

 Astro

 v0.10.0

 [image: Logo]

 Table of contents

 	Astro

 	License

 	Changelog

 	Modules

 	Astro

 	Astro.Earth

 	Astro.Guards

 	Astro.Lunar

 	Astro.Solar

 	Astro.Supervisor

 	Astro.Time

Astro
[image: Build Status]
[image: Hex.pm]
[image: Hex.pm]
[image: Hex.pm]
[image: Hex.pm]
Astro is a library to provide basic astromonomical functions with a focus on functions that support solar, lunar and lunisolar calendars such as the Chinese, Hebrew and Persian calendars.
Usage
NOTE: It's important to install and configure Astro correctly before use. See the installation notes below.
The primary functions are:
	Astro.sunrise/3
	Astro.sunset/3
	Astro.solstice/2
	Astro.equinox/2
	Astro.hours_of_daylight/2

Examples
 # Sunrise in Sydney on December 4th
 iex> Astro.sunrise({151.20666584, -33.8559799094}, ~D[2019-12-04])
 {:ok, #DateTime<2019-12-04 05:37:00.000000+11:00 AEDT Australia/Sydney>}

 # Sunset in Sydney on December 4th
 iex> Astro.sunset({151.20666584, -33.8559799094}, ~D[2019-12-04])
 {:ok, #DateTime<2019-12-04 19:53:00.000000+11:00 AEDT Australia/Sydney>}

 # Sunset in the town of Alert in Nunavut, Canada
 # ...doesn't exist since there is no sunset in summer
 iex> Astro.sunset({-62.3481, 82.5018}, ~D[2019-07-01])
 {:error, :no_time}

 # ...or sunrise in winter
 iex> Astro.sunrise({-62.3481, 82.5018}, ~D[2019-12-04])
 {:error, :no_time}

 # Hours of daylight on December 7th in Sydney
 iex> Astro.hours_of_daylight {151.20666584, -33.8559799094}, ~D[2019-12-07]
 {:ok, ~T[14:18:45]}

 # No sunset in summer at high latitudes
 iex> Astro.hours_of_daylight {-62.3481, 82.5018}, ~D[2019-06-07]
 {:ok, ~T[23:59:59]}

 # No sunrise in winter at high latitudes
 iex> Astro.hours_of_daylight {-62.3481, 82.5018}, ~D[2019-12-07]
 {:ok, ~T[00:00:00]}

 # Calculate solstices for 2019
 iex> Astro.solstice 2019, :december
 {:ok, ~U[2019-12-22 04:18:57Z]}

 iex> Astro.solstice 2019, :june
 {:ok, ~U[2019-06-21 15:53:45Z]}

 # Calculate equinoxes for 2019
 iex> Astro.equinox 2019, :march
 {:ok, ~U[2019-03-20 21:58:06Z]}

 iex> Astro.equinox 2019, :september
 {:ok, ~U[2019-09-23 07:49:30Z]}
Specifying a location
The desired location of sunrise or sunset can be specified as either:
	a tuple of longitude and latitude (note the order) such as {-62.3481, 82.5018}
	a tuple of longitude, latitude and elevation (note the order) such as {-62.3481, 82.5018, 0}.
	a Geo.Point.t struct
	a Geo.PointZ.t struct

Location units and direction
For this implementation, the latitude and longitude of the functions in Astro are specified as follows:
	Longitude is + for eastern longitudes and - for western longitudes and specified in degrees
	Latitude is + for northern latitudes and - for southern latitudes and specified in degrees
	Elevation is specified in meters

References
	Thanks to @pinnymz for the ruby-zmanim gem which has a well structured ruby implementation of sunrise / sunset and some core astronomical algorithms.

	Eventually all roads lead to the canonical book on the subject by Jean Meeus: Astronomical Algorithms

	For the intersection of calendars and astronomy, Calendrical Calculations by Nachum Dershowitz and Edward M. Reingold remains the standard reference.

	On the web, timeanddate.com is a great reference. The sunrise/sunset calculations in this library are tested to return times within 1 minute of timeanddate.com results.

	Wikipedia for content to help describe the understanding behind some of the functions

Installation
Configure Astro
Astro can be installed by adding astro to your list of dependencies in mix.exs:
def deps do
 [
 {:astro, "~> 0.7.0"}
]
end
Install TzWorld Data
Then get dependencies and install the data required to determine a time zone from a location which is used by the dependency tz_world.
mix deps.get
mix tz_world.update
Add TzWorld to supervision tree
It is also required that tz_world be added to your applications supervision tree by adding the relevant tz_world backend to it in your MyApp.Application module:
defmodule MyApp.Application do
 use Application

 def start(_type, _args) do
 children = [

 # See the documentation for tz_world for the
 # various available backends. This is the recommended
 # backend.
 TzWorld.Backend.DetsWithIndexCache
]

 opts = [strategy: :one_for_one, name: Astro.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
Configure your application module
Make sure that you have configured your application in mix.exs:
 def application do
 [
 mod: {MyApp.Application, [strategy: :one_for_one]},

]
 end
Documentation can be found at https://hexdocs.pm/astro.

License
Copyright 2018-2019 Kip Cole
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under the
License.

Changelog
Astro version 0.10.0
This is the changelog for Astro version 0.10.0 released on November 7th, 2022. For older changelogs please consult the release tag on GitHub
Enhancements
	Adds Astro.Math.floor/1 and Astro.Math.ceil/1 which are needed to support Tempo.

Astro version 0.9.2
This is the changelog for Astro version 0.9.2 released on September 1st, 2022. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Update :tz_world to "~> 1.0" which will also remove Elixir 1.14 warnings

Astro version 0.9.1
This is the changelog for Astro version 0.9.1 released on October 23rd, 2021. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Ensure that gregorian_seconds is an integer before passing it to Tzdata.periods_for_time/3. Thanks to @dvic for the report. Fixes #2.

Astro version 0.9.0
This is the changelog for Astro version 0.9.0 released on October 8th, 2021. For older changelogs please consult the release tag on GitHub
Please note that Elixir 1.11 or later is required.
Enhancements
	Adds Astro.lunar_phase_emoji/1 to produce a single grapheme string representing the image of the moon phase for a given lunar angle.

Astro version 0.8.0
This is the changelog for Astro version 0.8.0 released on October 3rd, 2021. For older changelogs please consult the release tag on GitHub
Please note that Elixir 1.11 or later is required.
Enhancements
	Convert some identity functions to macros which improves runtime performance

	Add additional specs and docs to Astro.Math module

Astro version 0.7.0
This is the changelog for Astro version 0.7.0 released on September 10th, 2021. For older changelogs please consult the release tag on GitHub
Please note that Elixir 1.11 or later is required.
Bug Fixes
	Revert Astro back to a pure library application. The supervisor for TzWorld still needs to be started. This fix brings the code back into line with the README. Thanks to @dvic for the report. Closes #1.

Astro version 0.6.0
This is the changelog for Astro version 0.6.0 released on September 5th, 2021. For older changelogs please consult the release tag on GitHub
Please note that Elixir 1.11 or later is required.
Bug Fixes
	Fix Astro.Math.atan_r/2

	Fix ephemeris calculation

Breaking changes
	Change Time.date_time_{from, to}_iso_days/1 to Time.date_time_{from, to}_moment/1

Enhancements
	Remove dependency on ex_cldr_calendar and jason

	Add Astro.sun_position_at/1

	Add Astro.moon_position_at/1

	Add Astro.illuminated_fraction_of_moon_at/1

Astro version 0.5.0
This is the changelog for Astro version 0.5.0 released on August 26th, 2021. For older changelogs please consult the release tag on GitHub
Please note that Elixir 1.11 or later is required.
Bug Fixes
	Updates documentation to be clear about installation and setup requirements for tz_world

	Fixes test data for São Paulo now that it no longer uses DST

	Ensure :astro is started in test mode

Enhancements
This primary focus of this release is to add lunar calculations for moon phase.
	Adds Astro.date_time_new_moon_before/1

	Adds Astro.date_time_new_moon_at_or_after/1

	Adds Astro.lunar_phase_at/1

	Adds Astro.date_time_lunar_phase_at_or_before/2

	Adds Astro.date_time_lunar_phase_at_or_after/2

Astro version 0.4.0
This is the changelog for Astro version 0.4.0 released on February 16th, 2020. For older changelogs please consult the release tag on GitHub
Breaking Change
	When no timezone is found the return is changed from {:error, :timezone_not_found} to {:error, :time_zone_not_found} to be consistent with Elixir and TzData.

