

 ash_state_machine

 v0.1.4

 [image: Logo]

 Table of contents

 	Tutorials

 	Get Started With State Machines

 	Modules

 	AshStateMachine

 	AshStateMachine.Charts

 	AshStateMachine.BuiltinChanges

 	AshStateMachine.BuiltinChanges.TransitionState

 	AshStateMachine.Errors.InvalidInitialState

 	AshStateMachine.Errors.NoMatchingTransition

 	AshStateMachine.Info

 	AshStateMachine.Transformers.AddState

 	AshStateMachine.Transformers.EnsureStateSelected

 	AshStateMachine.Transition

 	AshStateMachine.Verifiers.VerifyDefaultInitialState

 	AshStateMachine.Verifiers.VerifyTransitionActions

 	Mix Tasks

 	mix ash_state_machine.generate_flow_charts

Getting Started with State Machines

Get familiar with Ash resources
If you haven't already, read the Ash Getting Started Guide, and familiarize yourself with Ash and Ash resources.
Bring in the ash_state_machine dependency
def deps()
 [
 ...
 {:ash_state_machine, "~> 0.1.4"}
]
end
Making a resource into a state machine
The concept of a state machine (in this case a "Finite State Machine"), essentially involves a single state, with specified transitions between states. For example, you might have an order state machine with states [:pending, :on_its_way, :delivered]. However, you can't go from :pending to :delivered (probably), and so you want to only allow certain transitions in certain circumstances, i.e :pending -> :on_its_way -> :delivered.
This extension's goal is to help you write clear and clean state machines, with all of the extensibility and power of Ash resources and actions.
A basic state machine
defmodule Order do
 # leaving out data layer configuration for brevity
 use Ash.Resource,
 extensions: [AshStateMachine]

 state_machine do
 initial_states [:pending]
 default_initial_state :pending

 transitions do
 transition :confirm, from: :pending, to: :confirmed
 transition :begin_delivery, from: :confirmed, to: :on_its_way
 transition :package_arrived, from: :on_its_way, to: :arrived
 transition :error, from: [:pending, :confirmed, :on_its_way], to: :error
 end
 end

 actions do
 # create sets the state
 defaults [:create, :read]

 update :confirm do
 # accept [...]
 # you can change other attributes
 # or do anything else an action can normally do
 # this transition will be validated according to
 # the state machine rules above
 change transition_state(:confirmed)
 end

 update :begin_delivery do
 # accept [...]
 change transition_state(:on_its_way)
 end

 update :package_arrived do
 # accept [...]
 change transition_state(:arrived)
 end

 update :error do
 accept [:error_state, :error]
 change transition_state(:error)
 end
 end

 changes do
 # any failures should be captured and transitioned to the error state
 change after_transaction(fn
 changeset, {:ok, result} ->
 {:ok, result}

 changeset, {:error, error} ->
 message = Exception.message(error)

 changeset.data
 |> Ash.Changeset.for_update(:error, %{
 message: message,
 error_state: changeset.data.state
 })
 |> Api.update()
 end),
 on: [:update]
 end

 attributes do
 uuid_primary_key :id
 # ...attributes like address/delivery options would go here
 attribute :error, :string
 attribute :error_state, :string
 # :state attribute is added for you by `state_machine`
 # however, you can add it yourself, and you will be guided by
 # compile errors on what states need to be allowed by your type.
 end
end
Generating Flow Charts
run mix ash_state_machine.generate_flow_charts to generate flow charts for your resources. See the task documentation for more. Here is a chart generated from the example above:
stateDiagram-v2
pending --> confirmed: confirm
confirmed --> on_its_way: begin_delivery
on_its_way --> arrived: package_arrived
on_its_way --> error: error
confirmed --> error: error
pending --> error: error
Learning more
	Check out the DSL documentation in AshStateMachine

AshStateMachine

Functions for working with AshStateMachine.
DSL Documentation
Index
	state_machine	transitions	transition

Docs
state_machine
	transitions	transition

	:deprecated_states (list of atom/0) - A list of states that have been deprecated.
The list of states is derived from the transitions normally.
Use this option to express that certain types should still
be included even though no transitions go to/from that state anymore. The default value is [].

	:state_attribute (atom/0) - The attribute to store the state in. The default value is :state.

	:initial_states (list of atom/0) - Required. The allowed starting states of this state machine.

