

 ash_phoenix

 v1.2.11

 [image: Logo]

 Table of contents

 	Tutorials

 	Getting Started With Ash And Phoenix

 	Topics

 	Working With Phoenix

 	Modules

 	AshPhoenix.FilterForm.Arguments

 	AshPhoenix.FilterForm

 	AshPhoenix.FilterForm.Predicate

 	AshPhoenix.Form

 	AshPhoenix.Form.Auto

 	AshPhoenix.FormData.Error

 	AshPhoenix.LiveView

 	AshPhoenix.SubdomainPlug

 	AshPhoenix.Form.InvalidPath

 	AshPhoenix.Form.NoActionConfigured

 	AshPhoenix.Form.NoDataLoaded

 	AshPhoenix.Form.NoFormConfigured

 	AshPhoenix.Form.NoResourceConfigured

Get Started with Ash and Phoenix

This documentation is best viewed at ash-hq.org
Who is This For?
This is designed to be a quick start guide for Ash with Phoenix. Familiarity with Phoenix and LiveView are not necessary, but would certainly be helpful.
Goals
In this guide we will:
	Create a new Phoenix project
	Setup Ash, AshPhoenix and AshPostgres as dependencies
	Create a basic Blog.Post resource
	Create and migrate the database
	Learn how to interact with your resource
	Integrate a minimal Phoenix LiveView with Ash

Things You May Want to Read First
	Install Elixir
	Phoenix - Up and Running Guide
	Philosophy Guide

Requirements
If you want to follow along yourself, you will need the following things:
	Elixir (1.12 or later) and Erlang (22 or later) installed
	PostgreSQL installed
	A text editor
	A terminal to run the examples

Setup
Create a New Phoenix Project
This section is based on the Phoenix installation docs. For more details go there.
First we need to install the Phoenix project generator, then we'll run the generator to create our new project.
NOTE: DO NOT run mix ecto.create, (as it asks you to) we will do this the Ash way later.
install Phoenix project generator
$ mix archive.install hex phx_new

generate Phoenix project
$ mix phx.new my_ash_phoenix_app

cd into project
$ cd my_ash_phoenix_app

Add Dependencies
We now need to add Ash, AshPhoenix and AshPostgres to our Phoenix project. We need to add the dependencies to the deps function in our mix.exs. We'll also need to add dependencies to our .formatter.exs to ensure consistent formatting when using mix format.
mix.exs

 def deps do
 [
 # use `mix hex.info <library_name>` to get the latest versions of each dependency, for example, `mix hex.info phoenix`
 {:phoenix, "~> x.x"},
 # ...
 {:ash, "~> x.x"},
 {:ash_postgres, "~> x.x"},
 {:ash_phoenix, "~> x.x"}
]
 end
.formatter.exs
[
 import_deps: [:ecto, :phoenix, :ash, :ash_phoenix, :ash_postgres],
 inputs: ["*.{ex,exs}", "priv/*/seeds.exs", "{config,lib,test}/**/*.{ex,exs}"],
 subdirectories: ["priv/*/migrations"]
]
Now in the terminal install these new dependencies.
$ mix deps.get

Use AshPostgres.Repo
We need to swap Ecto.Repo for AshPostgres.Repo. AshPostgres.Repo enriches your repo with additional AshPostgres specific behaviour, but is essentially a thin wrapper around Ecto.Repo.
To use AshPostgres.Repo change your repo module to look like this:
lib/my_ash_phoenix_app/repo.ex

defmodule MyAshPhoenixApp.Repo do
 use AshPostgres.Repo, otp_app: :my_ash_phoenix_app

