

 ash_postgres

 v1.3.6

 [image: Logo]

 Table of contents

 	How To

 	Join Manual Relationships

 	Test With Postgres

 	Using Fragments

 	Topics

 	Migrations And Tasks

 	Polymorphic Resources

 	Schema Based Multitenancy

 	Tutorials

 	Get Started With Postgres

 	Modules

 	AshPostgres.DataLayer

 	AshPostgres.Repo

 	AshPostgres.DataLayer.Info

 	AshPostgres.Functions.Fragment

 	AshPostgres.Functions.TrigramSimilarity

 	AshPostgres.CustomAggregate

 	AshPostgres.Migration

 	EctoMigrationDefault

 	AshPostgres.Transformers.EnsureTableOrPolymorphic

 	AshPostgres.Transformers.PreventMultidimensionalArrayAggregates

 	AshPostgres.Transformers.ValidateReferences

 	AshPostgres.Transformers.VerifyRepo

 	AshPostgres.Functions.ILike

 	AshPostgres.Functions.Like

 	AshPostgres.ManualRelationship

 	Mix Tasks

 	mix ash_postgres.create

 	mix ash_postgres.drop

 	mix ash_postgres.generate_migrations

 	mix ash_postgres.migrate

 	mix ash_postgres.rollback

Join Manual Relationships

See Defining Manual Relationships for an idea of manual relationships in general.
Manual relationships allow for expressing complex/non-typical relationships between resources in a standard way.
Individual data layers may interact with manual relationships in their own way, so see their corresponding guides.
Example
in the resource

relationships do
 has_many :tickets_above_threshold, Helpdesk.Support.Ticket do
 manual Helpdesk.Support.Ticket.Relationships.TicketsAboveThreshold
 end
end

implementation
defmodule Helpdesk.Support.Ticket.Relationships.TicketsAboveThreshold do
 use Ash.Resource.ManualRelationship
 use AshPostgres.ManualRelationship

 require Ash.Query
 require Ecto.Query

 def load(records, _opts, %{query: query, actor: actor, authorize?: authorize?}) do
 # Use existing records to limit resultds
 rep_ids = Enum.map(records, & &1.id)
 # Using Ash to get the destination records is ideal, so you can authorize access like normal
 # but if you need to use a raw ecto query here, you can. As long as you return the right structure.

 {:ok,
 query
 |> Ash.Query.filter(representative_id in ^rep_ids)
 |> Ash.Query.filter(priority > representative.priority_threshold)
 |> Helpdesk.Support.read!(actor: actor, authorize?: authorize?)
 # Return the items grouped by the primary key of the source, i.e representative.id => [...tickets above threshold]
 |> Enum.group_by(& &1.representative_id)}
 end

 # query is the "source" query that is being built.

 # _opts are options provided to the manual relationship, i.e `{Manual, opt: :val}`

 # current_binding is what the source of the relationship is bound to. Access fields with `as(^current_binding).field`

 # as_binding is the binding that your join should create. When you join, make sure you say `as: ^as_binding` on the
 # part of the query that represents the destination of the relationship

 # type is `:inner` or `:left`.
 # destination_query is what you should join to to add the destination to the query, i.e `join: dest in ^destination-query`
 def ash_postgres_join(query, _opts, current_binding, as_binding, :inner, destination_query) do
 {:ok,
 Ecto.Query.from(_ in query,
 join: dest in ^destination_query,
 as: ^as_binding,
 on: dest.representative_id == as(^current_binding).id,
 on: dest.priority > as(^current_binding).priority_threshold
)}
 end

 def ash_postgres_join(query, _opts, current_binding, as_binding, :left, destination_query) do
 {:ok,
 Ecto.Query.from(_ in query,
 left_join: dest in ^destination_query,
 as: ^as_binding,
 on: dest.representative_id == as(^current_binding).id,
 on: dest.priority > as(^current_binding).priority_threshold
)}
 end

 # _opts are options provided to the manual relationship, i.e `{Manual, opt: :val}`

 # current_binding is what the source of the relationship is bound to. Access fields with `parent_as(^current_binding).field`

 # as_binding is the binding that has already been created for your join. Access fields on it via `as(^as_binding)`

 # destination_query is what you should use as the basis of your query
 def ash_postgres_subquery(_opts, current_binding, as_binding, destination_query) do
 {:ok,
 Ecto.Query.from(_ in destination_query,
 where: parent_as(^current_binding).id == as(^as_binding).representative_id,
 where: as(^as_binding).priority > parent_as(^current_binding).priority_threshold
)}
 end
end

Testing With Postgres

When using AshPostgres resources in tests, you will likely want to include use a test case similar to the following. This will ensure that your repo runs everything in a transaction.
defmodule MyApp.DataCase do
 @moduledoc """
 This module defines the setup for tests requiring
 access to the application's data layer.

 You may define functions here to be used as helpers in
 your tests.

 Finally, if the test case interacts with the database,
 we enable the SQL sandbox, so changes done to the database
 are reverted at the end of every test. If you are using
 PostgreSQL, you can even run database tests asynchronously
 by setting `use AshHq.DataCase, async: true`, although
 this option is not recommended for other databases.
 """

 use ExUnit.CaseTemplate

 using do
 quote do
 alias MyApp.Repo

 import Ecto
 import Ecto.Changeset
 import Ecto.Query
 import MyApp.DataCase
 end
 end

 setup tags do
 pid = Ecto.Adapters.SQL.Sandbox.start_owner!(MyApp.Repo, shared: not tags[:async])
 on_exit(fn -> Ecto.Adapters.SQL.Sandbox.stop_owner(pid) end)
 :ok
 end
end
This should be coupled with to make sure that Ash does not spawn any tasks.
config :ash, :disable_async?, true

Using Fragments

Fragments allow you to use arbitrary postgres expressions in your queries. Fragments can often be an escape hatch to allow you to do things that don't have something officially supported with Ash.
Examples
Use simple expressions
fragment("? / ?", points, count)
Call functions
fragment("repeat('hello', 4)")
Use entire queries
fragment("points > (SELECT SUM(points) FROM games WHERE user_id = ? AND id != ?)", user_id, id)
Using entire queries like the above is a last resort, but can often help us avoid having to add extra structure unnecessarily.

Migrations

Tasks
The available tasks are:
	mix ash_postgres.generate_migrations
	mix ash_postgres.create
	mix ash_postgres.drop
	mix ash_postgres.migrate (use mix ash_postgres.migrate --tenants to run tenant migrations)

AshPostgres is built on top of ecto, so much of its behavior is pass-through/orchestration of that tooling.
Basic Workflow
	Make resource changes
	Run mix ash_postgres.generate_migrations to generate migrations and resource snapshots
	Run mix ash_postgres.migrate to run those migrations
	Run mix ash_postgres.migrate --tenants as well if you have multi-tenant resources.