Astro version 0.3.0
This is the changelog for Astro version 0.3.0 released on December 9th, 2019. For older changelogs please consult the release tag on GitHub
Change in behaviour
	Seconds are no longer truncated to zero when calculating datetimes and durations

Enhancements
	Add Astro.solar_noon/2 to return the true solar noon for a location and date

	Add Astro.hours_of_daylight/2 to return hours, minutes and seconds as a Time.t() representing the number of daylight hours for a give location and date

	Add Astro.sun_apparent_longitude/1 to return the apparent solar longitude on a given date. The result, a number of degrees between 0 and 360, can be used to determine the seasons.

Astro version 0.2.0
This is the changelog for Astro version 0.2.0 released on December 6th, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Add Astro.equinox/2and Astro.solstice/2 to calculate solstices and equinoxes for a year. From these can be derived the seasons.

	Add Astro.Time.datetime_from_julian_days/1

	Add Astro.Time.utc_datetime_from_terrestrial_datetime/1

Astro version 0.1.0
This is the changelog for Astro version 0.1.0 released on December 5th, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Initial release includes Astro.sunrise/3 and Astro.sunset/3. See the readme for further roadmap details.

Astro

Functions for basic astronomical observations such
as sunrise, sunset, solstice, equinox, moonrise,
moonset and moon phase.

 Anchor for this section

 Summary

 Types

 altitude()

 angle()

 date()

 degrees()

 latitude()

 location()

 longitude()

 meters()

 options()

 phase()

 Functions

 date_time_lunar_phase_at_or_after(date_time, phase)

 Returns the date time of a given
lunar phase at or after a given
date time or date.

 date_time_lunar_phase_at_or_before(date_time, phase)

 Returns the date time of a given
lunar phase at or before a given
date time or date.

 date_time_new_moon_at_or_after(datetime)

 Returns the date time of the new
moon at or after a given date or
date time.

 date_time_new_moon_before(date_time)

 Returns the date time of the new
moon before a given date or date time.

 declination(t, beta, lambda)

 beta and lambda in degrees

 equinox(year, event)

 Returns the datetime in UTC for either the
March or September equinox.

 hours_of_daylight(location, date)

 Returns the number of hours of daylight for a given
location on a given date.

 illuminated_fraction_of_moon_at(date_time)

 Returns the illumination of the moon
as a fraction for a given date or date time.

 is_lunar_phase(phase)

 lunar_phase_at(date_time)

 Returns the lunar phase as a
float number of degrees at a given
date or date time.

 lunar_phase_emoji(phase)

 Returns the moon phase as a UTF8 binary
representing an emoji of the moon phase.

 moon_position_at(date_time)

 Returns a t:Geo.PointZ containing
the right ascension and declination of
the moon at a given date or date time.

 right_ascension(t, beta, lambda)

 beta and lambda in degrees

 solar_noon(location, date)

 Returns solar noon for a
given date and location as
a UTC datetime

 solstice(year, event)

 Returns the datetime in UTC for either the
June or December solstice.

 sun_apparent_longitude(date)

 Returns solar longitude for a
given date. Solar longitude is used
to identify the seasons.

 sun_position_at(date_time)

 Returns a t:Geo.PointZ containing
the right ascension and declination of
the moon at a given date or date time.

 sunrise(location, date, options \\ default_options())

 Calculates the sunrise for a given location and date.

 sunset(location, date, options \\ default_options())

 Calculates the sunset for a given location and date.

 Anchor for this section

Types

 Link to this type

 altitude()

 View Source

 Specs

 altitude() :: float()

 Link to this type

 angle()

 View Source

 Specs

 angle() :: number()

 Link to this type

 date()

 View Source

 Specs

 date() :: Calendar.date() | Calendar.datetime()

 Link to this type

 degrees()

 View Source

 Specs

 degrees() :: float()

 Link to this type

 latitude()

 View Source

 Specs

 latitude() :: float()

 Link to this type

 location()

 View Source

 Specs

 location() :: {longitude(), latitude()} | Geo.Point.t() | Geo.PointZ.t()

 Link to this type

 longitude()

 View Source

 Specs

 longitude() :: float()

 Link to this type

 meters()

 View Source

 Specs

 meters() :: number()

 Link to this type

 options()

 View Source

 Specs

 options() :: keyword()

 Link to this type

 phase()

 View Source

 Specs

 phase() :: angle()

 Anchor for this section

Functions

 Link to this function

 date_time_lunar_phase_at_or_after(date_time, phase)

 View Source

 (since 0.5.0)

 Specs

 date_time_lunar_phase_at_or_after(date(), phase()) :: {:ok, Calendar.datetime()}

Returns the date time of a given
lunar phase at or after a given
date time or date.

 Arguments

	date_time is a DateTime or a Date or
any struct that meets the requirements of
t:Calendar.date or t:Calendar.datetime

	phase is the required lunar phase expressed
as a float number of degrees between 0.0 and
360.0

 Returns

	{:ok, date_time} at which the phase occurs or

	{:error, {module, reason}}

 Example

iex> Astro.date_time_lunar_phase_at_or_after(~D[2021-08-01], Astro.Lunar.full_moon())
{:ok, ~U[2021-08-22 12:01:02.000000Z]}

 Link to this function

 date_time_lunar_phase_at_or_before(date_time, phase)

 View Source

 (since 0.5.0)

 Specs

 date_time_lunar_phase_at_or_before(date(), phase()) ::
 {:ok, Calendar.datetime()}

Returns the date time of a given
lunar phase at or before a given
date time or date.

 Arguments

	date_time is a DateTime or a Date or
any struct that meets the requirements of
t:Calendar.date or t:Calendar.datetime

	phase is the required lunar phase expressed
as a float number of degrees between 0 and
3660

 Returns

	{:ok, date_time} at which the phase occurs or

	{:error, {module, reason}}

 Example

iex> Astro.date_time_lunar_phase_at_or_before(~D[2021-08-01], Astro.Lunar.new_moon())
{:ok, ~U[2021-07-10 01:15:33.000000Z]}

 Link to this function

 date_time_new_moon_at_or_after(datetime)

 View Source

 (since 0.5.0)

 Specs

 date_time_new_moon_at_or_after(date()) :: {:ok, Calendar.datetime()}

Returns the date time of the new
moon at or after a given date or
date time.

 Arguments

	date_time is a DateTime or a Date or
any struct that meets the requirements of
t:Calendar.date or t:Calendar.datetime

 Returns

	{:ok, date_time} at which the new moon occurs or

	{:error, {module, reason}}

 Example

iex> Astro.date_time_new_moon_at_or_after ~D[2021-08-23]
{:ok, ~U[2021-09-07 00:50:43.000000Z]}

 Link to this function

 date_time_new_moon_before(date_time)

 View Source

 (since 0.5.0)

 Specs

 date_time_new_moon_before(date()) :: {:ok, Calendar.datetime()}

Returns the date time of the new
moon before a given date or date time.

 Arguments

	date_time is a DateTime or a Date or
any struct that meets the requirements of
t:Calendar.date or t:Calendar.datetime

 Returns

	{:ok, date_time} at which the new moon occurs or

	{:error, {module, reason}}

 Example

iex> Astro.date_time_new_moon_before ~D[2021-08-23]
{:ok, ~U[2021-08-08 13:49:07.000000Z]}

 Link to this function

 declination(t, beta, lambda)

 View Source

 Specs

 declination(Astro.Time.moment(), angle(), angle()) :: angle()

beta and lambda in degrees

 Link to this function

 equinox(year, event)

 View Source

 Specs

 equinox(Calendar.year(), :march | :september) :: {:ok, DateTime.t()}

Returns the datetime in UTC for either the
March or September equinox.

 Arguments

	year is the gregorian year for which the equinox is
to be calculated

	event is either :march or :september indicating
which of the two annual equinox datetimes is required

 Returns

	{:ok, datetime} representing the UTC datetime of
the equinox

 Examples

iex> Astro.equinox 2019, :march
{:ok, ~U[2019-03-20 21:58:06Z]}
iex> Astro.equinox 2019, :september
{:ok, ~U[2019-09-23 07:49:30Z]}

 Notes

This equinox calculation is expected to be accurate
to within 2 minutes for the years 1000 CE to 3000 CE.
An equinox is commonly regarded as the instant of
time when the plane of Earth's equator passes through
the center of the Sun. This occurs twice each year:
around 20 March and 23 September.
In other words, it is the moment at which the
center of the visible Sun is directly above the equator.