 # Installs Postgres extensions that ash commonly uses
 def installed_extensions do
 ["uuid-ossp", "citext"]
 end
end
Edit Config
We need to specify the Ash APIs that our application uses and some config for backwards compatibility that will be removed in the next major release.
Add this to your config:
config/config.exs

import Config

For backwards compatibility, the following configuration is required.
see https://ash-hq.org/docs/guides/ash/latest/get-started#temporary-config for more details
config :ash, :use_all_identities_in_manage_relationship?, false

config :my_ash_phoenix_app,
 ash_apis: [MyAshPhoenixApp.Blog]
Create the API and Registry
An Ash API can be thought of as a Bounded Context in Domain Driven Design terms and can seen as analogous to a Phoenix context. Put simply, its a way of grouping related resources together. In our case our API will be called MyAshPhoenixApp.Blog.
An Ash API points to an Ash registry. The registry in our case will be MyAshPhoenixApp.Blog.Registry
An Ash registry points to one or more resources. In our case we will only have a single resource MyAshPhoenixApp.Blog.Post. We'll be taking a deeper look into that in the next section.
For now take a look at the Blog API and the Blog.Registry:
lib/my_ash_phoenix_app/blog/blog.ex

defmodule MyAshPhoenixApp.Blog do
 use Ash.Api

 resources do
 registry MyAshPhoenixApp.Blog.Registry
 end
end
lib/my_ash_phoenix_app/blog/registry.ex

defmodule MyAshPhoenixApp.Blog.Registry do
 use Ash.Registry,
 extensions: [
 # This extension adds helpful compile time validations
 Ash.Registry.ResourceValidations
]

 entries do
 entry MyAshPhoenixApp.Blog.Post
 end
end
Creating Resources
Creating the Post Resource
A resource is a central concept in Ash. In short, a resource is a domain model object in your system. A resource defines the data it holds and defines the actions that can operate on that data.
It's convention to place all the resource in their own resources folder. So when we create Post we will place it in lib/my_ash_phoenix_project/blog/resources/post.ex. So the structure after making the resource should look like so:
lib/
├─ my_ash_phoenix_app/
│ ├─ blog/
│ │ ├─ blog.ex
│ │ ├─ registry.ex
│ │ ├─ resources/
│ │ │ ├─ post.ex
Below is the resource module. Read the comments carefully, every line is explained:
lib/my_ash_phoenix_app/blog/resources/post.ex

defmodule MyAshPhoenixApp.Blog.Post do
 # Using Ash.Resource turns this module into an Ash resource.
 use Ash.Resource,
 # Tells Ash you want this resource to store its data in Postgres.
 data_layer: AshPostgres.DataLayer

 # The Postgres keyword is specific to the AshPostgres module.
 postgres do
 # Tells Postgres what to call the table
 table "posts"
 # Tells Ash how to interface with the Postgres table
 repo MyAshPhoenixApp.Repo
 end

 # Defines convenience methods for
 # interacting with the resource programmatically.
 code_interface do
 define_for MyAshPhoenixApp.Blog
 define :create, action: :create
 define :read_all, action: :read
 define :update, action: :update
 define :destroy, action: :destroy
 define :get_by_id, args: [:id], action: :by_id
 end

 actions do
 # Exposes default built in actions to manage the resource
 defaults [:create, :read, :update, :destroy]

 # Defines custom read action which fetches post by id.
 read :by_id do
 # This action has one argument :id of type :uuid
 argument :id, :uuid, allow_nil?: false
 # Tells us we expect this action to return a single result
 get? true
 # Filters the `:id` given in the argument
 # against the `id` of each element in the resource
 filter expr(id == ^arg(:id))
 end
 end

 # Attributes are simple pieces of data that exist in your resource
 attributes do
 # Add an autogenerated UUID primary key called `:id`.
 uuid_primary_key :id
 # Add a string type attribute called `:title`
 attribute :title, :string do
 # We don't want the title to ever be `nil`
 allow_nil? false
 end

 # Add a string type attribute called `:content`
 # If allow_nil? is not specified, then content can be nil
 attribute :content, :string
 end
end
Creating and Migrating the Database
We have specified the resource in Ash. But we have yet to create it in our data layer (in our case Postgres).
First we need to create our database:
$ mix ash_postgres.create

The database for MyAshPhoenixApp.Repo has been created

Now we need to populate our database. We do this by generating and performing a migration.
We can use a generator to produce a migration for us. Ash can deduce what needs to go into the migration and do the hard work for us, to do this use the command below:
$ mix ash_postgres.generate_migrations --name initial_migration

