

 aurum

 v0.2.0

 Table of contents

 	Modules

 	Aurum

 	Aurum.Coinbase

 	Aurum.Coinbase.Client

 	Aurum.Coinbase.Fetchers

 	Aurum.Coinbase.Sign

Aurum

Aurum is an Elixir Client for the Coinbase API.
If gold rusts, what then can iron do?
― Geoffrey Chaucer, The Canterbury Tales

Installation
Add aurum to your list of dependencies in mix.exs:
def deps do
 [
 {:aurum, "~> 0.2.0"}
]
end
Usage:
API Key/Secret
First, ensure that you have a coinbase API Key, and an API Secret. Details about how to obtain those can be found in the Coinbase Documentation.
Once you have obtained them, make sure that they are in the environment your module will be running in under the names COINBASE_KEY and COINBASE_SECRET:
$ export COINBASE_KEY=...
$ export COINBASE_SECRET=...

This will enable the client library to correctly sign your requests.
Making requests to the API:
To use the client, alias Coinbase into your module:
defmodule MyModule do
 alias Aurum.Coinbase

 ...

end
Basic Usage:
Once you have access to the Coinbase module, you can begin making any of the requests outlined in the documentation for V2 of the Coinbase API. All of the authentication steps should be completed automatically provided the COINBASE_KEY and COINBASE_SECRET are properly set. All calls to the API should follow the pathing scheme of /v2/<resource path>.
For example:
def fetch_btc_account do
 Coinbase.get("/v2/accounts/btc")
end
Sucessful responses are always in the form of:
%{
 "data" => %{
 ...
 },
 "warnings" => [## If any

]
}
And for any HTTP verbs that require a body (i.e. PUT/PATCH/POST), the body may be defined as a bare map:
Coinbase.post("/v2/...", %{amount: 10, currency: "USD"})
...or as a valid JSON string:
Coinbase.post("/v2/...", ~S({"amount": "10", "currency": "USD"}))
Example: Buy $10.00 worth of Ethereum
iex(1)> alias Aurum.Coinbase
Aurum.Coinbase
iex(2)> eth_account = Coinbase.get("/v2/accounts/eth")
%{
 "data" => %{
 "allow_deposits" => true,
 "allow_withdrawals" => true,
 "balance" => %{"amount" => "<amount>", "currency" => "ETH"},
 "created_at" => "...",
 "currency" => %{
"address_regex" => "...",
"asset_id" => "...",
"code" => "ETH",
"color" => "#627EEA",
"exponent" => 8,
"name" => "Ethereum",
"slug" => "ethereum",
"sort_index" => 102,
"type" => "crypto"
 },
 "id" => "...",
 "name" => "ETH Wallet",
 "primary" => true,
 "resource" => "account",
 "resource_path" => "/v2/accounts/<account_id>",
 "type" => "wallet",
 "updated_at" => "2021-04-08T21:25:29Z"
 },
}
iex(3)> eth_resource = eth_account["data"]["resource_path"]
"/v2/accounts/<account_id>"
iex(4)> buy_string = eth_resource <> "/buys"
"/v2/accounts/<account_id>/buys"
iex(5)> Coinbase.post(buy_string, %{amount: 10, currency: "USD"})
%{
 "data" => %{
 "amount" => %{"amount" => "0.00248885", "currency" => "ETH"},
 "committed" => true,
 "created_at" => "2021-12-22T01:02:32Z",
 "fee" => %{"amount" => "0.99", "currency" => "USD"},
 "hold_days" => 3,
 "hold_until" => "2021-12-25T00:00:00Z",
 "id" => "...",
 "idem" => "...",
 "instant" => true,
 "is_first_buy" => false,
 "next_step" => nil,
 "payment_method" => %{
"id" => "...",
"resource" => "payment_method",
"resource_path" => "/v2/payment-methods/..."
 },
 "payout_at" => "2021-12-22T01:02:32Z",
 "requires_completion_step" => false,
 "resource" => "buy",
 "resource_path" => "/v2/accounts/<account_id>/buys/<buy_id>",
 "status" => "created",
 "subtotal" => %{"amount" => "10.00", "currency" => "USD"},
 "total" => %{"amount" => "10.99", "currency" => "USD"},
 "transaction" => nil,
 "unit_price" => %{"amount" => "4017.92", "currency" => "USD", "scale" => 2},
 "updated_at" => "2021-12-22T01:02:33Z",
 "user_reference" => "..."
 },
}
Known issues:
You may see this warning pop up from time to time:
17:55:32.021 [warn] Description: 'Authenticity is not established by certificate path validation'
Reason: 'Option {verify, verify_peer} and cacertfile/cacerts is missing'
This is due to some configuration problems with the underlying HTTP client, and will be adressed in a future update.
Disclaimer:
Thanks for using this library! Pull requests and contributions are always welcome. Until this library is published as >= 1.0.0 it should be considered public beta. You are welcome to use it in any of your projects, but until it is fully published please do not consider the API stable.
It is my sincerest wish as the creator and maintainer of this repo to produce software that is as high quality as possible. That being said, this is a project I maintain in my free time and since there is potential to mis-use this library in ways that may cost you real money, I feel the need to re-iterate this portion of the license:
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

