guides.
Static Compiling OpenSSL into Erlang Distribution
Sometimes wierd SSL state bugs arise with a release when openssl is not statically compiled in.
You're affected by these ssl issues if you see things like an SSL connection being established but
after sending the first packet the remote end drops you. Attached is a Dockerfile that can be
built with Podman and used to build your baked released.
#Edit the versions of libraries in Dockerfile
ENV SSL_VERSION=1.1.1j
ENV OTP_VERSION=OTP-23.1.4
ENV ELIXIR_VERSION=v1.11.3

#Build erlang with static openssl
podman build --tag mybuilder DockerfileFolder/

#Bake your release
podman run -it --rm -v .:/root/myproject --entrypoint bash mybuilder -c "cd /root/myproject && ./build.sh"

#Build.sh
export MIX_ENV=prod
rm -rf _build
mix deps.get
mix release
cp _build/prod/rel/bakeware/myproject .
Building on Windows
Bakeware is tested to work in mingw environment on Windows 8 and 10. In order to setup the environment follow these steps:
	Install chocolatey
	Install elixir, zstandard, make, and mingw using chocolatey: choco install -y elixir zstandard make mingw
	Change the default MAKE environment variable used by elixir_make from nmake to make (set it permanently to get rid of the errors in VSCode)
	Set the CC environment variable
	Build the release

PowerShell
$env:MAKE="make"
$env:CC="gcc"
mix release
Command Prompt
set MAKE=make
set CC=gcc
mix release
MinGW
Note: after building the release in MinGW, you need to switch back to PowerShell/CMD to run the application
export MAKE=make
export CC=gcc
mix release
Reference material
Command-line arguments
In general, command-line arguments passed to Bakeware applications are passed through to Elixir. A few special command-line arguments can be passed to adjust the launchers behavior. Bakeware stops parsing command-line arguments when it encounters a --. Processed command-line arguments are not passed along to Elixir.
The following arguments may be passed:
	--bw-info - Print out information about the application and exit
	--bw-gc - This cleans up all unused entries in the cache (NOT IMPLEMENTED)
	--bw-install - Unpack the application to the cache only. Do not run.
	--bw-system-install - Install to a system-wide location (NOT IMPLEMENTED)
	--bw-command - use the specified Mix.Release command when running the executable

Environment variables
The Bakeware launcher sets the following environment variables for use in Elixir:
	Variable name	Description
	BAKEWARE_EXECUTABLE	The absolute path to the executable
	BAKEWARE_ARG1	The first command-line argument
	BAKEWARE_ARGn	The nth command-line argument
	BAKEWARE_ARGC	The number of arguments

See the Scripting section of this document for a more user friendly API.
Binary format
Bakeware application binaries look like this:
	Bakeware application launcher
	A CPIO archive of an Erlang/OTP release
	Trailer

The CPIO archive can be compressed. This depends on the contents of the trailer.
Trailer format (multi-byte fields are big endian):
	Offset from end	Field	Type	Description
	-4	Magic	4 byte string	Set to "BAKE"
	-5	Trailer version	8-bit integer	Set to 1
	-6	Compression	8-bit integer	0 = No compression, 1 = Zstandard
	-8	Flags	16-bit integer	Set to 0 (no flags yet)
	-12	Contents offset	32-bit integer	Offset of CPIO archive
	-16	Contents length	32-bit integer	Length of CPIO archive
	-48	SHA1	20 bytes	SHA-1 of the CPIO archive

Cache directory
Bakeware maintains a cache of extracted binaries. This is needed to run the
OTP releases and it enables start-time optimizations.
The default cache directory location is system-specific:
	Windows - "C:/Users/<USER>/AppData/Local/Bakeware/cache"
	MacOS - "~/Library/Caches/Bakeware"
	Linux and other Unixes - "~/.cache/bakeware"

You can override it by setting the $BAKEWARE_CACHE environment variable.
Here's the layout of each cache entry:
	Path	Created by	Description
	$CACHE_DIR/$SHA1/bin	CPIO	OTP release's bin directory
	$CACHE_DIR/$SHA1/erts-x.y.z	CPIO	OTP release's ERTS
	$CACHE_DIR/$SHA1/lib	CPIO	OTP release's lib directory
	$CACHE_DIR/$SHA1/releases	CPIO	OTP release's releases directory
	$CACHE_DIR/$SHA1/start	CPIO	Start script. E.g., bin/my_otp_release start

LICENSE
All code is licensed under Apache-2.0 with the exception of zstd which is dual licensed BSD/GPL. See it's LICENSE and COPYING files for more details.