 Link to this function

 hours_of_daylight(location, date)

 View Source

 Specs

 hours_of_daylight(location(), Calendar.date()) :: {:ok, Time.t()}

Returns the number of hours of daylight for a given
location on a given date.

 Arguments

	location is the latitude, longitude and
optionally elevation for the desired hours of
daylight. It can be expressed as:
	{lng, lat} - a tuple with longitude and latitude
as floating point numbers. Note the order of the
arguments.
	a Geo.Point.t struct to represent a location without elevation
	a Geo.PointZ.t struct to represent a location and elevation

	date is any date in the Gregorian
calendar (for example, Calendar.ISO)

 Returns

	{:ok, time} where time is a Time.t()

 Examples

iex> Astro.hours_of_daylight {151.20666584, -33.8559799094}, ~D[2019-12-07]
{:ok, ~T[14:18:45]}

No sunset in summer
iex> Astro.hours_of_daylight {-62.3481, 82.5018}, ~D[2019-06-07]
{:ok, ~T[23:59:59]}

No sunrise in winter
iex> Astro.hours_of_daylight {-62.3481, 82.5018}, ~D[2019-12-07]
{:ok, ~T[00:00:00]}

 Notes

In latitudes above the polar circles (approximately
+/- 66.5631 degrees) there will be no hours of daylight
in winter and 24 hours of daylight in summer.

 Link to this function

 illuminated_fraction_of_moon_at(date_time)

 View Source

 (since 0.6.0)

 Specs

 illuminated_fraction_of_moon_at(date()) :: number()

Returns the illumination of the moon
as a fraction for a given date or date time.

 Arguments

	date_time is a DateTime or a Date or
any struct that meets the requirements of
t:Calendar.date or t:Calendar.datetime

 Returns

	a float value between 0.0 and 1.0
representing the fractional illumination of
the moon.

 Example

iex> Astro.illuminated_fraction_of_moon_at(~D[2017-03-16])
0.8884442367681415

iex> Astro.illuminated_fraction_of_moon_at(~D[1992-04-12])
0.6786428237168787

iex> Astro.illuminated_fraction_of_moon_at(~U[2017-03-16 19:55:11.0Z])
0.8334019164562495

 Link to this macro

 is_lunar_phase(phase)

 View Source

 (macro)

 Link to this function

 lunar_phase_at(date_time)

 View Source

 (since 0.5.0)

 Specs

 lunar_phase_at(date()) :: phase()

Returns the lunar phase as a
float number of degrees at a given
date or date time.

 Arguments

	date_time is a DateTime, Date or
a moment which is a float number of days
since 0000-01-01

 Returns

	the lunar phase as a float number of
degrees.

 Example

iex> Astro.lunar_phase_at ~U[2021-08-22 12:01:02.170362Z]
180.00001498208536

iex> Astro.lunar_phase_at(~U[2021-07-10 01:18:25.422335Z])
0.021567106773019873

 Link to this function

 lunar_phase_emoji(phase)

 View Source

 Specs

 lunar_phase_emoji(phase()) :: String.t()

Returns the moon phase as a UTF8 binary
representing an emoji of the moon phase.

 Arguments

	phase is a moon phase between 0.0 and 360.0

 Returns

	A single grapheme string representing the Unicode
moon phase emoji

 Examples

iex> Astro.lunar_phase_emoji 0
"🌑"
iex> Astro.lunar_phase_emoji 45
"🌒"
iex> Astro.lunar_phase_emoji 90
"🌓"
iex> Astro.lunar_phase_emoji 135
"🌔"
iex> Astro.lunar_phase_emoji 180
"🌕"
iex> Astro.lunar_phase_emoji 245
"🌖"
iex> Astro.lunar_phase_emoji 270
"🌗"
iex> Astro.lunar_phase_emoji 320
"🌘"
iex> Astro.lunar_phase_emoji 360
"🌑"

iex> ~U[2021-08-22 12:01:02.170362Z]
...> |> Astro.lunar_phase_at()
...> |> Astro.lunar_phase_emoji()
"🌕"

 Link to this function

 moon_position_at(date_time)

 View Source

 (since 0.6.0)

 Specs

 moon_position_at(date()) :: Geo.PointZ.t()

Returns a t:Geo.PointZ containing
the right ascension and declination of
the moon at a given date or date time.

 Arguments

	date_time is a DateTime or a Date or
any struct that meets the requirements of
t:Calendar.date or t:Calendar.datetime

 Returns

	a t:Geo.PointZ struct with coordinates
{right_ascension, declination, distance} with properties
%{reference: :celestial, object: :moon}
distance is in meters.

 Example

iex> Astro.moon_position_at(~D[1992-04-12])
%Geo.PointZ{
 coordinates: {134.6978882151538, 13.765242742787006, 5.511320224169038e19},
 properties: %{object: :moon, reference: :celestial},
 srid: nil
}

 Link to this function

 right_ascension(t, beta, lambda)

 View Source

 Specs

 right_ascension(Astro.Time.moment(), angle(), angle()) :: angle()

beta and lambda in degrees

 Link to this function

 solar_noon(location, date)

 View Source

 Specs

 solar_noon(location(), Calendar.date()) :: {:ok, DateTime.t()}

Returns solar noon for a
given date and location as
a UTC datetime

 Arguments

	location is the latitude, longitude and
optionally elevation for the desired solar noon
time. It can be expressed as:
	{lng, lat} - a tuple with longitude and latitude
as floating point numbers. Note the order of the
arguments.
	a Geo.Point.t struct to represent a location without elevation
	a Geo.PointZ.t struct to represent a location and elevation

	date is any date in the Gregorian
calendar (for example, Calendar.ISO)

 Returns

	a UTC datetime representing solar noon
at the given location for the given date

 Example

iex> Astro.solar_noon {151.20666584, -33.8559799094}, ~D[2019-12-06]
{:ok, ~U[2019-12-06 01:45:42Z]}

 Notes

Solar noon is the moment when the Sun passes a
location's meridian and reaches its highest position
in the sky. In most cases, it doesn't happen at 12 o'clock.
At solar noon, the Sun reaches its
highest position in the sky as it passes the
local meridian.

 Link to this function

 solstice(year, event)

 View Source

 Specs

 solstice(Calendar.year(), :june | :december) :: {:ok, DateTime.t()}

Returns the datetime in UTC for either the
June or December solstice.

 Arguments

	year is the gregorian year for which the solstice is
to be calculated

	event is either :june or :december indicating
which of the two annual solstice datetimes is required

 Returns

	{:ok, datetime} representing the UTC datetime of
the solstice

 Examples

iex> Astro.solstice 2019, :december
{:ok, ~U[2019-12-22 04:18:57Z]}
iex> Astro.solstice 2019, :june
{:ok, ~U[2019-06-21 15:53:45Z]}

 Notes

This solstice calculation is expected to be accurate
to within 2 minutes for the years 1000 CE to 3000 CE.
A solstice is an event occurring when the Sun appears
to reach its most northerly or southerly excursion
relative to the celestial equator on the celestial
sphere. Two solstices occur annually, around June 21
and December 21.
The seasons of the year are determined by
reference to both the solstices and the equinoxes.
The term solstice can also be used in a broader
sense, as the day when this occurs. The day of a
solstice in either hemisphere has either the most
sunlight of the year (summer solstice) or the least
sunlight of the year (winter solstice) for any place
other than the Equator.
Alternative terms, with no ambiguity as to which
hemisphere is the context, are "June solstice" and
"December solstice", referring to the months in
which they take place every year.

 Link to this function

 sun_apparent_longitude(date)

 View Source

 Specs

 sun_apparent_longitude(Calendar.date()) :: degrees()

Returns solar longitude for a
given date. Solar longitude is used
to identify the seasons.

 Arguments

	date is any date in the Gregorian
calendar (for example, Calendar.ISO)

 Returns

	a float number of degrees between 0 and
360 representing the solar longitude
on date

 Examples

iex> Astro.sun_apparent_longitude ~D[2019-03-21]
0.08035853207991295
iex> Astro.sun_apparent_longitude ~D[2019-06-22]
90.32130455695378
iex> Astro.sun_apparent_longitude ~D[2019-09-23]
179.68691978440197
iex> Astro.sun_apparent_longitude ~D[2019-12-23]
270.83941087483504

 Notes

Solar longitude (the ecliptic longitude of the sun)
in effect describes the position of the earth in its
orbit, being zero at the moment of the vernal
equinox.
Since it is based on how far the earth has moved
in its orbit since the equinox, it is a measure of
what time of the tropical year (the year of seasons)
we are in, but without the inaccuracies of a calendar
date, which is perturbed by leap years and calendar
imperfections.

