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Getting Started with State Machines
    

Get familiar with Ash resources
If you haven't already, read the Ash Getting Started Guide, and familiarize yourself with Ash and Ash resources.
Bring in the ash_state_machine dependency
def deps()
  [
    ...
    {:ash_state_machine, "~> 0.1.4"}
  ]
end
Making a resource into a state machine
The concept of a state machine (in this case a "Finite State Machine"), essentially involves a single state, with specified transitions between states. For example, you might have an order state machine with states [:pending, :on_its_way, :delivered]. However, you can't go from :pending to :delivered (probably), and so you want to only allow certain transitions in certain circumstances, i.e :pending -> :on_its_way -> :delivered.
This extension's goal is to help you write clear and clean state machines, with all of the extensibility and power of Ash resources and actions.
A basic state machine
defmodule Order do
  # leaving out data layer configuration for brevity
  use Ash.Resource,
    extensions: [AshStateMachine]

  state_machine do
    initial_states [:pending]
    default_initial_state :pending

    transitions do
      transition :confirm, from: :pending, to: :confirmed
      transition :begin_delivery, from: :confirmed, to: :on_its_way
      transition :package_arrived, from: :on_its_way, to: :arrived
      transition :error, from: [:pending, :confirmed, :on_its_way], to: :error
    end
  end

  actions do
    # create sets the state
    defaults [:create, :read]

    update :confirm do
      # accept [...] 
      # you can change other attributes
      # or do anything else an action can normally do
      # this transition will be validated according to
      # the state machine rules above
      change transition_state(:confirmed)
    end

    update :begin_delivery do
      # accept [...]
      change transition_state(:on_its_way)
    end

    update :package_arrived do
      # accept [...]
      change transition_state(:arrived)
    end

    update :error do
      accept [:error_state, :error]
      change transition_state(:error)
    end
  end

  changes do
    # any failures should be captured and transitioned to the error state
    change after_transaction(fn
              changeset, {:ok, result} ->
                {:ok, result}

              changeset, {:error, error} ->
                message = Exception.message(error)

                changeset.data
                |> Ash.Changeset.for_update(:error, %{
                  message: message,
                  error_state: changeset.data.state
                })
                |> Api.update()
            end),
            on: [:update]
  end

  attributes do
    uuid_primary_key :id
    # ...attributes like address/delivery options would go here
    attribute :error, :string
    attribute :error_state, :string
    # :state attribute is added for you by `state_machine`
    # however, you can add it yourself, and you will be guided by
    # compile errors on what states need to be allowed by your type.
  end
end
Generating Flow Charts
run mix ash_state_machine.generate_flow_charts to generate flow charts for your resources. See the task documentation for more. Here is a chart generated from the example above:
stateDiagram-v2
pending --> confirmed: confirm
confirmed --> on_its_way: begin_delivery
on_its_way --> arrived: package_arrived
on_its_way --> error: error
confirmed --> error: error
pending --> error: error
Learning more
	Check out the DSL  documentation in AshStateMachine
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Functions for working with AshStateMachine.
DSL Documentation
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	:deprecated_states (list of atom/0) - A list of states that have been deprecated.
The list of states is derived from the transitions normally.
Use this option to express that certain types should still
be included even though no transitions go to/from that state anymore. The default value is [].

	:state_attribute (atom/0) - The attribute to store the state in. The default value is :state.

	:initial_states (list of atom/0) - Required. The allowed starting states of this state machine.

	:default_initial_state (atom/0) - The default initial state


transitions
	transition


transition
	:action (atom/0) - The corresponding action that is invoked for the transition. Use :* to allow any update action to perform this transition.

	:from - Required. The states in which this action may be called. If not specified, then any state is accepted.

	:to - Required. The states that this action may move to. If not specified, then any state is accepted.
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Returns a mermaid flow chart of a given state machine resource.
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Changes for working with AshStateMachine resources.
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Transitions the state to a new state, validating the transition.
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AshStateMachine.Errors.InvalidInitialState exception
    



      
Used when an initial state is set that is not a valid initial state
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Used when a state change occurs in an action with no matching transition
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Introspection helpers for AshStateMachine

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Functions
  


    
      
        state_machine_all_states(resource_or_dsl)

      


    


    
      
        state_machine_default_initial_state(dsl_or_extended)

      


        The default initial state



    


    
      
        state_machine_default_initial_state!(dsl_or_extended)

      


        The default initial state



    


    
      
        state_machine_deprecated_states(dsl_or_extended)

      


        A list of states that have been deprecated.
The list of states is derived from the transitions normally.
Use this option to express that certain types should still
be included even though no transitions go to/from that state anymore.



    


    
      
        state_machine_deprecated_states!(dsl_or_extended)

      


        A list of states that have been deprecated.
The list of states is derived from the transitions normally.
Use this option to express that certain types should still
be included even though no transitions go to/from that state anymore.



    


    
      
        state_machine_initial_states(dsl_or_extended)

      


        The allowed starting states of this state machine.
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The configuration for an transition.
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Verifies the default initial state is in the list of initial states.
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Generates a Mermaid Flow Chart for each Ash.Resource with the AshStateMachine
extension alongside the resource.
Prerequisites
This mix task requires the Mermaid CLI to be installed on your system.
See https://github.com/mermaid-js/mermaid-cli
Command line options
	--type - generates a given type. Valid values are "state_diagram" and "flow_chart". Defaults to "state_diagram".
	--only - only generates the given Flow file
	--format - Can be set to one of either:	plain - Prints just the mermaid output as text. This is the default.
	md - Prints the mermaid diagram in a markdown code block.
	svg - Generates an SVG
	pdf - Generates a PDF
	png - Generates a PNG
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