For more information on generating migrations, see the module documentation here:
Mix.Tasks.AshPostgres.GenerateMigrations, or run mix help ash_postgres.generate_migrations
For running your migrations, there is a mix task that will find all of the repos configured in your apis and run their
migrations. It is a thin wrapper around mix ecto.migrate. Ours is called mix ash_postgres.migrate
If you want to run or rollback individual migrations, use the corresponding
For tenant migrations (see the multitenancy guides for more) generated by multitenant resources, make sure you are using
mix ash_postgres.generate_migrations. It is not sufficient to run mix ash_postgres.migrate --migrations_path tenant_migrations_path. You will also need to define a list_tenants/0 function in your repo module. See AshPostgres.Repo for more.
Regenerating Migrations
Often, you will run into a situation where you want to make a slight change to a resource after you've already generated and run migrations. If you are using git and would like to undo those changes, then regenerate the migrations, this script may prove useful:
#!/bin/bash

Get count of untracked migrations
N_MIGRATIONS=$(git ls-files --others priv/repo/migrations | wc -l)

Rollback untracked migrations
mix ecto.rollback -n $N_MIGRATIONS

Delete untracked migrations and snapshots
git ls-files --others priv/repo/migrations | xargs rm
git ls-files --others priv/resource_snapshots | xargs rm

Regenerate migrations
mix ash_postgres.generate_migrations

Run migrations if flag
if echo $* | grep -e "-m" -q
then
 mix ecto.migrate
fi

After saving this file to something like regen.sh, make it executable with chmod +x regen.sh. Now you can run it with ./regen.sh. If you would like the migrations to automatically run after regeneration, add the -m flag: ./regen.sh -m.
Multiple Repos
If you are using multiple repos, you will likely need to use mix ecto.migrate and manage it separately for each repo, as the options would
be applied to both repo, which wouldn't make sense.
Running Migrations in Production
Define a module similar to the following:
defmodule MyApp.Release do
 @moduledoc """
 Houses tasks that need to be executed in the released application (because mix is not present in releases).
 """
 @app :my_ap
 def migrate do
 load_app()

 for repo <- repos() do
 {:ok, _, _} = Ecto.Migrator.with_repo(repo, &Ecto.Migrator.run(&1, :up, all: true))
 end
 end

 # only needed if you are using postgres multitenancy
 def migrate_tenants do
 load_app()

 for repo <- repos() do
 repo_name = repo |> Module.split() |> List.last() |> Macro.underscore()

 path =
 "priv/"
 |> Path.join(repo_name)
 |> Path.join("tenant_migrations")
 # This may be different for you if you are not using the default tenant migrations

 {:ok, _, _} =
 Ecto.Migrator.with_repo(
 repo,
 fn repo ->
 for tenant <- repo.all_tenants() do
 Ecto.Migrator.run(repo, path, :up, all: true, prefix: tenant)
 end
 end
)
 end
 end

 # only needed if you are using postgres multitenancy
 def migrate_all do
 load_app()
 migrate()
 migrate_tenants()
 end

 def rollback(repo, version) do
 load_app()
 {:ok, _, _} = Ecto.Migrator.with_repo(repo, &Ecto.Migrator.run(&1, :down, to: version))
 end

 # only needed if you are using postgres multitenancy
 def rollback_tenants(repo, version) do
 load_app()
 repo_name = repo |> Module.split() |> List.last() |> Macro.underscore()

 path =
 "priv/"
 |> Path.join(repo_name)
 |> Path.join("tenant_migrations")
 # This may be different for you if you are not using the default tenant migrations

 for tenant <- repo.all_tenants() do
 {:ok, _, _} =
 Ecto.Migrator.with_repo(
 repo,
 &Ecto.Migrator.run(&1, path, :down,
 to: version,
 prefix: tenant
)
)
 end
 end

 defp repos do
 apis()
 |> Enum.flat_map(fn api ->
 api
 |> Ash.Api.Info.resources()
 |> Enum.map(&AshPostgres.repo/1)
 end)
 |> Enum.uniq()
 end

 defp apis do
 Application.fetch_env!(:my_app, :ash_apis)
 end

 defp load_app do
 Application.load(@app)
 end
end

Polymorphic Resources

To support leveraging the same resource backed by multiple tables (useful for things like polymorphic associations), AshPostgres supports setting the data_layer.table context for a given resource. For this example, lets assume that you have a MyApp.Post resource and a MyApp.Comment resource. For each of those resources, users can submit reactions. However, you want a separate table for post_reactions and comment_reactions. You could accomplish that like so:
defmodule MyApp.Reaction do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer

 postgres do
 polymorphic? true # Without this, `table` is a required configuration
 end

 attributes do
 attribute(:resource_id, :uuid)
 end

 ...
end
Then, in your related resources, you set the table context like so:
defmodule MyApp.Post do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer

 ...

 relationships do
 has_many :reactions, MyApp.Reaction,
 relationship_context: %{data_layer: %{table: "post_reactions"}},
 destination_attribute: :resource_id
 end
end

defmodule MyApp.Comment do
 use Ash.Resource,
 data_layer: AshPostgres.DataLayer

 ...

 relationships do
 has_many :reactions, MyApp.Reaction,
 relationship_context: %{data_layer: %{table: "comment_reactions"}},
 destination_attribute: :resource_id
 end
end
With this, when loading or editing related data, ash will automatically set that context.
For managing related data, see Ash.Changeset.manage_relationship/4 and other relationship functions
in Ash.Changeset
Table specific actions
To make actions use a specific table, you can use the set_context query preparation/change.
For example:
defmodule MyApp.Reaction do
 actions do
 read :for_comments do
 prepare set_context(%{data_layer: %{table: "comment_reactions"}})
 end

 read :for_posts do
 prepare set_context(%{data_layer: %{table: "post_reactions"}})
 end
 end
end
Migrations
When a migration is marked as polymorphic? true, the migration generator will look at
all resources that are related to it, that set the %{data_layer: %{table: "table"}} context.
For each of those, a migration is generated/managed automatically. This means that adding reactions
to a new resource is as easy as adding the relationship and table context, and then running
mix ash_postgres.generate_migrations.

Schema Based Multitenancy

Multitenancy in AshPostgres is implemented via postgres schemas. For more information on schemas, see postgres' schema documentation
Implementing multitenancy via schema's involves tracking "tenant migrations" separately from migrations for your public schema. You can see what this looks like by simply creating a multitenant resource, and using the migration generator mix ash_postgres.generate_migrations --apis My.Api. It will put schema specific migrations in priv/repo/tenant_migrations. When you generate migrations, you'll want to be sure to audit migrations in both directories. Additionally, when you deploy, you'll want to run your migrations, as well as running them with the migrations path priv/repo/tenant_migrations.
Generated migrations
The generated migrations include a lot of niceties around multitenancy. Specifically, foreign keys will point at tables in the correct schema, and foreign keys to non-multitenant resources will point to the correct table. If you are using attribute multitenancy, foreign keys to tables also using attribute multitenancy will be composite foreign keys, including the tenant attribute as well as the referencing field.
Migrations in the tenant directory will call repo().all_tenants(), which is a callback you will need to implement in your repo that should return a list of all schemas that need to be migrated.
Automatically managing tenants
By setting the template configuration, in the manage_tenant section, you can cause the creation/updating of a given resource to create/rename tenants. For example:
defmodule MyApp.Organization do
 use Ash.Resource,
 ...

 postgres do
 ...

 manage_tenant do
 template ["org_", :id]
 end
 end
end
With this configuration, if you create an organization, it will create a corresponding schema, e.g. org_10 in the database. Then it will run your tenant migrations on that schema. To override the tenant_migrations path, implement the AshPostgres.Repo.tenant_migrations_path/0 callback.
Notice that manage_tenant is nested inside the postgres block. This is because the method of managing tenants is specific to postgres, and if another data layer supported multitenancy they may or may not support managing tenants in the same way.