 Link to this function

 sun_position_at(date_time)

 View Source

 (since 0.6.0)

 Specs

 sun_position_at(date()) :: Geo.PointZ.t()

Returns a t:Geo.PointZ containing
the right ascension and declination of
the moon at a given date or date time.

 Arguments

	date_time is a DateTime or a Date or
any struct that meets the requirements of
t:Calendar.date or t:Calendar.datetime

 Returns

	a t:Geo.PointZ struct with coordinates
{right_ascension, declination, distance} with properties
%{reference: :celestial, object: :sun}.
distance is in meters.

 Example

iex> Astro.sun_position_at(~D[1992-10-13])
%Geo.PointZ{
 coordinates: {-161.6185428539835, -7.785325031528879, 149169604711.3518},
 properties: %{object: :sun, reference: :celestial},
 srid: nil
}

 Link to this function

 sunrise(location, date, options \\ default_options())

 View Source

 Specs

 sunrise(location(), date(), options()) ::
 {:ok, DateTime.t()} | {:error, :time_zone_not_found | :no_time}

Calculates the sunrise for a given location and date.
Sunrise is the moment when the upper limb of
the sun appears on the horizon in the morning.

 Arguments

	location is the latitude, longitude and
optionally elevation for the desired sunrise
time. It can be expressed as:
	{lng, lat} - a tuple with longitude and latitude
as floating point numbers. Note the order of the
arguments.
	a Geo.Point.t struct to represent a location without elevation
	a Geo.PointZ.t struct to represent a location and elevation

	date is a t:Date, t:NaiveDateTime or t:DateTime
to indicate the date of the year in which
the sunrise time is required.

	options is a keyword list of options.

 Options

	solar_elevation represents the type of sunrise
required. The default is :geometric which equates to
a solar elevation of 90°. In this case the calulation
also accounts for refraction and elevation to return a
result which accords with the eyes perception. Other
solar elevations are:
	:civil representing a solar elevation of 96.0°. At this
point the sun is just below the horizon so there is
generally enough natural light to carry out most
outdoor activities.
	:nautical representing a solar elevation of 102.0°
This is the point at which the horizon is just barely visible
and the moon and stars can still be used for navigation.
	:astronomicalrepresenting a solar elevation of 108.0°.
This is the point beyond which astronomical observation
becomes impractical.
	Any floating point number representing the desired
solar elevation.

	:time_zone is the time zone to in which the sunrise
is requested. The default is :default in which
the sunrise time is reported in the time zone of
the requested location. Any other time zone name
supported by the option :time_zone_database is
acceptabe.

	:time_zone_database represents the module that
implements the Calendar.TimeZoneDatabase behaviour.
The default is Tzdata.TimeZoneDatabase.

 Returns

	a DateTime.t representing the time of sunrise in the
requested timzone at the requested location or

	{:error, :time_zone_not_found} if the requested
time zone is unknown

	{:error, :no_time} if for the requested date
and location there is no sunrise. This can occur at
very high latitudes during summer and winter.

 Examples

Sunrise in Sydney, Australia
Astro.sunrise({151.20666584, -33.8559799094}, ~D[2019-12-04])
{:ok, #DateTime<2019-12-04 05:37:00.000000+11:00 AEDT Australia/Sydney>}

Sunrise in Alert, Nanavut, Canada
Astro.sunrise({-62.3481, 82.5018}, ~D[2019-12-04])
{:error, :no_time}

 Link to this function

 sunset(location, date, options \\ default_options())

 View Source

 Specs

 sunset(location(), date(), options()) ::
 {:ok, DateTime.t()} | {:error, :time_zone_not_found | :no_time}

Calculates the sunset for a given location and date.
Sunset is the moment when the upper limb of
the sun disappears below the horizon in the evening.

 Arguments

	location is the latitude, longitude and
optionally elevation for the desired sunrise
time. It can be expressed as:
	{lng, lat} - a tuple with longitude and latitude
as floating point numbers. Note the order of the
arguments.
	a Geo.Point.t struct to represent a location without elevation
	a Geo.PointZ.t struct to represent a location and elevation

	date is a t:Date, t:NaiveDateTime or t:DateTime
to indicate the date of the year in which
the sunset time is required.

	options is a keyword list of options.

 Options

	solar_elevation represents the type of sunset
required. The default is :geometric which equates to
a solar elevation of 90°. In this case the calulation
also accounts for refraction and elevation to return a
result which accords with the eyes perception. Other
solar elevations are:
	:civil representing a solar elevation of 96.0°. At this
point the sun is just below the horizon so there is
generally enough natural light to carry out most
outdoor activities.
	:nautical representing a solar elevation of 102.0°
This is the point at which the horizon is just barely visible
and the moon and stars can still be used for navigation.
	:astronomicalrepresenting a solar elevation of 108.0°.
This is the point beyond which astronomical observation
becomes impractical.
	Any floating point number representing the desired
solar elevation.

	:time_zone is the time zone to in which the sunset
is requested. The default is :default in which
the sunset time is reported in the time zone of
the requested location. Any other time zone name
supported by the option :time_zone_database is
acceptabe.

	:time_zone_database represents the module that
implements the Calendar.TimeZoneDatabase behaviour.
The default is Tzdata.TimeZoneDatabase.

 Returns

	a t:DateTime representing the time of sunset in the
requested time zone at the requested location or

	{:error, :time_zone_not_found} if the requested
time zone is unknown

	{:error, :no_time} if for the requested date
and location there is no sunset. This can occur at
very high latitudes during summer and winter.

 Examples

Sunset in Sydney, Australia
Astro.sunset({151.20666584, -33.8559799094}, ~D[2019-12-04])
{:ok, #DateTime<2019-12-04 19:53:00.000000+11:00 AEDT Australia/Sydney>}

Sunset in Alert, Nanavut, Canada
Astro.sunset({-62.3481, 82.5018}, ~D[2019-12-04])
{:error, :no_time}

Astro.Earth

Constants and astronomical calculations
related to the earth.

 Anchor for this section

 Summary

 Functions

 adjusted_solar_elevation(solar_elevation, elevation)

 Adjusts the solar elevation to be the apparent angle
at sunrise if the requested angle is :geometric
(or 90°)

 earth_radius()

 Returns the radius of the earth in kilometers

 elevation_adjustment(elevation)

 Adjusts the solar elevation to account
for the elevation of the requested location

 nutation(julian_centuries)

 obliquity()

 Returns the obliquity of the earth

 refraction()

 Returns an estimate of the effect of refraction
applied to the calculation of sunrise and
sunset times.

 solar_radius()

 Returns the suns apparent radius at sunrise/sunset.

 Anchor for this section

Functions

 Link to this function

 adjusted_solar_elevation(solar_elevation, elevation)

 View Source

Adjusts the solar elevation to be the apparent angle
at sunrise if the requested angle is :geometric
(or 90°)

 Arguments

	solar_elevation is the requested solar elevation
in degress. It will be 90° for sunrise and sunset.

	elevation is elevation in meters

 Returns

	The solar elevation angle adjusted for refraction,
elevation and solar radius.

 Link to this function

 earth_radius()

 View Source

Returns the radius of the earth in kilometers

 Link to this function

 elevation_adjustment(elevation)

 View Source

Adjusts the solar elevation to account
for the elevation of the requested location

 Arguments

	elevation is elevation in meters

 Returns

	The solar elevation angle adjusted for the elevation

 Link to this function

 nutation(julian_centuries)

 View Source

 Specs

 nutation(Astro.Time.julian_centuries()) :: Astro.angle()

 Link to this function

 obliquity()

 View Source

Returns the obliquity of the earth

 Link to this function

 refraction()

 View Source

Returns an estimate of the effect of refraction
applied to the calculation of sunrise and
sunset times.
Sunrise actually occurs before the sun truly
reaches the horizon because earth's atmosphere
refracts the Sun's image. At the horizon, the average
amount of refraction is 34 arcminutes, though this
amount varies based on atmospheric conditions.
This effect is especially powerful for objects
that appear close to the horizon, such as the
rising or setting sun, because the light rays
enter the earth's atmosphere at a particularly
shallow angle. Because of refraction, the sun
may be seen for several minutes before it actually
rises in the morning and after it sets in the
evening.