I am not responsible for any financial loss you incur while using this library to trade cryptocurrency. But may the odds be ever in your favor.
Documentation:
Docs can be found at https://hexdocs.pm/aurum.

Aurum.Coinbase

This module provides abstractions around basic HTTP methods within the context of the coinbase ecosystem. It takes care of using your Coinbase API Key/Secret to generate the required HMAC authentication signature based on the current timestamp so that the consumer of this module can focus on application logic.

 Anchor for this section

 Summary

 Functions

 delete(path)

 Perform a signed delete request to the specified path. Due to some of the implementation details the path string must begin with /v2 in order to correctly call the API.

 get(path)

 Perform a signed get request to the specified path. Due to some of the implementation details the path string must begin with /v2 in order to correctly call the API.

 patch(path, body)

 Perform a signed put request to the specified path. Due to some of the implementation details the path string must begin with /v2 in order to correctly call the API.

 post(path, body)

 Perform a signed post request to the specified path. Due to some of the implementation details the path string must begin with /v2 in order to correctly call the API.

 put(path, body)

 Perform a signed put request to the specified path. Due to some of the implementation details the path string must begin with /v2 in order to correctly call the API.

 Anchor for this section

Functions

 Link to this function

 delete(path)

 Specs

 delete(path :: String.t()) :: map()

Perform a signed delete request to the specified path. Due to some of the implementation details the path string must begin with /v2 in order to correctly call the API.

 Link to this function

 get(path)

 Specs

 get(path :: String.t()) :: map()

Perform a signed get request to the specified path. Due to some of the implementation details the path string must begin with /v2 in order to correctly call the API.

 Link to this function

 patch(path, body)

 Specs

 patch(path :: String.t(), body :: map()) :: map()

Perform a signed put request to the specified path. Due to some of the implementation details the path string must begin with /v2 in order to correctly call the API.
The request body can be in the form of a map for your convienience, for example:
Coinbase.patch("/v2/some/resource", %{total: 10, currency: "USD"})
Is equivalent to:
Coinbase.patch("/v2/some/resource", ~S({"total": "10", "currency": "USD"}))

 Link to this function

 post(path, body)

 Specs

 post(path :: String.t(), body :: map()) :: map()

Perform a signed post request to the specified path. Due to some of the implementation details the path string must begin with /v2 in order to correctly call the API.
The request body can be in the form of a map for your convienience, for example:
Coinbase.post("/v2/accounts/<account_id>/sells", %{total: 10, currency: "USD"})
Is equivalent to:
Coinbase.post("/v2/accounts/<account_id>/sells", ~S({"total": "10", "currency": "USD"}))

 Link to this function

 put(path, body)

 Specs

 put(path :: String.t(), body :: map()) :: map()

Perform a signed put request to the specified path. Due to some of the implementation details the path string must begin with /v2 in order to correctly call the API.
The request body can be in the form of a map for your convienience, for example:
Coinbase.put("/v2/some/resource", %{total: 10, currency: "USD"})
Is equivalent to:
Coinbase.put("/v2/some/resource", ~S({"total": "10", "currency": "USD"}))

Aurum.Coinbase.Client

Low(er) level API client. This module isn't particularly intended for user consumption. You are probably looking for the module Aurum.Coinbase instead.
This module generates the middleware needed to provide a valid client, applies the signature function to generate the correct HMAC signature (see Aurum.Coinbase.Sign), and performs the actual HTTP requests, and unwraps the interesting part of the response body for consumption in the Coinbase module.
This module is an implementation of the runtime middlware technique outlined in the Tesla docs. Middlware must be generated at runtime in order to properly sign each request, since the Coinbase API requires a unique signature per request. See the Coinbase API Key Authentication method outlined in the docs for details.