Get Started With Postgres

Goals
In this guide we will:
	Setup AshPostgres, which includes setting up Ecto
	Add AshPostgres to the resources created in the Ash getting started guide
	Show how the various features of AshPostgres can help you work quickly and cleanly against a postgres database
	Highlight some of the more advanced features you can use when using AshPostgres.
	Point you to additional resources you may need on your journey

Things you may want to read
	Install PostgreSQL (I recommend the homebrew option for mac users)

Requirements
	A working Postgres installation, with a sufficiently permissive user
	If you would like to follow along, you will need to add begin with the Ash getting started guide

Steps
Add AshPostgres
Add the :ash_postgres dependency to your application
{:ash_postgres, "~> 1.3.2"}
Add :ash_postgres to your .formatter.exs file
[
 # import the formatter rules from `:ash_postgres`
 import_deps: [..., :ash_postgres],
 inputs: [...]
]
Create and configure your Repo
Create lib/helpdesk/repo.ex with the following contents. AshPostgres.Repo is a thin wrapper around Ecto.Repo, so see their documentation for how to use it if you need to use it directly. For standard Ash usage, all you will need to do is configure your resources to use your repo.
in lib/helpdesk/repo.ex

defmodule Helpdesk.Repo do
 use AshPostgres.Repo, otp_app: :helpdesk
end
Next we will need to create configuration files for various environments. Run the following to create the configuration files we need.
mkdir -p config
touch config/config.exs
touch config/dev.exs
touch config/runtime.exs
touch config/test.exs

Place the following contents in those files, ensuring that the credentials match the user you created for your database. For most conventional installations this will work out of the box. If you've followed other guides before this one, they may have had you create these files already, so just make sure these contents are there.
in config/config.exs
import Config

This should already have been added in the first
getting started guide
config :helpdesk,
 ash_apis: [Helpdesk.Support]

config :helpdesk,
 ecto_repos: [Helpdesk.Repo]

Import environment specific config. This must remain at the bottom
of this file so it overrides the configuration defined above.
import_config "#{config_env()}.exs"
in config/dev.exs

import Config

Configure your database
config :helpdesk, Helpdesk.Repo,
 username: "postgres",
 password: "postgres",
 hostname: "localhost",
 database: "helpdesk_dev",
 port: 5432,
 show_sensitive_data_on_connection_error: true,
 pool_size: 10
in config/runtime.exs

import Config

if config_env() == :prod do
 database_url =
 System.get_env("DATABASE_URL") ||
 raise """
 environment variable DATABASE_URL is missing.
 For example: ecto://USER:PASS@HOST/DATABASE
 """

 config :helpdesk, Helpdesk.Repo,
 url: database_url,
 pool_size: String.to_integer(System.get_env("POOL_SIZE") || "10")
end
in config/test.exs

import Config

Configure your database
#
The MIX_TEST_PARTITION environment variable can be used
to provide built-in test partitioning in CI environment.
Run `mix help test` for more information.
config :helpdesk, Helpdesk.Repo,
 username: "postgres",
 password: "postgres",
 hostname: "localhost",
 database: "helpdesk_test#{System.get_env("MIX_TEST_PARTITION")}",
 pool: Ecto.Adapters.SQL.Sandbox,
 pool_size: 10
And finally, add the repo to your application
in lib/helpdesk/application.ex

 def start(_type, _args) do
 children = [
 # Starts a worker by calling: Helpdesk.Worker.start_link(arg)
 # {Helpdesk.Worker, arg}
 Helpdesk.Repo
]

 ...
Add AshPostgres to our resources
Now we can add the data layer to our resources. The basic configuration for a resource requires the d:AshPostgres.postgres|table and the d:AshPostgres.postgres|repo.
in lib/helpdesk/support/resources/ticket.ex

 use Ash.Resource,
 data_layer: AshPostgres.DataLayer

 postgres do
 table "tickets"
 repo Helpdesk.Repo
 end
in lib/helpdesk/support/resources/representative.ex

 use Ash.Resource,
 data_layer: AshPostgres.DataLayer

 postgres do
 table "representatives"
 repo Helpdesk.Repo
 end
Create the database and tables
First, we'll create the database with mix ash_postgres.create.
Then we will generate database migrations. This is one of the many ways that AshPostgres can save time and reduce complexity.
mix ash_postgres.generate_migrations --name add_tickets_and_representatives

If you are unfamiliar with database migrations, it is a good idea to get a rough idea of what they are and how they work. See the links at the bottom of this guide for more. A rough overview of how migrations work is that each time you need to make changes to your database, they are saved as small, reproducible scripts that can be applied in order. This is necessary both for clean deploys as well as working with multiple developers making changes to the structure of a single database.
Typically, you need to write these by hand. AshPostgres, however, will store snapshots each time you run the command to generate migrations and will figure out what migrations need to be created.
You should always look at the generated migrations to ensure that they look correct. Do so now by looking at the generated file in priv/repo/migrations.
Finally, we will apply the generated migrations to our local database:
mix ash_postgres.migrate

Try it out
And now we're ready to try it out! Run the following in iex:
Lets create some data. We'll make a representative and give them some open and some closed tickets.
require Ash.Query

representative = (
 Helpdesk.Support.Representative
 |> Ash.Changeset.for_create(:create, %{name: "Joe Armstrong"})
 |> Helpdesk.Support.create!()
)

for i <- 0..5 do
 ticket =
 Helpdesk.Support.Ticket
 |> Ash.Changeset.for_create(:open, %{subject: "Issue #{i}"})
 |> Helpdesk.Support.create!()
 |> Ash.Changeset.for_update(:assign, %{representative_id: representative.id})
 |> Helpdesk.Support.update!()

 if rem(i, 2) == 0 do
 ticket
 |> Ash.Changeset.for_update(:close)
 |> Helpdesk.Support.update!()
 end
end
And now we can read that data. You should see some debug logs that show the sql queries AshPostgres is generating.
require Ash.Query

Show the tickets where the subject contains "2"
Helpdesk.Support.Ticket
|> Ash.Query.filter(contains(subject, "2"))
|> Helpdesk.Support.read!()
require Ash.Query