 Link to this function

 solar_radius()

 View Source

Returns the suns apparent radius at sunrise/sunset.
Unlike most other solar measurements, sunrise occurs
when the Sun's upper limb, rather than its center,
appears to cross the horizon. The apparent radius of
the Sun at the horizon is 16 arcminutes.

Astro.Guards

 Anchor for this section

 Summary

 Functions

 datetime()

 is_alt(alt)

 is_lat(lat)

 is_lng(lng)

 Anchor for this section

Functions

 Link to this function

 datetime()

 View Source

 Link to this macro

 is_alt(alt)

 View Source

 (macro)

 Link to this macro

 is_lat(lat)

 View Source

 (macro)

 Link to this macro

 is_lng(lng)

 View Source

 (macro)

Astro.Lunar

Calulates lunar phases.
Each of the phases of the Moon is defined by the
angle between the Moon and Sun in the sky. When the Moon
is in between the Earth and the Sun, so that there is nearly a
zero degree separation, we see a New Moon.
Because the orbit of the Moon is tilted in relation to the
Earth’s orbit around the Sun, a New Moon can still be as much
as 5.2 degrees away from the Sun, thus why there isn't a
solar eclipse every month.
A crescent moon is 45 degrees from the Sun, a quarter moon
is 90 degrees from the Sun, a gibbous moon is 135 degrees
from the Sun, and the Full Moon is 180 degrees away from
the Sun.

 Anchor for this section

 Summary

 Functions

 date_time_lunar_phase_at_or_after(t, phase)

 Returns the date time of a given
lunar phase at or after a given
date time or date.

 date_time_lunar_phase_at_or_before(t, phase)

 Returns the date time of a given
lunar phase at or before a given
moment.

 date_time_new_moon_at_or_after(t)

 Returns the date time of the new
moon at or after a given date or
date time.

 date_time_new_moon_before(t)

 Returns the date time of the new
moon before a given moment.

 first_quarter()

 Returns the first quarter lunar
phase expressed as a float number
of degrees.

 full_moon()

 Returns the full moon lunar
phase expressed as a float number
of degrees.

 illuminated_fraction_of_moon(t)

 Returns the fractional illumination of the moon
at a given time as a fraction between 0.0 and 1.0.

 last_quarter()

 Returns the last quarter lunar
phase expressed as a float number
of degrees.

 lunar_altitude(t, point_z)

 lunar_distance(t)

 lunar_latitude(t)

 lunar_parallax(t, location)

 lunar_phase_at(t)

 Returns the lunar phase as a
float number of degrees at a given
moment.

 lunar_position(t)

 new_moon()

 Returns the new moon lunar
phase expressed as a float number
of degrees.

 topocentric_lunar_altitude(t, location)

 Anchor for this section

Functions

 Link to this function

 date_time_lunar_phase_at_or_after(t, phase)

 View Source

 (since 0.5.0)

 Specs

 date_time_lunar_phase_at_or_after(Astro.Time.moment(), Astro.phase()) ::
 Astro.Time.moment()

Returns the date time of a given
lunar phase at or after a given
date time or date.

 Arguments

	a moment which is a float number of days
since 0000-01-01

	phase is the required lunar phase expressed
as a float number of degrees between 0 and
3660

 Returns

	a t:Time.moment() which is a float number of days
since 0000-01-01

 Example

iex> Astro.Lunar.date_time_lunar_phase_at_or_after(738368, Astro.Lunar.full_moon())
738389.5007195254

 Link to this function

 date_time_lunar_phase_at_or_before(t, phase)

 View Source

 (since 0.5.0)

 Specs

 date_time_lunar_phase_at_or_before(Astro.Time.moment(), Astro.phase()) ::
 Astro.Time.moment()

Returns the date time of a given
lunar phase at or before a given
moment.

 Arguments

	a t:Time.moment() which is a float number of days
since 0000-01-01

	phase is the required lunar phase expressed
as a float number of degrees between 0.0 and
360.0

 Returns

	a t:Time.moment() which is a float number of days
since 0000-01-01

 Example

iex> Astro.Lunar.date_time_lunar_phase_at_or_before(738368, Astro.Lunar.new_moon())
738346.0524695957

 Link to this function

 date_time_new_moon_at_or_after(t)

 View Source

 (since 0.5.0)

 Specs

 date_time_new_moon_at_or_after(Astro.Time.moment()) :: Astro.Time.moment()

Returns the date time of the new
moon at or after a given date or
date time.

 Arguments

	a t:Time.moment() which is a float number of days
since 0000-01-01

 Returns

	a t:Time.moment() which is a float number of days
since 0000-01-01

 Example

iex> Astro.Lunar.date_time_new_moon_at_or_after 738390
738405.0352292997

 Link to this function

 date_time_new_moon_before(t)

 View Source

 (since 0.5.0)

 Specs

 date_time_new_moon_before(Astro.Time.moment()) :: Astro.Time.moment()

Returns the date time of the new
moon before a given moment.

 Arguments

	a t:Time.moment() which is a float number of days
since 0000-01-01

 Returns

	a t:Time.moment() which is a float number of days
since 0000-01-01

 Example

iex> Astro.Lunar.date_time_new_moon_before 738390
738375.5757777032

 Link to this function

 first_quarter()

 View Source

 (since 0.5.0)

 Specs

 first_quarter() :: Astro.phase()

Returns the first quarter lunar
phase expressed as a float number
of degrees.

 Link to this function

 full_moon()

 View Source

 (since 0.5.0)

 Specs

 full_moon() :: Astro.phase()

Returns the full moon lunar
phase expressed as a float number
of degrees.

 Link to this function

 illuminated_fraction_of_moon(t)

 View Source

 (since 0.6.0)

 Specs

 illuminated_fraction_of_moon(Astro.Time.time()) :: float()

Returns the fractional illumination of the moon
at a given time as a fraction between 0.0 and 1.0.

 Link to this function

 last_quarter()

 View Source

 (since 0.5.0)

 Specs

 last_quarter() :: Astro.phase()

Returns the last quarter lunar
phase expressed as a float number
of degrees.

 Link to this function

 lunar_altitude(t, point_z)

 View Source

 (since 0.4.0)

 Specs

 lunar_altitude(Astro.Time.moment(), Geo.PointZ.t()) :: Astro.angle()

 Link to this function

 lunar_distance(t)

 View Source

 (since 0.6.0)

 Specs

 lunar_distance(Astro.Time.moment()) :: Astro.meters()

 Link to this function

 lunar_latitude(t)

 View Source

 (since 0.6.0)

 Specs

 lunar_latitude(Astro.Time.moment()) :: Astro.angle()

 Link to this function

 lunar_parallax(t, location)

 View Source

 Link to this function

 lunar_phase_at(t)

 View Source

 (since 0.5.0)

 Specs

 lunar_phase_at(Astro.Time.moment()) :: Astro.Time.moment()

Returns the lunar phase as a
float number of degrees at a given
moment.

 Arguments

	a t:Time.moment() which is a float number of days
since 0000-01-01

 Returns

	the lunar phase as a float number of
degrees.

 Example

iex> Astro.Lunar.lunar_phase_at 738389.5007195644
180.00001498208536

iex> Astro.Lunar.lunar_phase_at 738346.0544609067
0.021567106773019873

 Link to this function

 lunar_position(t)

 View Source

 (since 0.6.0)

 Specs

 lunar_position(Astro.Time.moment()) ::
 {Astro.angle(), Astro.angle(), Astro.meters()}

 Link to this function

 new_moon()

 View Source

 (since 0.5.0)

 Specs

 new_moon() :: Astro.phase()

Returns the new moon lunar
phase expressed as a float number
of degrees.

 Link to this function

 topocentric_lunar_altitude(t, location)

 View Source

Astro.Solar

Implements sunrise and sunset according to the
US NOAA algorithm which is based upon
Astronomical Algorithms
by Jean Meeus.