 Anchor for this section

 Summary

 Functions

 delete(path)

 Generate a signed client struct for a DELETE request to this specific path and make the request. Return the resulting JSON as a map if all goes well.

 get(path)

 Generate a signed client struct for a GET request to this specific path and make the request. Return the resulting JSON as a map if all goes well.

 headers(method, path, body, key_fun \\ &Fetchers.fetch_key/0, sign_fun \\ &Sign.sign/4, timestamp_fun \\ &Fetchers.fetch_timestamp/0)

 Provide a list of headers to be used in the Coinbase request.

 middleware(method, path, body, base_url \\ "https://api.coinbase.com", header_fun \\ &headers/3)

 Generate a list of required middleware for consumption by Client.new/3.

 new(method, path, body \\ "", middleware_fun \\ &middleware/3)

 Generate a new API client struct. This function is will return a signed %Tesla.Client{} struct that can be used in later HTTP calls.

 patch(path, body)

 Generate a signed client struct for a PATCH request to this specific path and with the provided body, then make the request. Return the resulting JSON as a map if all goes well.

 post(path, body)

 Generate a signed client struct for a POST request to this specific path and with the provided body, then make the request. Return the resulting JSON as a map if all goes well.

 put(path, body)

 Generate a signed client struct for a PUT request to this specific path and with the provided body, then make the request. Return the resulting JSON as a map if all goes well.

 unwrap_response(resp)

 Assuming the response was successful and able to connect, return the body or the error message produced by the request. This function essentially strips away response metadata and gets to the meat of the response.

 Anchor for this section

Functions

 Link to this function

 delete(path)

 Specs

 delete(path :: String.t()) :: map() | {:error, any()}

Generate a signed client struct for a DELETE request to this specific path and make the request. Return the resulting JSON as a map if all goes well.

 Link to this function

 get(path)

 Specs

 get(path :: String.t()) :: map() | {:error, any()}

Generate a signed client struct for a GET request to this specific path and make the request. Return the resulting JSON as a map if all goes well.

 Link to this function

 headers(method, path, body, key_fun \\ &Fetchers.fetch_key/0, sign_fun \\ &Sign.sign/4, timestamp_fun \\ &Fetchers.fetch_timestamp/0)

 Specs

 headers(
 method :: String.t(),
 path :: String.t(),
 body :: String.t(),
 key :: String.t(),
 sign_fun :: (String.t(), String.t(), String.t() -> String.t()),
 timestamp :: String.t()
) :: [{String.t(), any()}]

Provide a list of headers to be used in the Coinbase request.
This includes information such as:
	The API key
	The timestamp (required for signature verification)
	The signature to be included with the request

 Link to this function

 middleware(method, path, body, base_url \\ "https://api.coinbase.com", header_fun \\ &headers/3)

 Specs

 middleware(
 method :: String.t(),
 path :: String.t(),
 body :: String.t(),
 base_url :: String.t(),
 header_fun :: (... -> list())
) :: list()

Generate a list of required middleware for consumption by Client.new/3.

 Link to this function

 new(method, path, body \\ "", middleware_fun \\ &middleware/3)

 Specs

 new(
 method :: String.t(),
 path :: String.t(),
 body :: String.t(),
 middlware_fun :: (() -> list())
) :: %Tesla.Client{adapter: term(), fun: term(), post: term(), pre: term()}

Generate a new API client struct. This function is will return a signed %Tesla.Client{} struct that can be used in later HTTP calls.