Show the tickets that are closed and their subject does not contain "4"
Helpdesk.Support.Ticket
|> Ash.Query.filter(status == :closed and not(contains(subject, "4")))
|> Helpdesk.Support.read!()
And, naturally, now that we are storing this in postgres, this database is persisted even if we stop/start our application. The nice thing, however, is that this was the exact same code that we ran against our resources when they were backed by ETS.
Aggregates
Lets add some aggregates to our representatives resource. Aggregates are a tool to include grouped up data about relationships. You can read more about them in the Aggregates guide.
Here we will add an aggregate to easily query how many tickets are assigned to a representative, and how many of those tickets are open/closed.
in lib/helpdesk/support/resources/representative.ex

 aggregates do
 # The first argument here is the name of the aggregate
 # The second is the relationship
 count :total_tickets, :tickets

 count :open_tickets, :tickets do
 # Here we add a filter over the data that we are aggregating
 filter expr(status == :open)
 end

 count :closed_tickets, :tickets do
 filter expr(status == :closed)
 end
 end
Aggregates are powerful because they will be translated to SQL, and can be used in filters and sorts. For example:
in iex

require Ash.Query

Helpdesk.Support.Representative
|> Ash.Query.filter(closed_tickets < 4)
|> Ash.Query.sort(closed_tickets: :desc)
|> Helpdesk.Support.read!()
You can also load individual aggregates on demand after queries have already been run, and minimal SQL will be issued to run the aggregate.
in iex

require Ash.Query

Helpdesk.Support.Representative
|> Ash.Query.filter(closed_tickets < 4)
|> Ash.Query.sort(closed_tickets: :desc)
|> Helpdesk.Support.read!()

tickets = Helpdesk.Support.read!(Helpdesk.Support.Representative)

Helpdesk.Support.load!(tickets, :open_tickets)
Calculations
Calculations can be pushed down into SQL in the same way. Calculations are similar to aggregates, except they work on individual records. They can, however, refer to calculations on the resource, which opens up powerful possibilities with very simple code.
For example, we can determine the percentage of tickets that are open:
in lib/helpdesk/support/resources/representative.ex

 calculations do
 calculate :percent_open, :float, expr(open_tickets / total_tickets)
 end
Calculations can be loaded and used in the same way as aggregates.
require Ash.Query

Helpdesk.Support.Representative
|> Ash.Query.filter(percent_open > 0.25)
|> Ash.Query.sort(:percent_open)
|> Ash.Query.load(:percent_open)
|> Helpdesk.Support.read!()
Rich Configuration Options
Take a look at the DSL documentation for more information on what you can configure. You can add check constraints, configure the behavior of foreign keys, use postgres schemas with Ash's multitenancy feature, and more!
What next?
	Check out the data layer docs: AshPostgres.DataLayer

	Ecto's documentation. AshPostgres (and much of Ash itself) is made possible by the amazing Ecto. If you find yourself looking for escape hatches when using Ash or ways to work directly with your database, you will want to know how Ecto works. Ash and AshPostgres intentionally do not hide Ecto, and in fact encourages its use whenever you need an escape hatch.

	Postgres' documentation. Although AshPostgres makes things a lot easier, you generally can't get away with not understanding the basics of postgres and SQL.

	Ecto's Migration documentation read more about migrations. Even with the ash_postgres migration generator, you will very likely need to modify your own migrations some day.

AshPostgres.DataLayer

A postgres data layer that leverages Ecto's postgres capabilities.
DSL Documentation
Index
	postgres	custom_indexes	index

	custom_statements	statement

	manage_tenant
	references	reference

	check_constraints	check_constraint

Docs
postgres
Postgres data layer configuration
	custom_indexes	index

	custom_statements	statement

	manage_tenant
	references	reference

	check_constraints	check_constraint

Examples:
postgres do
 repo MyApp.Repo
 table "organizations"
end

	:repo (atom/0) - Required. The repo that will be used to fetch your data. See the AshPostgres.Repo documentation for more

	:migrate? (boolean/0) - Whether or not to include this resource in the generated migrations with mix ash.generate_migrations The default value is true.

	:migration_types (keyword/0) - A keyword list of attribute names to the ecto migration type that should be used for that attribute. Only necessary if you need to override the defaults. The default value is [].

	:migration_defaults (keyword/0) - A keyword list of attribute names to the ecto migration default that should be used for that attribute. Only necessary if you need to override the defaults.
The string you use will be placed verbatim in the migration. Use fragments like fragment(\\"now()\\"), or for nil, use \\"nil\\". The default value is [].

	:base_filter_sql (String.t/0) - A raw sql version of the base_filter, e.g representative = true. Required if trying to create a unique constraint on a resource with a base_filter

	:skip_unique_indexes - Skip generating unique indexes when generating migrations The default value is false.

	:unique_index_names (term/0) - A list of unique index names that could raise errors, or an mfa to a function that takes a changeset
and returns the list. Must be in the format {[:affected, :keys], "name_of_constraint"} or {[:affected, :keys], "name_of_constraint", "custom error message"}
Note that this is not used to rename the unique indexes created from identities.
Use identity_index_names for that. This is used to tell ash_postgres about unique indexes that
exist in the database that it didn't create. The default value is [].

	:exclusion_constraint_names (term/0) - A list of exclusion constraint names that could raise errors. Must be in the format {:affected_key, "name_of_constraint"} or {:affected_key, "name_of_constraint", "custom error message"} The default value is [].

	:identity_index_names (term/0) - A keyword list of identity names to the unique index name that they should use when being managed by the migration
generator. The default value is [].

	:foreign_key_names (term/0) - A list of foreign keys that could raise errors, or an mfa to a function that takes a changeset and returns the list.
Must be in the format {:key, "name_of_constraint"} or {:key, "name_of_constraint", "custom error message"} The default value is [].

	:migration_ignore_attributes (list of atom/0) - A list of attributes that will be ignored when generating migrations. The default value is [].

	:table (String.t/0) - The table to store and read the resource from. Required unless polymorphic? is true.
If this is changed, the migration generator will not remove the old table.

	:schema (String.t/0) - The schema that the table is located in.
Multitenancy supersedes this, so this acts as the schema in the cases that global?: true is set.
If this is changed, the migration generator will not remove the old table in the old schema.

	:polymorphic? (boolean/0) - Declares this resource as polymorphic.
Polymorphic resources cannot be read or updated unless the table is provided in the query/changeset context.
For example:
PolymorphicResource
|> Ash.Query.set_context(%{data_layer: %{table: "table"}})
|> MyApi.read!()
When relating to polymorphic resources, you'll need to use the context option on relationships,
e.g
belongs_to :polymorphic_association, PolymorphicResource,
 context: %{data_layer: %{table: "table"}} The default value is `false`.

custom_indexes
A section for configuring indexes to be created by the migration generator.
In general, prefer to use identities for simple unique constraints. This is a tool to allow
for declaring more complex indexes.
	index

Examples:
custom_indexes do
 index [:column1, :column2], unique: true, where: "thing = TRUE"
end

index
Add an index to be managed by the migration generator.
Examples:
index ["column", "column2"], unique: true, where: "thing = TRUE"
	:fields - The fields to include in the index.

	:name (String.t/0) - the name of the index. Defaults to "#{table}_#{column}_index".

	:unique (boolean/0) - indicates whether the index should be unique. The default value is false.

	:concurrently (boolean/0) - indicates whether the index should be created/dropped concurrently. The default value is false.

	:using (String.t/0) - configures the index type.

	:prefix (String.t/0) - specify an optional prefix for the index.

	:where (String.t/0) - specify conditions for a partial index.