 Anchor for this section

 Summary

 Functions

 earth_orbit_eccentricity(julian_centuries)

 Returns the unitness earth orbit eccentricity

 equation_of_time(julian_centuries)

 Returns the euation of time in minutes

 equinox_and_solstice(year, event)

 Returns the datetime of an equinox or solstice

 estimate_prior_solar_longitude(lambda, t)

 Return approximate moment at or before tee
when solar longitude just exceeded lam degrees.

 mean_obliquity_of_ecliptic(julian_centuries)

 Returns the mean obliquity of the ecliptic in degrees

 obliquity_correction(julian_centuries)

 Returns the obliquity correction in degrees

 solar_declination(julian_centuries)

 Returns the solar declination in degrees

 solar_distance(julian_centuries)

 solar_longitude(t)

 solar_longitude_after(lambda, t)

 Return the moment UT of the first time at or after moment, tee,
when the solar longitude will be lamda degrees.

 solar_noon_utc(julian_centuries, longitude)

 Returns solar noon as minutes since
midnight UTC

 solar_position(t)

 sun_apparent_longitude(julian_centuries)

 Returns the suns apparent longitude in degrees

 sun_equation_of_center(julian_centuries)

 Return the sun's equation of the center in degrees

 sun_geometric_mean_anomaly(julian_centuries)

 Returns the suns geometric mean anomoly in degrees

 sun_geometric_mean_longitude(julian_centuries)

 Returns the suns geometric mean longitude in degrees

 sun_true_longitude(julian_centuries)

 Returns the suns true longitude in degrees

 utc_sun_position(date, point_z, solar_elevation, mode)

 Returns the UTC time of sun's position
for a given location as a float time-of-day.

 Anchor for this section

Functions

 Link to this function

 earth_orbit_eccentricity(julian_centuries)

 View Source

 Specs

 earth_orbit_eccentricity(float()) :: float()

Returns the unitness earth orbit eccentricity

 Arguments

	julian_centuries is the any moment
in time expressed as julian centuries

 Returns

	a unitless value of eccentricity as a float.
A value of 0 is a circular orbit, values
between 0 and 1 form an elliptic orbit,
1 is a parabolic escape orbit, and greater
than 1 is a hyperbola

 Notes

The orbital eccentricity of earth - and any astronomical
object - is a dimensionless parameter that determines
the amount by which its orbit around another body
deviates from a perfect circle. The term derives
its name from the parameters of conic sections, as
every Kepler orbit is a conic section.

 Link to this function

 equation_of_time(julian_centuries)

 View Source

 Specs

 equation_of_time(float()) :: float()

Returns the euation of time in minutes

 Arguments

	julian_centuries is the any moment
in time expressed as julian centuries

 Returns

	The discrepency between apparent time and
mean solar time in minutes as a float.

 Notes

The equation of time describes the discrepancy between
two kinds of solar time. The word equation is used in
the medieval sense of "reconcile a difference". The two
times that differ are the apparent solar time, which
directly tracks the diurnal motion of the Sun, and mean
solar time, which tracks a theoretical mean Sun with uniform
motion. Apparent solar time can be obtained by measurement
of the current position (hour angle) of the Sun, as
indicated (with limited accuracy) by a sundial. Mean solar
time, for the same place, would be the time indicated by a steady
clock set so that over the year its differences from apparent
solar time would have a mean of zero.
During a year the equation of time varies as shown on the
graph; its change from one year to the next is slight.
Apparent time, and the sundial, can be ahead (fast) by as
much as 16 min 33 s (around 3 November), or behind (slow) by
as much as 14 min 6 s (around 11 February). The equation of
time has zeros near 15 April, 13 June, 1 September, and
25 December. Ignoring very slow changes in the Earth's
orbit and rotation, these events are repeated at the same
times every tropical year. However, due to the non-integral
number of days in a year, these dates can vary by a day or
so from year to year.
The graph of the equation of time is closely approximated by
the sum of two sine curves, one with a period of a year and
one with a period of half a year. The curves reflect two
astronomical effects, each causing a different non-uniformity
in the apparent daily motion of the Sun relative to the stars:
	the obliquity of the ecliptic (the plane of the Earth's annual
orbital motion around the Sun), which is inclined by about 23.44
degrees relative to the plane of the Earth's equator; and

	the eccentricity of the Earth's orbit around the Sun, which is
about 0.0167.

The equation of time is constant only for a planet with zero axial
tilt and zero orbital eccentricity. On Mars the difference between
sundial time and clock time can be as much as 50 minutes, due to
the considerably greater eccentricity of its orbit. The planet
Uranus, which has an extremely large axial tilt, has an equation
of time that makes its days start and finish several hours earlier
or later depending on where it is in its orbit.

 Link to this function

 equinox_and_solstice(year, event)

 View Source

 Specs

 equinox_and_solstice(pos_integer(), :march | :june | :september | :december) ::
 {:ok, DateTime.t()}

Returns the datetime of an equinox or solstice

 Link to this function

 estimate_prior_solar_longitude(lambda, t)

 View Source

Return approximate moment at or before tee
when solar longitude just exceeded lam degrees.

 Link to this function

 mean_obliquity_of_ecliptic(julian_centuries)

 View Source

 Specs

 mean_obliquity_of_ecliptic(float()) :: float()

Returns the mean obliquity of the ecliptic in degrees

 Arguments

	julian_centuries is the any moment
in time expressed as julian centuries

 Returns

	the mean obliquity of the ecliptic in
degrees as a float

 Notes

Obliquity, also known as tilt, is the angle between
the rotation access of the earth from the orbital
plane of the earth around the sun.
Earth's obliquity angle is measured from the imaginary
line that runs perpendicular to another imaginary line;
Earth's ecliptic plane or orbital plane
.
At the moment, Earth's obliquity is about 23.4 degrees
and decreasing. We say 'at the moment' because the
obliquity changes over time, although very, very slowly.

 Link to this function

 obliquity_correction(julian_centuries)

 View Source

 Specs

 obliquity_correction(float()) :: float()

Returns the obliquity correction in degrees

 Arguments

	julian_centuries is the any moment
in time expressed as julian centuries

 Returns

	the obliquity correction in
degrees as a float

 Link to this function

 solar_declination(julian_centuries)

 View Source

 Specs

 solar_declination(float()) :: float()

Returns the solar declination in degrees

 Arguments

	julian_centuries is the any moment
in time expressed as julian centuries

 Returns

	the solar declination in degrees as
a float

 Notes

The solar declination is the angle between
the direction of the center of the solar
disk measured from Earth's center and the
equatorial plane

 Link to this function

 solar_distance(julian_centuries)

 View Source

 Link to this function

 solar_longitude(t)

 View Source

 Link to this function

 solar_longitude_after(lambda, t)

 View Source

 Specs

 solar_longitude_after(number(), Astro.Time.time()) :: Astro.Time.time()

Return the moment UT of the first time at or after moment, tee,
when the solar longitude will be lamda degrees.

 Link to this function

 solar_noon_utc(julian_centuries, longitude)

 View Source

 Specs

 solar_noon_utc(float(), Astro.longitude()) :: float()

Returns solar noon as minutes since
midnight UTC

 Arguments

	julian_centuries is the any moment
in time expressed as julian centuries

	longitude is the longitude in degrees
of the location from which solar noon
is to be measured

 Returns

	solar noon as a float number of
minutes since midnight UTC

 Notes

Solar noon is the moment when the Sun passes a
location's meridian and reaches its highest position
in the sky. In most cases, it doesn't happen at 12 o'clock.
At solar noon, the Sun reaches its
highest position in the sky as it passes the
local meridian.

 Link to this function

 solar_position(t)

 View Source

 Link to this function

 sun_apparent_longitude(julian_centuries)

 View Source

 Specs

 sun_apparent_longitude(Astro.Time.julian_centuries()) :: float()

Returns the suns apparent longitude in degrees

 Arguments

	julian_centuries is the any moment
in time expressed as julian centuries

 Returns

	equation of the center in degrees
as a float

 Notes

The apparent longitude is the sun's celestial
longitude corrected for aberration and nutation
as opposed to mean longitude
An equinox is the instant when the Sun's
apparent geocentric longitude is 0° (northward
equinox) or 180° (southward equinox).

 Link to this function

 sun_equation_of_center(julian_centuries)

 View Source

 Specs

 sun_equation_of_center(float()) :: float()

Return the sun's equation of the center in degrees

 Arguments

	julian_centuries is the any moment
in time expressed as julian centuries

 Returns

	equation of the center in degrees
as a float

 Notes

In two-body, Keplerian orbital mechanics, the equation
of the center is the angular difference between the
actual position of a body in its elliptical orbit and
the position it would occupy if its motion were uniform,
in a circular orbit of the same period.
It is defined as the difference true anomaly, ν,
minus mean anomaly, M, and is typically expressed a
function of mean anomaly, M, and orbital eccentricity, e.