 Link to this function

 patch(path, body)

 Specs

 patch(path :: String.t(), body :: String.t() | map()) :: map() | {:error, any()}

Generate a signed client struct for a PATCH request to this specific path and with the provided body, then make the request. Return the resulting JSON as a map if all goes well.

 Link to this function

 post(path, body)

 Specs

 post(path :: String.t(), body :: String.t() | map()) :: map() | {:error, any()}

Generate a signed client struct for a POST request to this specific path and with the provided body, then make the request. Return the resulting JSON as a map if all goes well.

 Link to this function

 put(path, body)

 Specs

 put(path :: String.t(), body :: String.t() | map()) :: map() | {:error, any()}

Generate a signed client struct for a PUT request to this specific path and with the provided body, then make the request. Return the resulting JSON as a map if all goes well.

 Link to this function

 unwrap_response(resp)

 Specs

 unwrap_response(resp :: {atom(), map()}) :: map()

Assuming the response was successful and able to connect, return the body or the error message produced by the request. This function essentially strips away response metadata and gets to the meat of the response.
In all other cases where it is passed something other than {:error, message} or {:ok, response} this function will return {:error, resp}.

Aurum.Coinbase.Fetchers

This module isolates certain side-effect ridden operations into their own functions.
All functions in this module are intended to be used as a default parameter in another module in such a way that the function here can be mocked.

 Anchor for this section

 Summary

 Functions

 fetch_key()

 Returns the value of the COINBASE_KEY environment variable. (At runtime)

 fetch_secret()

 Returns the value of the COINBASE_SECRET environment variable. (At runtime)

 fetch_timestamp()

 Returns the current epoch timestamp according to the /time portion of the Coinbase API. This is used when generating the signed HMAC authentication string used in authenticated Coinbase requests.

 Anchor for this section

Functions

 Link to this function

 fetch_key()

 Specs

 fetch_key() :: String.t()

Returns the value of the COINBASE_KEY environment variable. (At runtime)

 Link to this function

 fetch_secret()

 Specs

 fetch_secret() :: String.t()

Returns the value of the COINBASE_SECRET environment variable. (At runtime)

 Link to this function

 fetch_timestamp()

 Specs

 fetch_timestamp() :: integer()

Returns the current epoch timestamp according to the /time portion of the Coinbase API. This is used when generating the signed HMAC authentication string used in authenticated Coinbase requests.

Aurum.Coinbase.Sign

This module is responsible for all the signing related to the HMAC authentication which must be present on every request to the Coinbase API.
To understand some of the processes contained in this module, it is highly recommended to read the Coinbase API docs about API key authentication found here.

 Anchor for this section

 Summary

 Functions

 generate_message(timestamp, method, path, body \\ "")

 Given the timestamp, method, path, and body used in a request, concatenate them in the correct order for use in the signature function later.

 sign(method, path, body \\ "", timestamp, secret_fun \\ &Fetchers.fetch_secret/0)

 Given the secret, timestamp, method, path, and optional body: generate a valid signature. The following data given to this function should produce the hash outlined below, and this is how what the unit test of this particular function are testing against.

 Anchor for this section

Functions

 Link to this function

 generate_message(timestamp, method, path, body \\ "")

 Specs

 generate_message(
 timestamp :: integer() | String.t(),
 method :: String.t(),
 path :: String.t(),
 body :: String.t()
) :: String.t()

Given the timestamp, method, path, and body used in a request, concatenate them in the correct order for use in the signature function later.

 Link to this function

 sign(method, path, body \\ "", timestamp, secret_fun \\ &Fetchers.fetch_secret/0)

 Specs

 sign(
 secret :: String.t(),
 timestamp :: integer(),
 method :: String.t(),
 path :: String.t(),
 body :: String.t()
) :: String.t()

Given the secret, timestamp, method, path, and optional body: generate a valid signature. The following data given to this function should produce the hash outlined below, and this is how what the unit test of this particular function are testing against.
secret bar
timestamp 1636971273
method GET
path /zork
body {'quux': 'zyzx'}

message 1636971273GET/zork{'quux': 'zyzx'}
hash: 6aed30a898d9c87ef9f652d81e49464c65ff9406801e7edd238febe959f58dca

 OEBPS/dist/app-79dd8c5f31bc273f4a64.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=25)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},25:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