	:message (String.t/0) - A custom message to use for unique indexes that have been violated

	:include (list of String.t/0) - specify fields for a covering index. This is not supported by all databases. For more information on PostgreSQL support, please read the official docs.

custom_statements
A section for configuring custom statements to be added to migrations.
Changing custom statements may require manual intervention, because Ash can't determine what order they should run
in (i.e if they depend on table structure that you've added, or vice versa). As such, any down statements we run
for custom statements happen first, and any up statements happen last.
Additionally, when changing a custom statement, we must make some assumptions, i.e that we should migrate
the old structure down using the previously configured down and recreate it.
This may not be desired, and so what you may end up doing is simply modifying the old migration and deleting whatever was
generated by the migration generator. As always: read your migrations after generating them!
	statement

Examples:
custom_statements do
 # the name is used to detect if you remove or modify the statement
 custom_statement :pgweb_idx do
 up "CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english', title || ' ' || body));"
 down "DROP INDEX pgweb_idx;"
 end
end

statement
Add a custom statement for migrations.
Examples:
statement :pgweb_idx do
 up "CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english', title || ' ' || body));"
 down "DROP INDEX pgweb_idx;"
end

	:name (atom/0) - Required. The name of the statement, must be unique within the resource

	:code? (boolean/0) - Whether the provided up/down should be treated as code or sql strings.
By default, we place the strings inside of ecto migration's execute/1
function and assume they are sql. Use this option if you want to provide custom
elixir code to be placed directly in the migrations The default value is false.

	:up (String.t/0) - Required. How to create the structure of the statement

	:down (String.t/0) - Required. How to tear down the structure of the statement

manage_tenant
Configuration for the behavior of a resource that manages a tenant
Examples:
manage_tenant do
 template ["organization_", :id]
 create? true
 update? false
end

	:template - Required. A template that will cause the resource to create/manage the specified schema.
Use this if you have a resource that, when created, it should create a new tenant
for you. For example, if you have a customer resource, and you want to create
a schema for each customer based on their id, e.g customer_10 set this option
to ["customer_", :id]. Then, when this is created, it will create a schema called
["customer_", :id], and run your tenant migrations on it. Then, if you were to change
that customer's id to 20, it would rename the schema to customer_20. Generally speaking
you should avoid changing the tenant id.

	:create? (boolean/0) - Whether or not to automatically create a tenant when a record is created The default value is true.

	:update? (boolean/0) - Whether or not to automatically update the tenant name if the record is udpated The default value is true.

references
A section for configuring the references (foreign keys) in resource migrations.
This section is only relevant if you are using the migration generator with this resource.
Otherwise, it has no effect.
	reference

Examples:
references do
 reference :post, on_delete: :delete, on_update: :update, name: "comments_to_posts_fkey"
end

	:polymorphic_on_delete - For polymorphic resources, configures the on_delete behavior of the automatically generated foreign keys to source tables.

	:polymorphic_on_update - For polymorphic resources, configures the on_update behavior of the automatically generated foreign keys to source tables.

	:polymorphic_name - For polymorphic resources, configures the on_update behavior of the automatically generated foreign keys to source tables.

reference
Configures the reference for a relationship in resource migrations.
Keep in mind that multiple relationships can theoretically involve the same destination and foreign keys.
In those cases, you only need to configure the reference behavior for one of them. Any conflicts will result
in an error, across this resource and any other resources that share a table with this one. For this reason,
instead of adding a reference configuration for :nothing, its best to just leave the configuration out, as that
is the default behavior if no relationship anywhere has configured the behavior of that reference.
Examples:
reference :post, on_delete: :delete, on_update: :update, name: "comments_to_posts_fkey"
	:relationship (atom/0) - Required. The relationship to be configured

	:ignore? (boolean/0) - If set to true, no reference is created for the given relationship. This is useful if you need to define it in some custom way

	:on_delete - What should happen to records of this resource when the referenced record of the destination resource is deleted.
The difference between :nothing and :restrict is subtle and, if you are unsure, choose :nothing (the default behavior).
:restrict will prevent the deletion from happening before the end of the database transaction, whereas :nothing allows the
transaction to complete before doing so. This allows for things like deleting the destination row and then deleting the source
row.
Important!
 No resource logic is applied with this operation! No authorization rules or validations take place, and no notifications are issued.
 This operation happens directly in the database.
 This option is called on_delete, instead of on_destroy, because it is hooking into the database level deletion, not
 a destroy action in your resource.

	:on_update - What should happen to records of this resource when the referenced destination_attribute of the destination record is update.
The difference between :nothing and :restrict is subtle and, if you are unsure, choose :nothing (the default behavior).
:restrict will prevent the deletion from happening before the end of the database transaction, whereas :nothing allows the
transaction to complete before doing so. This allows for things like updating the destination row and then updating the reference
as long as you are in a transaction.
Important!
 No resource logic is applied with this operation! No authorization rules or validations take place, and no notifications are issued.
 This operation happens directly in the database.

	:name (String.t/0) - The name of the foreign key to generate in the database. Defaults to <table>_<source_attribute>_fkey

check_constraints
A section for configuring the check constraints for a given table.
This can be used to automatically create those check constraints, or just to provide message when they are raised
	check_constraint

Examples:
check_constraints do
 check_constraint :price, "price_must_be_positive", check: "price > 0", message: "price must be positive"
end

check_constraint
Add a check constraint to be validated.
If a check constraint exists on the table but not in this section, and it produces an error, a runtime error will be raised.
Provide a list of attributes instead of a single attribute to add the message to multiple attributes.
By adding the check option, the migration generator will include it when generating migrations.
Examples:
check_constraint :price, "price_must_be_positive", check: "price > 0", message: "price must be positive"

	:attribute (term/0) - Required. The attribute or list of attributes to which an error will be added if the check constraint fails

	:name (String.t/0) - Required. The name of the constraint

	:message (String.t/0) - The message to be added if the check constraint fails

	:check (String.t/0) - The contents of the check. If this is set, the migration generator will include it when generating migrations

 Anchor for this section

 Summary

 Functions

 from_ecto(other)

 to_ecto(value)

 Anchor for this section

Functions

 Link to this function

 from_ecto(other)

 View Source

 Link to this function

 to_ecto(value)

 View Source

AshPostgres.Repo behaviour

Resources that use AshPostgres.DataLayer use a Repo to access the database.
This repo is a thin wrapper around an Ecto.Repo.
You can use Ecto.Repo's init/2 to configure your repo like normal, but
instead of returning {:ok, config}, use super(config) to pass the
configuration to the AshPostgres.Repo implementation.
Installed Extensions
To configure your list of installed extensions, define installed_extensions/0
Extensions that are relevant to ash_postgres:
	"ash-functions" - This isn't really an extension, but it expresses that certain functions
should be added when generating migrations, to support the || and && operators in expressions.
	"uuid-ossp" - Sets UUID primary keys defaults in the migration generator
	"pg_trgm" - Makes the AshPostgres.Predicates.Trigram custom predicate available
	"citext" - Allows case insensitive fields to be used

def installed_extensions() do
 ["pg_trgm", "uuid-ossp"]
end
Transaction Hooks
You can define on_transaction_begin/1, which will be invoked whenever a transaction is started for Ash.
This will be invoked with a map containing a type key and metadata.
%{type: :create, %{resource: YourApp.YourResource, action: :action}}

 Anchor for this section

 Summary

 Callbacks

 all_tenants()

 Return a list of all schema names (only relevant for a multitenant implementation)

 default_prefix()

 The default prefix(postgres schema) to use when building queries

 installed_extensions()

 Use this to inform the data layer about what extensions are installed

 migrations_path()

 The path where your migrations are stored

 min_pg_version()