 Link to this function

 sun_geometric_mean_anomaly(julian_centuries)

 View Source

 Specs

 sun_geometric_mean_anomaly(float()) :: float()

Returns the suns geometric mean anomoly in degrees

 Arguments

	julian_centuries is the any moment
in time expressed as julian centuries

 Returns

	the mean anomoly in degrees as a float

 Notes

In celestial mechanics, the mean anomaly is the
fraction of an elliptical orbit's period that has
elapsed since the orbiting body passed periapsis,
expressed as an angle which can be used in calculating
the position of that body in the classical two-body
problem.
It is the angular distance from the pericenter
which a fictitious body would have if it moved
in a circular orbit, with constant speed, in the same
orbital period as the actual body in its elliptical orbit

 Link to this function

 sun_geometric_mean_longitude(julian_centuries)

 View Source

 Specs

 sun_geometric_mean_longitude(float()) :: float()

Returns the suns geometric mean longitude in degrees

 Arguments

	julian_centuries is the any moment
in time expressed as julian centuries

 Returns

	the mean solar longitude in degrees as a float

 Notes

Mean longitude, like mean anomaly, does not measure
an angle between any physical objects. It is simply
a convenient uniform measure of how far around its orbit
a body has progressed since passing the reference
direction. While mean longitude measures a mean position
and assumes constant speed, true longitude measures the
actual longitude and assumes the body has moved with its
actual speed, which varies around its elliptical orbit.
The difference between the two is known as the equation
of the center.

 Link to this function

 sun_true_longitude(julian_centuries)

 View Source

 Specs

 sun_true_longitude(float()) :: float()

Returns the suns true longitude in degrees

 Arguments

	julian_centuries is the any moment
in time expressed as julian centuries

 Returns

	the suns true longitude in degrees
as a float

 Notes

In celestial mechanics true longitude is the
ecliptic longitude at which an orbiting body
could actually be found if its inclination
were zero.
Together with the inclination and the ascending
node, the true longitude can tell us the precise
direction from the central object at which the
body would be located at a particular time.

 Link to this function

 utc_sun_position(date, point_z, solar_elevation, mode)

 View Source

 Specs

 utc_sun_position(DateTime.t(), Geo.PointZ.t(), float(), :sunrise | :sunset) ::
 {:ok, float()} | {:error, :no_time}

Returns the UTC time of sun's position
for a given location as a float time-of-day.

 Arguments

	date is a DateTime.t() in the UTC
time zone

	location is any Geo.PointZ.t()
location

	solar_elevation is the required solar
elevation in degrees (90 degrees for sunrise
and sunset)

	mode is :sunrise or :sunset

 Returns

	{:ok, moment} where moment is float
representing the number of hours after
midnight for sunrise or sunset or

	{:error, :no_time} if there is no
sunrise/sunset for the given date at the
given location. This can occur for very
high latitudes in winter and summer.

 Notes

This implementation is based on equations from
Astronomical Algorithms,
by Jean Meeus. The sunrise and sunset results are
theoretically accurate to within a minute for
locations between +/- 72° latitude, and within
10 minutes outside of those latitudes. However, due to
variations in atmospheric composition, temperature,
pressure and conditions, observed values may vary from
calculations.

Astro.Supervisor

Provides a supervision tree under which
the required TzWorld backend server can
be started.

 Anchor for this section

 Summary

 Functions

 start(type \\ [], args \\ [])

 Starts a TzWorld backend module that
manages the time zone data required for
Astro to operate.

 Anchor for this section

Functions

 Link to this function

 start(type \\ [], args \\ [])

 View Source

Starts a TzWorld backend module that
manages the time zone data required for
Astro to operate.
The backend process is started under a
supervisor called Astro.Supervisor.

Astro.Time

Calculations converting between geometry and time
All public functions use degrees as their input
parameters
Time is a fraction of a day after UTC

 Anchor for this section

 Summary

 Types

 days()

 A number of days as a float

 fraction_of_day()

 A time of day as a float fraction of a day

 hms()

 A tuple of integer hours, integer minutes and integer seconds

 hours()

 A number of hours as a float

 julian_centuries()

 The float number of Julian centuries.

 julian_days()

 A float number of days since the Julian epoch.

 minutes()

 A number of minutes as a float

 moment()

 A moment is a floating point representation of
the fraction of a day.

 season()

 Season expressed as a non-negative number
that is <= 360 representing the sun angle of incidence
(the angle at which the sun hits the earth).

 seconds()

 A number of seconds as a float

 time()

 A time is a floating point number of
days since 0000-01-01 including the fractional
part of a day.

 zone_name()

 A time zone name as a string

 Functions

 ajd(date)

 See Astro.Time.julian_day_from_date/1.

 datetime_from_date_and_minutes(minutes, date)

 Adds the requested minutes to a date
returning a datetime in the UTC time zone

 datetime_from_julian_days(julian_days)

 Returns the datetime for a given Julian day

 dynamical_from_universal(t)

 Returns the dynamical time for a given
universal time.

 ephemeris_correction(t)

 Returns the adjustment necessary to various celestial
calculations at a given time.

 hours_to_days(hours)

 Converts a number of hours into days.

 hours_to_hms(time_of_day)

 Converts a float number of hours
since midnight into {hours, minutes, seconds}.

 j2000()

 Returns the day number for
January 1st, 2000

 julian_centuries_from_julian_day(julian_day)

 Returns the Julian centuries for a given
Julian day

 julian_centuries_from_moment(t)

 julian_day_from_date(date)

 Returns the astronomical Julian day for a given
date

 julian_day_from_julian_centuries(julian_centuries)

 Returns the Julian day for a given
Julian century

 local_from_universal(t, point_z)

 Returns the local time from the
universal time at a given location.

 mjd(date)

 Returns the modified Julian day for a date

 moment_to_datetime(time_of_day, map)

 Converts a float number of hours since midnight to
a DateTime.t()

 offset_for_zone(t, time_zone)

 Returns the offset in float days
for a given moment and time zone.

 offset_from_longitude(longitude)

 Returns the zone difference in hours between
a given location and UTC.

 seconds_to_hms(time_of_day)

 Converts a number of seconds
since midnight into {hours, minutes, seconds}.

 sidereal_from_moment(t)

 standard_from_universal(t, zone_name)

 Returns the standard time for a universal time in a given
time zone.

 universal_from_dynamical(t)

 Returns the universal (UTC) time
for a given dynamical time.

 universal_from_local(t, point_z)

 Returns the universal time (UTC) from
the local time at a given location.

 universal_from_standard(t, zone_name)

 Returns the universal (UTC) time for a standard time in a given time
zone.

 utc_datetime_from_terrestrial_datetime(datetime)

 Converts a terrestrial datetime to a UTC datetime

 Anchor for this section

Types

 Link to this type

 days()

 View Source

 Specs

 days() :: number()

A number of days as a float

 Link to this type

 fraction_of_day()

 View Source

 Specs

 fraction_of_day() :: number()

A time of day as a float fraction of a day

 Link to this type

 hms()

 View Source

 Specs

 hms() :: {Calendar.hour(), Calendar.minute(), Calendar.second()}

A tuple of integer hours, integer minutes and integer seconds

 Link to this type

 hours()

 View Source

 Specs

 hours() :: number()

A number of hours as a float

 Link to this type

 julian_centuries()

 View Source

 Specs

 julian_centuries() :: number()

The float number of Julian centuries.
Since there are 365.25 days in a Julian year,
a Julian century has 36,525 days.

 Link to this type

 julian_days()

 View Source

 Specs

 julian_days() :: number()

A float number of days since the Julian epoch.
The current Julian epoch is defined to have been
noon on January 1, 2000. This epoch is
denoted J2000 and has the exact Julian day
number 2,451,545.0.

 Link to this type

 minutes()

 View Source

 Specs

 minutes() :: number()

A number of minutes as a float

 Link to this type

 moment()

 View Source

 Specs

 moment() :: number()

A moment is a floating point representation of
the fraction of a day.

 Link to this type

 season()

 View Source

 Specs

 season() :: Astro.angle()

Season expressed as a non-negative number
that is <= 360 representing the sun angle of incidence
(the angle at which the sun hits the earth).

 Link to this type

 seconds()

 View Source

 Specs

 seconds() :: number()

A number of seconds as a float

 Link to this type

 time()

 View Source

 Specs

 time() :: number()

A time is a floating point number of
days since 0000-01-01 including the fractional
part of a day.

 Link to this type

 zone_name()

 View Source

 Specs

 zone_name() :: binary()

A time zone name as a string

 Anchor for this section

Functions

 Link to this function

 ajd(date)

 View Source

See Astro.Time.julian_day_from_date/1.