Changelog
v0.2.0
Fixed
	Compilation for Windows MinGW users

v0.2.0
Breaking Changes:
	Applicable release options in mix.exs are now scoped to a :bakeware key.
If you were setting :compression_level previously, you will need to update
you setting.

Enhancements:
	Windows Support! (Thanks @kritarthh :tada:) - See Building on Windows
for more info
	Adds the :start_command option to the bakeware mix release options
which allows you to start the bakeware executable with the same commands
supported by Mix.Release. See the bakeware iex_prompt example for how
this is used so that the IEx prompt supports line editing.
	Adds the --bw-command option when running the executable. See mix release command options.
	Instructions added for compiling static OpenSSL when needed (thanks @vans163)

Bug Fixes:
	Removes mix bakeware.assemble task which is unused and broken (Thanks @christhekeele).
Please use mix release for the same effect

v0.1.5
Bug fixes:
	Fix an archive creation error that would result in an archive that would fail
to unpack.
	Fix a segfault when passing an internal command line parameter to the archive

v0.1.4
This release doesn't change much externally. Internally, we've started cleaning
up the code and adding tests to make Bakeware easier for us to maintain. If you
have existing Bakeware projects, you may also be interested in our example
updates to turn off Erlang distribution and remove the verbose mix release
instructions.
Bug fixes:
	Running the same Bakeware archive at or near the same time now works.
Previously, it was possible for multiple instances to collide when
extracting.

v0.1.3
Bug fixes:
	Fix hex package to include zstd source.

v0.1.2
Bug fixes:
	Fix script startup crash when testing locally (#66)

v0.1.1
Initial release to hex.
This release is ok for experimentation, but it not intended for production use.
It has known issues with script and extraction cache handling.

Bakeware

 Anchor for this section

 Summary

 Functions

 assemble(release)

 Assembler function to be used as a Mix release step

 Anchor for this section

Functions

 Link to this function

 assemble(release)

 View Source

Assembler function to be used as a Mix release step
This will assemble the necessary components to create a Bakeware executable
that can be distributed across machines to run the script/application without
extra environment setup (such as installing Elixir/Erlang, etc)
To use, add this to your release as a step after assembly:
def release do
 [
 demo: [
 steps: [:assemble, &Bakeware.assemble/1]
]
]
end
Bakeware adds the following options in the release scoped to :bakeware key:
	:compression_level - Zstandard compression level (1 to 19) where higher
numbers generally result in better compression, but are slower to build
	:start_command - The start script command to run when invoked. This defaults
to "start", but can be changed to "start_iex", for example, if you want a
prompt. See Mix.Release
for supported commands.

def release do
 [
 demo: [
 bakeware: [
 compression_level: 1,
 start_command: "daemon"
]
]
]
end

Bakeware.CPIO

Bakeware.Script behaviour

Helper to generate a script that takes command-line arguments
Bakeware supports an API similar to Erlang's escript for implementing a main
function. Here's an example module:
defmodule MyApp.Main do
 use Bakeware.Script

 @impl Bakeware.Script
 def main(_args) do
 IO.puts "Hello, World!"
 0
 end
end
The return value sets the scripts exit status (0 for success and other values
for errors). Other value types are supported. See
:erlang.halt/2 for how these
work.
Next, add this module to your mix.exs's application description. This usually
looks something like this:
 def application do
 [
 extra_applications: [:logger],
 mod: {Myapp.Main, []}
]
 end
Why does the module get added to :mod? Everything with Bakeware operates on
OTP Releases. The macros in Bakeware.Script add the scaffolding to invoke your
main/1 function from the release.

 Anchor for this section

 Summary

 Types

 args()

 Functions

 __using__(opts)

 Defines an app spec that will execute a script

 get_argc!()

 get_args(argc)

 result_to_halt(result)

 Callbacks

 main(args)

 Anchor for this section

Types

 Link to this type

 args()

 View Source

 Specs

 args() :: [String.t()]

 Anchor for this section

Functions

 Link to this macro

 __using__(opts)

 View Source

 (macro)

Defines an app spec that will execute a script

 Link to this macro

 get_argc!()

 View Source

 (macro)

 Link to this macro

 get_args(argc)

 View Source

 (macro)

 Link to this macro

 result_to_halt(result)

 View Source

 (macro)

 Anchor for this section

Callbacks

 Link to this callback

 main(args)

 View Source

 Specs

 main(args()) ::
 :ok | :error | non_neg_integer() | :abort | charlist() | String.t()

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