 Use this to inform the data layer about the oldest potential postgres version it will be run on.

 on_transaction_begin(reason)

 override_migration_type(atom)

 Allows overriding a given migration type for all fields, for example if you wanted to always use :timestamptz for :utc_datetime fields

 tenant_migrations_path()

 The path where your tenant migrations are stored (only relevant for a multitenant implementation)

 Anchor for this section

Callbacks

 Link to this callback

 all_tenants()

 View Source

 @callback all_tenants() :: [String.t()]

Return a list of all schema names (only relevant for a multitenant implementation)

 Link to this callback

 default_prefix()

 View Source

 @callback default_prefix() :: String.t()

The default prefix(postgres schema) to use when building queries

 Link to this callback

 installed_extensions()

 View Source

 @callback installed_extensions() :: [String.t()]

Use this to inform the data layer about what extensions are installed

 Link to this callback

 migrations_path()

 View Source

 @callback migrations_path() :: String.t()

The path where your migrations are stored

 Link to this callback

 min_pg_version()

 View Source

 @callback min_pg_version() :: integer()

Use this to inform the data layer about the oldest potential postgres version it will be run on.
Must be an integer greater than or equal to 13.

 Link to this callback

 on_transaction_begin(reason)

 View Source

 @callback on_transaction_begin(reason :: Ash.DataLayer.transaction_reason()) :: term()

 Link to this callback

 override_migration_type(atom)

 View Source

 @callback override_migration_type(atom()) :: atom()

Allows overriding a given migration type for all fields, for example if you wanted to always use :timestamptz for :utc_datetime fields

 Link to this callback

 tenant_migrations_path()

 View Source

 @callback tenant_migrations_path() :: String.t()

The path where your tenant migrations are stored (only relevant for a multitenant implementation)

AshPostgres.DataLayer.Info

Introspection functions for

 Anchor for this section

 Summary

 Functions

 base_filter_sql(resource)

 A stringified version of the base_filter, to be used in a where clause when generating unique indexes

 check_constraints(resource)

 The configured check_constraints for a resource

 custom_indexes(resource)

 The configured custom_indexes for a resource

 custom_statements(resource)

 The configured custom_statements for a resource

 exclusion_constraint_names(resource)

 The configured exclusion_constraint_names

 foreign_key_names(resource)

 The configured foreign_key_names

 identity_index_names(resource)

 The configured identity_index_names

 manage_tenant_create?(resource)

 Whether or not to create a tenant for a given resource

 manage_tenant_template(resource)

 The template for a managed tenant

 manage_tenant_update?(resource)

 Whether or not to update a tenant for a given resource

 migrate?(resource)

 Whether or not the resource should be included when generating migrations

 migration_defaults(resource)

 A keyword list of customized migration defaults

 migration_ignore_attributes(resource)

 A list of attributes to be ignored when generating migrations

 migration_types(resource)

 A keyword list of customized migration types

 polymorphic_name(resource)

 The configured polymorphic_reference_name for a resource

 polymorphic_on_delete(resource)

 The configured polymorphic_reference_on_delete for a resource

 polymorphic_on_update(resource)

 The configured polymorphic_reference_on_update for a resource

 polymorphic?(resource)

 The configured polymorphic? for a resource

 references(resource)

 The configured references for a resource

 repo(resource)

 The configured repo for a resource

 schema(resource)

 The configured schema for a resource

 skip_identities(resource)

 Identities not to include in the migrations

 skip_unique_indexes(resource)

 Skip generating unique indexes when generating migrations

 table(resource)

 The configured table for a resource

 unique_index_names(resource)

 The configured unique_index_names

 Anchor for this section

Functions

 Link to this function

 base_filter_sql(resource)

 View Source

A stringified version of the base_filter, to be used in a where clause when generating unique indexes

 Link to this function

 check_constraints(resource)

 View Source

The configured check_constraints for a resource

 Link to this function

 custom_indexes(resource)

 View Source

The configured custom_indexes for a resource

 Link to this function

 custom_statements(resource)

 View Source

The configured custom_statements for a resource

 Link to this function

 exclusion_constraint_names(resource)

 View Source

The configured exclusion_constraint_names

 Link to this function

 foreign_key_names(resource)

 View Source

The configured foreign_key_names

 Link to this function

 identity_index_names(resource)

 View Source

The configured identity_index_names

 Link to this function

 manage_tenant_create?(resource)

 View Source

Whether or not to create a tenant for a given resource

 Link to this function

 manage_tenant_template(resource)

 View Source

The template for a managed tenant

 Link to this function

 manage_tenant_update?(resource)

 View Source

Whether or not to update a tenant for a given resource

 Link to this function

 migrate?(resource)

 View Source

Whether or not the resource should be included when generating migrations

 Link to this function

 migration_defaults(resource)

 View Source

A keyword list of customized migration defaults

 Link to this function

 migration_ignore_attributes(resource)

 View Source

A list of attributes to be ignored when generating migrations

 Link to this function

 migration_types(resource)

 View Source

A keyword list of customized migration types

 Link to this function

 polymorphic_name(resource)

 View Source

The configured polymorphic_reference_name for a resource

 Link to this function

 polymorphic_on_delete(resource)

 View Source

The configured polymorphic_reference_on_delete for a resource

 Link to this function

 polymorphic_on_update(resource)

 View Source

The configured polymorphic_reference_on_update for a resource

 Link to this function

 polymorphic?(resource)

 View Source

The configured polymorphic? for a resource

 Link to this function

 references(resource)

 View Source

The configured references for a resource

 Link to this function

 repo(resource)

 View Source

The configured repo for a resource

 Link to this function

 schema(resource)

 View Source

The configured schema for a resource

 Link to this function

 skip_identities(resource)

 View Source

Identities not to include in the migrations

 Link to this function

 skip_unique_indexes(resource)

 View Source

Skip generating unique indexes when generating migrations

 Link to this function

 table(resource)

 View Source

The configured table for a resource

 Link to this function

 unique_index_names(resource)

 View Source

The configured unique_index_names

AshPostgres.Functions.Fragment

A function that maps to ecto's fragment function
https://hexdocs.pm/ecto/Ecto.Query.API.html#fragment/1

 Anchor for this section

 Summary

 Functions

 args()

 casted_new(list)

 eager_evaluate?()

 evaluate(_)

 name()

 new(args)

 predicate?()

 private?()

 Anchor for this section

Functions

 Link to this function

 args()

 View Source

 Link to this function

 casted_new(list)

 View Source

 Link to this function

 eager_evaluate?()

 View Source

 Link to this function

 evaluate(_)

 View Source

 Link to this function

 name()

 View Source

 Link to this function

 new(args)

 View Source

 Link to this function

 predicate?()

 View Source

 Link to this function

 private?()

 View Source

AshPostgres.Functions.TrigramSimilarity

Maps to the builtin postgres trigram similarity function. Requires pgtrgm extension to be installed.
See the postgres docs on trigram for more information.
Requires the pg_trgm extension. Configure which extensions you have installed in your AshPostgres.Repo
Example

filter(query, trigram_similarity(name, "geoff") > 0.4)

 Anchor for this section

 Summary

 Functions

 args()

 eager_evaluate?()

 evaluate(_)

 name()

 new(args)

 predicate?()

 private?()

 Anchor for this section

Functions

 Link to this function

 args()

 View Source

 Link to this function

 eager_evaluate?()

 View Source

 Link to this function

 evaluate(_)

 View Source

 Link to this function

 name()

 View Source

 Link to this function

 new(args)

 View Source

 Link to this function

 predicate?()

 View Source

 Link to this function

 private?()

 View Source

AshPostgres.CustomAggregate behaviour

A custom aggregate implementation for ecto.