	:default_initial_state (atom/0) - The default initial state

transitions
	transition

transition
	:action (atom/0) - The corresponding action that is invoked for the transition. Use :* to allow any update action to perform this transition.

	:from - Required. The states in which this action may be called. If not specified, then any state is accepted.

	:to - Required. The states that this action may move to. If not specified, then any state is accepted.

 Anchor for this section

 Summary

 Functions

 transition_state(changeset, target)

 A utility to transition the state of a changeset, honoring the rules of the resource.

 Anchor for this section

Functions

 Link to this function

 transition_state(changeset, target)

 View Source

A utility to transition the state of a changeset, honoring the rules of the resource.

AshStateMachine.Charts

Returns a mermaid flow chart of a given state machine resource.

 Anchor for this section

 Summary

 Functions

 mermaid_flowchart(resource)

 mermaid_state_diagram(resource)

 Anchor for this section

Functions

 Link to this function

 mermaid_flowchart(resource)

 View Source

 @spec mermaid_flowchart(Ash.Resource.t()) :: String.t()

 Link to this function

 mermaid_state_diagram(resource)

 View Source

 @spec mermaid_state_diagram(Ash.Resource.t()) :: String.t()

AshStateMachine.BuiltinChanges

Changes for working with AshStateMachine resources.

 Anchor for this section

 Summary

 Functions

 transition_state(target)

 Changes the state to the target state, validating the transition

 Anchor for this section

Functions

 Link to this function

 transition_state(target)

 View Source

Changes the state to the target state, validating the transition

AshStateMachine.BuiltinChanges.TransitionState

Transitions the state to a new state, validating the transition.

 Anchor for this section

 Summary

 Functions

 change(changeset, opts, _)

 Callback implementation for Ash.Resource.Change.change/3.

 init(opts)

 Callback implementation for Ash.Resource.Change.init/1.

 Anchor for this section

Functions

 Link to this function

 change(changeset, opts, _)

 View Source

Callback implementation for Ash.Resource.Change.change/3.

 Link to this function

 init(opts)

 View Source

Callback implementation for Ash.Resource.Change.init/1.

AshStateMachine.Errors.InvalidInitialState exception

Used when an initial state is set that is not a valid initial state

AshStateMachine.Errors.NoMatchingTransition exception

Used when a state change occurs in an action with no matching transition

AshStateMachine.Info

Introspection helpers for AshStateMachine

 Anchor for this section

 Summary

 Functions

 state_machine_all_states(resource_or_dsl)

 state_machine_default_initial_state(dsl_or_extended)

 The default initial state

 state_machine_default_initial_state!(dsl_or_extended)

 The default initial state

 state_machine_deprecated_states(dsl_or_extended)

 A list of states that have been deprecated.
The list of states is derived from the transitions normally.
Use this option to express that certain types should still
be included even though no transitions go to/from that state anymore.

 state_machine_deprecated_states!(dsl_or_extended)

 A list of states that have been deprecated.
The list of states is derived from the transitions normally.
Use this option to express that certain types should still
be included even though no transitions go to/from that state anymore.

 state_machine_initial_states(dsl_or_extended)

 The allowed starting states of this state machine.

 state_machine_initial_states!(dsl_or_extended)

 The allowed starting states of this state machine.

 state_machine_options(dsl_or_extended)

 state_machine DSL options

 state_machine_state_attribute(dsl_or_extended)

 The attribute to store the state in.

 state_machine_state_attribute!(dsl_or_extended)

 The attribute to store the state in.

 state_machine_transitions(dsl_or_extended)

 state_machine.transitions DSL entities

 state_machine_transitions(resource_or_dsl, name)

 Anchor for this section

Functions

 Link to this function

 state_machine_all_states(resource_or_dsl)

 View Source

 @spec state_machine_all_states(Ash.Resource.record() | map()) :: [atom()]

 Link to this function

 state_machine_default_initial_state(dsl_or_extended)

 View Source

 @spec state_machine_default_initial_state(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The default initial state

 Link to this function

 state_machine_default_initial_state!(dsl_or_extended)

 View Source

 @spec state_machine_default_initial_state!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The default initial state

 Link to this function

 state_machine_deprecated_states(dsl_or_extended)

 View Source

 @spec state_machine_deprecated_states(dsl_or_extended :: module() | map()) ::
 {:ok, [atom()]} | :error

A list of states that have been deprecated.
The list of states is derived from the transitions normally.
Use this option to express that certain types should still
be included even though no transitions go to/from that state anymore.