 Link to this function

 datetime_from_date_and_minutes(minutes, date)

 View Source

 Specs

 datetime_from_date_and_minutes(minutes(), Calendar.date()) ::
 {:ok, Calendar.datetime()}

Adds the requested minutes to a date
returning a datetime in the UTC time zone

 Arguments

	minutes is a float number of minutes since midnight

	date is any date in the Gregorian calendar

 Returns

	{:ok, datetime in the UTC time zone}

 Link to this function

 datetime_from_julian_days(julian_days)

 View Source

 Specs

 datetime_from_julian_days(julian_days()) :: {:ok, Calendar.datetime()}

Returns the datetime for a given Julian day

 Arguments

	julian_day is any astronomical Julian day such
as returned from Astro.Time.julian_day_from_date/1

 Returns

	a DateTime.t in the UTC time zone

 Example

iex> Astro.Time.datetime_from_julian_days 2458822.5
{:ok, ~U[2019-12-05 00:00:00Z]}

 Link to this function

 dynamical_from_universal(t)

 View Source

 Specs

 dynamical_from_universal(time()) :: time()

Returns the dynamical time for a given
universal time.
Dynamical time is the time-scale that is used in
calculating orbital motions within the Solar
System. The underlying physical law governing
such motions is the law of gravitation.

 Link to this function

 ephemeris_correction(t)

 View Source

 Specs

 ephemeris_correction(moment()) :: seconds()

Returns the adjustment necessary to various celestial
calculations at a given time.
The ajustment is required since the earth's orbit
of the sun is not completely uniform.

 Link to this function

 hours_to_days(hours)

 View Source

 Specs

 hours_to_days(hours()) :: days()

Converts a number of hours into days.

 Arguments

	a float number of hours

 Returns

	a float number of days

 Examples

iex> Astro.Time.hours_to_days(48)
2.0

 Link to this function

 hours_to_hms(time_of_day)

 View Source

 Specs

 hours_to_hms(fraction_of_day()) :: hms()

Converts a float number of hours
since midnight into {hours, minutes, seconds}.

 Arguments

	time_of_day is a float number of hours
since midnight

 Returns

	A {hour, minute, second} tuple.

 Examples

 iex> Astro.Time.hours_to_hms 0.0
 {0, 0, 0}
 iex> Astro.Time.hours_to_hms 23.999
 {23, 59, 56}
 iex> Astro.Time.hours_to_hms 15.456
 {15, 27, 21}

 Link to this function

 j2000()

 View Source

Returns the day number for
January 1st, 2000

 Link to this function

 julian_centuries_from_julian_day(julian_day)

 View Source

Returns the Julian centuries for a given
Julian day

 Arguments

	julian_day is any astronomical Julian day such
as returned from Astro.Time.julian_day_from_date/1

 Returns

	the astronomical Julian century as a float

 Link to this function

 julian_centuries_from_moment(t)

 View Source

 Link to this function

 julian_day_from_date(date)

 View Source

 Specs

 julian_day_from_date(Calendar.date()) :: julian_days()

Returns the astronomical Julian day for a given
date

 Arguments

	date is any Calendar.date

 Returns

	the astronomical Julian day as a float

 Example

 iex> Astro.Time.julian_day_from_date ~D[2019-12-05]
 2458822.5

 Link to this function

 julian_day_from_julian_centuries(julian_centuries)

 View Source

 Specs

 julian_day_from_julian_centuries(julian_centuries()) :: julian_days()

Returns the Julian day for a given
Julian century

 Arguments

	julian_century is any astronomical Julian century such
as returned from Astro.Time.julian_centuries_from_julian_day/1

 Returns

	the astronomical Julian day as a float

 Link to this function

 local_from_universal(t, point_z)

 View Source

 Specs

 local_from_universal(time(), Geo.PointZ.t()) :: time()

Returns the local time from the
universal time at a given location.
Locale time is UTC time plus the number
of hours offset calculated from the longitude
of a location.
This is different to standard time which
is UTC time adjusted for a specific time
zone name.

 Link to this function

 mjd(date)

 View Source

 Specs

 mjd(Calendar.date()) :: julian_days()

Returns the modified Julian day for a date

 Arguments

	date is any Calendar.date

 Returns

	the modified Julian day as a float

 Notes

A modified version of the Julian date denoted MJD is
obtained by subtracting 2,400,000.5 days from the
Julian date JD,
The MJD therefore gives the number of days since
midnight on November 17, 1858. This date corresponds
to 2400000.5 days after day 0 of the Julian calendar.

 Link to this function

 moment_to_datetime(time_of_day, map)

 View Source

 Specs

 moment_to_datetime(fraction_of_day(), Calendar.date()) ::
 {:ok, Calendar.datetime()}

Converts a float number of hours since midnight to
a DateTime.t()

 Arguments

	time_of_day is a float number of hours
since midnight

	date is any Calendar.date()

 Returns

A DateTime.t() combining the date and time_of_day
in the UTC timezone.

 Link to this function

 offset_for_zone(t, time_zone)

 View Source

 Specs

 offset_for_zone(moment(), zone_name()) :: fraction_of_day()

Returns the offset in float days
for a given moment and time zone.

 Example

Returns a 1 hour offset as a fraction of day
iex> t = Date.to_gregorian_days(~D[2021-08-01])
iex> Astro.Time.offset_for_zone t, "Europe/London"
0.041666666666666664

 Link to this function

 offset_from_longitude(longitude)

 View Source

 Specs

 offset_from_longitude(Geo.PointZ.t() | Astro.longitude()) :: moment()

Returns the zone difference in hours between
a given location and UTC.

 Link to this function

 seconds_to_hms(time_of_day)

 View Source

 Specs

 seconds_to_hms(fraction_of_day()) :: hms()

Converts a number of seconds
since midnight into {hours, minutes, seconds}.

 Arguments

	time_of_day is a number of seconds

 Returns

	A {hour, minute, second} tuple.

 Examples

 iex> Astro.Time.seconds_to_hms 0.0
 {0, 0, 0}
 iex> Astro.Time.seconds_to_hms 3214
 {0, 53, 34}
 iex> Astro.Time.seconds_to_hms 10_000
 {2, 46, 39}

 Link to this function

 sidereal_from_moment(t)

 View Source

 Link to this function

 standard_from_universal(t, zone_name)

 View Source

 Specs

 standard_from_universal(time(), zone_name() | number()) :: time()

Returns the standard time for a universal time in a given
time zone.

 Link to this function

 universal_from_dynamical(t)

 View Source

 Specs

 universal_from_dynamical(time()) :: time()

Returns the universal (UTC) time
for a given dynamical time.
Coordinated Universal Time or UTC is
the primary time standard by which the
world regulates clocks and time.
It is within about 1 second of mean solar
time at 0° longitude and is not adjusted
for daylight saving time.
It is effectively a successor to Greenwich
Mean Time (GMT).

 Link to this function

 universal_from_local(t, point_z)

 View Source

 Specs

 universal_from_local(time(), Geo.PointZ.t()) :: time()

Returns the universal time (UTC) from
the local time at a given location.
Locale time is UTC time plus the number
of hours offset calculated from the longitude
of a location.
This is different to standard time which
is UTC time adjusted for a specific time
zone name.

 Link to this function

 universal_from_standard(t, zone_name)

 View Source

 Specs

 universal_from_standard(time(), zone_name() | number()) :: time()

Returns the universal (UTC) time for a standard time in a given time
zone.

 Link to this function

 utc_datetime_from_terrestrial_datetime(datetime)

 View Source

 Specs

 utc_datetime_from_terrestrial_datetime(Calendar.datetime()) ::
 {:ok, Calendar.datetime()}

Converts a terrestrial datetime to a UTC datetime

 Arguments

	datetime is any UTC datetime which is considered
to be a Terrestrial Time.

 Returns

	A UTC datetime adjusted for the difference
between Terrestrial Time and UTC time

 Notes

Terrestrial Time (TT) was introduced by the IAU in 1979 as
the coordinate time scale for an observer on the
surface of Earth. It takes into account relativistic
effects and is based on International Atomic Time (TAI),
which is a high-precision standard using several hundred
atomic clocks worldwide. As such, TD is the atomic time
equivalent to its predecessor Ephemeris Time (ET) and is
used in the theories of motion for bodies in the solar
system.
To ensure continuity with ET, TD was defined to match
ET for the date 1977 Jan 01. In 1991, the IAU refined
the definition of TT to make it more precise. It was
also renamed Terrestrial Time (TT) from the earlier
Terrestrial Dynamical Time (TDT).

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