 Anchor for this section

 Summary

 Callbacks

 dynamic(opts, binding)

 The dynamic expression to create the aggregate.

 Anchor for this section

Callbacks

 Link to this callback

 dynamic(opts, binding)

 View Source

 @callback dynamic(opts :: Keyword.t(), binding :: integer()) :: Ecto.Query.dynamic()

The dynamic expression to create the aggregate.
The binding refers to the resource being aggregated,
use as(^binding) to reference it.
For example:
Ecto.Query.dynamic(
 [],
 fragment("string_agg(?, ?)", field(as(^binding), ^opts[:field]), ^opts[:delimiter])
)

AshPostgres.Migration

Utilities for use in migrations

 Anchor for this section

 Summary

 Functions

 create_enum(type)

 A utility for creating postgres enums for an Ash enum type.

 drop_enum(type)

 Anchor for this section

Functions

 Link to this function

 create_enum(type)

 View Source

A utility for creating postgres enums for an Ash enum type.
In your migration, you can say:
def up() do
 AshPostgres.Migration.create_enum(MyEnumType)
end
Attribution:
This code and example was copied from ecto_enum. I didn't use the library itself
because it has a lot that would not currently be relevant for Ash.
https://github.com/gjaldon/ecto_enum
Must be done manually, as the migration generator will not do it.
Additionally, altering the type must be done in its own, separate migration, which
must have @disable_ddl_transaction true, as you cannot do this operation
in a transaction.
For example:
defmodule MyApp.Repo.Migrations.AddToGenderEnum do
 use Ecto.Migration
 @disable_ddl_transaction true

 def up do
 Ecto.Migration.execute "ALTER TYPE gender ADD VALUE IF NOT EXISTS 'other'"
 end

 def down do
 ...
 end
end
Keep in mind, that if you want to create a custom enum type, you will want to add
def storage_type, do: :my_type_name

 Link to this function

 drop_enum(type)

 View Source

EctoMigrationDefault protocol

Allows configuring how values are translated to default values in migrations.
Still a work in progress, but covers most standard values aside from maps.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 to_default(value)

 Returns the text (elixir code) that will be placed into a migration as the default value

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: term()

 Anchor for this section

Functions

 Link to this function

 to_default(value)

 View Source

Returns the text (elixir code) that will be placed into a migration as the default value

AshPostgres.Transformers.EnsureTableOrPolymorphic

Ensures that there is a table configured or the resource is polymorphic

 Anchor for this section

 Summary

 Functions

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 after?(_)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Anchor for this section

Functions

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 after?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

AshPostgres.Transformers.PreventMultidimensionalArrayAggregates

Prevents at compile time certain aggregates that are unsupported by AshPostgres

 Anchor for this section

 Summary

 Functions

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 after?(_)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Anchor for this section

Functions

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 after?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

AshPostgres.Transformers.ValidateReferences

Ensures that all references on a resource refer to a real relationship

 Anchor for this section

 Summary

 Functions

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 after?(_)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Anchor for this section

Functions

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 after?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

AshPostgres.Transformers.VerifyRepo

Verifies that the repo is configured correctly

 Anchor for this section

 Summary

 Functions

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 after?(_)

 Callback implementation for Spark.Dsl.Transformer.after?/1.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 transform(dsl)

 Callback implementation for Spark.Dsl.Transformer.transform/1.

 Anchor for this section

Functions

 Link to this function

 after_compile?()

 View Source

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 Link to this function

 after?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.after?/1.

 Link to this function

 before?(_)

 View Source

Callback implementation for Spark.Dsl.Transformer.before?/1.

 Link to this function

 transform(dsl)

 View Source

Callback implementation for Spark.Dsl.Transformer.transform/1.

AshPostgres.Functions.ILike

Maps to the builtin postgres function ilike.

 Anchor for this section

 Summary

 Functions

 args()

 eager_evaluate?()

 evaluate(_)

 name()

 new(args)

 predicate?()

 private?()

 Anchor for this section

Functions

 Link to this function

 args()

 View Source

 Link to this function

 eager_evaluate?()

 View Source

 Link to this function

 evaluate(_)

 View Source

 Link to this function

 name()

 View Source

 Link to this function

 new(args)

 View Source

 Link to this function

 predicate?()

 View Source

 Link to this function

 private?()

 View Source

AshPostgres.Functions.Like

Maps to the builtin postgres function like.

 Anchor for this section

 Summary

 Functions

 args()

 eager_evaluate?()

 evaluate(_)

 name()

 new(args)

 predicate?()

 private?()

 Anchor for this section

Functions

 Link to this function

 args()

 View Source

 Link to this function

 eager_evaluate?()

 View Source

 Link to this function

 evaluate(_)

 View Source

 Link to this function

 name()

 View Source

 Link to this function

 new(args)

 View Source

 Link to this function

 predicate?()

 View Source

 Link to this function

 private?()

 View Source

AshPostgres.ManualRelationship behaviour

A behavior for postgres-specific manual relationship functionality

 Anchor for this section

 Summary

 Callbacks

 ash_postgres_join(
 source_query,
 opts,
 current_binding,
 destination_binding,
 type,
 destination_query
)

 ash_postgres_subquery(
 opts,
 current_binding,
 destination_binding,
 destination_query
)

 Anchor for this section

Callbacks

 Link to this callback

 ash_postgres_join(
 source_query,
 opts,
 current_binding,
 destination_binding,
 type,
 destination_query
)

 View Source

 @callback ash_postgres_join(
 source_query :: Ecto.Query.t(),
 opts :: Keyword.t(),
 current_binding :: term(),
 destination_binding :: term(),
 type :: :inner | :left,
 destination_query :: Ecto.Query.t()
) :: {:ok, Ecto.Query.t()} | {:error, term()}

 Link to this callback

 ash_postgres_subquery(
 opts,
 current_binding,
 destination_binding,
 destination_query
)