 Link to this function

 state_machine_deprecated_states!(dsl_or_extended)

 View Source

 @spec state_machine_deprecated_states!(dsl_or_extended :: module() | map()) ::
 [atom()] | no_return()

A list of states that have been deprecated.
The list of states is derived from the transitions normally.
Use this option to express that certain types should still
be included even though no transitions go to/from that state anymore.

 Link to this function

 state_machine_initial_states(dsl_or_extended)

 View Source

 @spec state_machine_initial_states(dsl_or_extended :: module() | map()) ::
 {:ok, [atom()]} | :error

The allowed starting states of this state machine.

 Link to this function

 state_machine_initial_states!(dsl_or_extended)

 View Source

 @spec state_machine_initial_states!(dsl_or_extended :: module() | map()) ::
 [atom()] | no_return()

The allowed starting states of this state machine.

 Link to this function

 state_machine_options(dsl_or_extended)

 View Source

 @spec state_machine_options(dsl_or_extended :: module() | map()) :: %{
 required(atom()) => any()
}

state_machine DSL options
Returns a map containing the and any configured or default values.

 Link to this function

 state_machine_state_attribute(dsl_or_extended)

 View Source

 @spec state_machine_state_attribute(dsl_or_extended :: module() | map()) ::
 {:ok, atom()} | :error

The attribute to store the state in.

 Link to this function

 state_machine_state_attribute!(dsl_or_extended)

 View Source

 @spec state_machine_state_attribute!(dsl_or_extended :: module() | map()) ::
 atom() | no_return()

The attribute to store the state in.

 Link to this function

 state_machine_transitions(dsl_or_extended)

 View Source

 @spec state_machine_transitions(dsl_or_extended :: module() | map()) :: [struct()]

state_machine.transitions DSL entities

 Link to this function

 state_machine_transitions(resource_or_dsl, name)

 View Source

 @spec state_machine_transitions(Ash.Resource.record() | map(), name :: atom()) :: [
 AshStateMachine.Transition.t()
]

AshStateMachine.Transformers.AddState

Adds or enforces details about the state attribute

 Anchor for this section

 Summary

 Functions

 after?(_)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl_state)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Anchor for this section

Functions

 Link to this function

 after?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

AshStateMachine.Transformers.EnsureStateSelected

Ensures that state is always selected on queries.

 Anchor for this section

 Summary

 Functions

 after?(_)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl_state)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Anchor for this section

Functions

 Link to this function

 after?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

AshStateMachine.Transition

The configuration for an transition.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %AshStateMachine.Transition{action: atom(), from: [atom()], to: [atom()]}

AshStateMachine.Verifiers.VerifyDefaultInitialState

Verifies the default initial state is in the list of initial states.

 Anchor for this section

 Summary

 Functions

 verify(dsl_state)

 Callback implementation for Spark.Dsl.Verifier.verify/1.

 Anchor for this section

Functions

 Link to this function

 verify(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Verifier.verify/1.

AshStateMachine.Verifiers.VerifyTransitionActions

Verifies that each transition corresponds to an update action

 Anchor for this section

 Summary

 Functions

 verify(dsl_state)

 Callback implementation for Spark.Dsl.Verifier.verify/1.

 Anchor for this section

Functions

 Link to this function

 verify(dsl_state)

 View Source

Callback implementation for Spark.Dsl.Verifier.verify/1.

mix ash_state_machine.generate_flow_charts

Generates a Mermaid Flow Chart for each Ash.Resource with the AshStateMachine
extension alongside the resource.
Prerequisites
This mix task requires the Mermaid CLI to be installed on your system.
See https://github.com/mermaid-js/mermaid-cli
Command line options
	--type - generates a given type. Valid values are "state_diagram" and "flow_chart". Defaults to "state_diagram".
	--only - only generates the given Flow file
	--format - Can be set to one of either:	plain - Prints just the mermaid output as text. This is the default.
	md - Prints the mermaid diagram in a markdown code block.
	svg - Generates an SVG
	pdf - Generates a PDF
	png - Generates a PNG

 Anchor for this section

 Summary

 Functions

 run(argv)

 Callback implementation for Mix.Task.run/1.

 Anchor for this section

Functions

 Link to this function

 run(argv)

 View Source

Callback implementation for Mix.Task.run/1.

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