 View Source

 @callback ash_postgres_subquery(
 opts :: Keyword.t(),
 current_binding :: term(),
 destination_binding :: term(),
 destination_query :: Ecto.Query.t()
) :: {:ok, Ecto.Query.t()} | {:error, term()}

mix ash_postgres.create

Create the storage for repos in all resources for the given (or configured) apis.
Examples
mix ash_postgres.create
mix ash_postgres.create --apis MyApp.Api1,MyApp.Api2
Command line options
	--apis - the apis who's repos you want to migrate.
	--quiet - do not log output
	--no-compile - do not compile before creating
	--no-deps-check - do not compile before creating

mix ash_postgres.drop

Drop the storage for the given repository.
Examples
mix ash_postgres.drop
mix ash_postgres.drop -r MyApp.Api1,MyApp.Api2
Command line options
	--apis - the apis who's repos should be dropped
	-q, --quiet - run the command quietly
	-f, --force - do not ask for confirmation when dropping the database.
Configuration is asked only when :start_permanent is set to true
(typically in production)
	--force-drop - force the database to be dropped even
if it has connections to it (requires PostgreSQL 13+)
	--no-compile - do not compile before dropping
	--no-deps-check - do not compile before dropping

mix ash_postgres.generate_migrations

Generates migrations, and stores a snapshot of your resources.
Options:
	apis - a comma separated list of API modules, for which migrations will be generated
	snapshot-path - a custom path to store the snapshots, defaults to "priv/resource_snapshots"
	migration-path - a custom path to store the migrations, defaults to "priv".
Migrations are stored in a folder for each repo, so priv/repo_name/migrations
	tenant-migration-path - Same as migration_path, except for any tenant specific migrations
	drop-columns - whether or not to drop columns as attributes are removed. See below for more
	name -
 names the generated migrations, prepending with the timestamp. The default is migrate_resources_<n>,
 where <n> is the count of migrations matching *migrate_resources* plus one.
 For example, --name add_special_column would get a name like 20210708181402_add_special_column.exs

Flags:
	quiet - messages for file creations will not be printed
	no-format - files that are created will not be formatted with the code formatter
	dry-run - no files are created, instead the new migration is printed
	check - no files are created, returns an exit(1) code if the current snapshots and resources don't fit

Snapshots
Snapshots are stored in a folder for each table that migrations are generated for. Each snapshot is
stored in a file with a timestamp of when it was generated.
This is important because it allows for simultaneous work to be done on separate branches, and for rolling back
changes more easily, e.g removing a generated migration, and deleting the most recent snapshot, without having to redo
all of it
Dropping columns
Generally speaking, it is bad practice to drop columns when you deploy a change that
would remove an attribute. The main reasons for this are backwards compatibility and rolling restarts.
If you deploy an attribute removal, and run migrations. Regardless of your deployment sstrategy, you
won't be able to roll back, because the data has been deleted. In a rolling restart situation, some of
the machines/pods/whatever may still be running after the column has been deleted, causing errors. With
this in mind, its best not to delete those columns until later, after the data has been confirmed unnecessary.
To that end, the migration generator leaves the column dropping code commented. You can pass --drop_columns
to tell it to uncomment those statements. Additionally, you can just uncomment that code on a case by case
basis.
Conflicts/Multiple Resources
The migration generator can support multiple schemas using the same table.
It will raise on conflicts that it can't resolve, like the same field with different
types. It will prompt to resolve conflicts that can be resolved with human input.
For example, if you remove an attribute and add an attribute, it will ask you if you are renaming
the column in question. If not, it will remove one column and add the other.
Additionally, it lowers things to the database where possible:
Defaults
There are three anonymous functions that will translate to database-specific defaults currently:
	&Ash.UUID.generate/0 - Only if uuid-ossp is in your c:AshPostgres.Repo.installed_extensions()
	&Ecto.UUID.generate/0 - Only if uuid-ossp is in your c:AshPostgres.Repo.installed_extensions()
	&DateTime.utc_now/0

Non-function default values will be dumped to their native type and inspected. This may not work for some types,
and may require manual intervention/patches to the migration generator code.
Identities
Identities will cause the migration generator to generate unique constraints. If multiple
resources target the same table, you will be asked to select the primary key, and any others
will be added as unique constraints.

 Anchor for this section

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Anchor for this section

Functions

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

mix ash_postgres.migrate

Runs the pending migrations for the given repository.
Migrations are expected at "priv/YOUR_REPO/migrations" directory
of the current application (or tenant_migrations for multitenancy),
where "YOUR_REPO" is the last segment
in your repository name. For example, the repository MyApp.Repo
will use "priv/repo/migrations". The repository Whatever.MyRepo
will use "priv/my_repo/migrations".
This task runs all pending migrations by default. To migrate up to a
specific version number, supply --to version_number. To migrate a
specific number of times, use --step n.
This is only really useful if your api or apis only use a single repo.
If you have multiple repos and you want to run a single migration and/or
migrate/roll them back to different points, you will need to use the
ecto specific task, mix ecto.migrate and provide your repo name.
If a repository has not yet been started, one will be started outside
your application supervision tree and shutdown afterwards.
Examples
mix ash_postgres.migrate
mix ash_postgres.migrate --apis MyApp.Api1,MyApp.Api2

mix ash_postgres.migrate -n 3
mix ash_postgres.migrate --step 3

mix ash_postgres.migrate --to 20080906120000
Command line options
	--apis - the apis who's repos should be migrated

	--tenants - Run the tenant migrations

	--only-tenants - in combo with --tenants, only runs migrations for the provided tenants, e.g tenant1,tenant2,tenant3

	--except-tenants - in combo with --tenants, does not run migrations for the provided tenants, e.g tenant1,tenant2,tenant3

	--all - run all pending migrations

	--step, -n - run n number of pending migrations

	--to - run all migrations up to and including version

	--quiet - do not log migration commands

	--prefix - the prefix to run migrations on. This is ignored if --tenants is provided.

	--pool-size - the pool size if the repository is started only for the task (defaults to 2)

	--log-sql - log the raw sql migrations are running

	--strict-version-order - abort when applying a migration with old timestamp

	--no-compile - does not compile applications before migrating

	--no-deps-check - does not check depedendencies before migrating

	--migrations-path - the path to load the migrations from, defaults to
"priv/repo/migrations". This option may be given multiple times in which case the migrations
are loaded from all the given directories and sorted as if they were in the same one.
Note, if you have migrations paths e.g. a/ and b/, and run
mix ecto.migrate --migrations-path a/, the latest migrations from a/ will be run (even
if b/ contains the overall latest migrations.)

mix ash_postgres.rollback

Reverts applied migrations in the given repository.
Migrations are expected at "priv/YOUR_REPO/migrations" directory
of the current application but it can be configured by specifying
the :priv key under the repository configuration.
Runs the latest applied migration by default. To roll back to
a version number, supply --to version_number. To roll back a
specific number of times, use --step n. To undo all applied
migrations, provide --all.
This is only really useful if your api or apis only use a single repo.
If you have multiple repos and you want to run a single migration and/or
migrate/roll them back to different points, you will need to use the
ecto specific task, mix ecto.migrate and provide your repo name.
Examples
mix ash_postgres.rollback
mix ash_postgres.rollback -r Custom.Repo
mix ash_postgres.rollback -n 3
mix ash_postgres.rollback --step 3
mix ash_postgres.rollback -v 20080906120000
mix ash_postgres.rollback --to 20080906120000
Command line options
	--apis - the apis who's repos should be rolledback
	--all - revert all applied migrations
	--step / -n - revert n number of applied migrations
	--to / -v - revert all migrations down to and including version
	--quiet - do not log migration commands
	--prefix - the prefix to run migrations on
	--pool-size - the pool size if the repository is started only for the task (defaults to 1)
	--log-sql - log the raw sql migrations are running
	--tenants - roll back tenant migrations
	--only-tenants - in combo with --tenants, only rolls back the provided tenants, e.g tenant1,tenant2,tenant3
	--except-tenants - in combo with --tenants, does not rollback the provided tenants, e.g tenant1,tenant2,tenant3

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