... don't worry about other files it creates

Generating Migrations:
* creating priv/repo/migrations/20230208045101_initial_migration.exs

Here is the migration file commented in detail:
priv/repo/migrations/20230208045101_initial_migration.exs

defmodule MyAshPhoenixApp.Repo.Migrations.InitialMigration do
 use Ecto.Migration

 # This function runs when migrating forward
 def up do
 # Creates the `:posts` table
 create table(:posts, primary_key: false) do
 # Adds primary key attribute `:id` of type `:uuid`
 # null values are not allowed
 add :id, :uuid, null: false, default: fragment("uuid_generate_v4()"), primary_key: true

 # Adds attribute `:title` of type `:text`, null values are not allowed
 add :title, :text, null: false
 # Adds attribute `:content` of type `:text`, null values are allowed
 add :content, :text
 end
 end

 # This is the function that runs if you want to rollback the migration.
 def down do
 # Deletes the `:posts` table
 drop table(:posts)
 end
end
We can run the up/0 function which will perform the desired operations on the Postgres database. We do this with the migrate command:
$ mix ash_postgres.migrate

In case you want to drop the database and start over again during development you can use mix ash_postgres.drop followed by mix ash_postgres.create and mix ash_postgres.migrate.

Interacting with your Resources
All interaction with your resource attributes always occur through an action. In our resource we are using the default actions for :create, :read, :update, :destroy along with a custom action :by_id.
:create and :update and :destroy actions require a changeset. Ash changesets are conceptually similar to Ecto changesets. They're data structures which represent an intended change to an Ash resource and provide validation.
The :read action takes a query instead of a changeset.
Below is the most verbose way of calling your resource. All other ways of interaction are some kind of shorthand of these. This means at some point a changeset is being created and passed to the API, even if it's encapsulated within another function.
create post
new_post =
 MyAshPhoenixApp.Blog.Post
 |> Ash.Changeset.for_create(:create, %{title: "hello world"})
 |> MyAshPhoenixApp.Blog.create!()

read all posts
MyAshPhoenixApp.Blog.Post
|> Ash.Query.for_read(:read)
|> MyAshPhoenixApp.Blog.read!()

get single post by id
MyAshPhoenixApp.Blog.Post
|> Ash.Query.for_read(:by_id, %{id: new_post.id})
|> MyAshPhoenixApp.Blog.read_one!()

update post
updated_post =
 new_post
 |> Ash.Changeset.for_update(:update, %{content: "hello to you too!"})
 |> MyAshPhoenixApp.Blog.update!()

delete post
new_post
|> Ash.Changeset.for_destroy(:destroy)
|> MyAshPhoenixApp.Blog.destroy!()
As stated above, this is verbose so Ash has a built in shortcut - The code_interface. You may notice this has already been done in your Post resource. Here it is again with more explanation:
 code_interface do
 # defines the API this resource should be called from
 define_for MyAshPhoenixApp.Blog
 # defining function Post.create/2 it calls the :create action
 define :create, action: :create
 # defining function Post.read_all/2 it calls the :read action
 define :read_all, action: :read
 # defining function Post.update/2 it calls the :update action
 define :update, action: :update
 # defining function Post.destroy/2 it calls the :destroy action
 define :destroy, action: :destroy
 # defining function Post.get_by_id/2
 # it calls the :by_id action with the argument :id
 define :get_by_id, args: [:id], action: :by_id
 end
Note: The function name doesn't have to match the action name in any way. You could also write:
define :make, action: :create
That's perfectly valid and could be called via Blog.make/2.

Now we can call our resource like so:
create post
new_post = MyAshPhoenixApp.Blog.Post.create!(%{title: "hello world"})

read post
MyAshPhoenixApp.Blog.Post.read_all!()

get post by id
MyAshPhoenixApp.Blog.Post.get_by_id!(new_post.id)

update post
updated_post = MyAshPhoenixApp.Blog.Post.update!(new_post, %{content: "hello to you too!"})

delete post
MyAshPhoenixApp.Blog.Post.destroy!(updated_post)
Now isn't that more convenient?
Note: All functions that interact with an Ash resource have a safe and unsafe version. For example there are two create functions create/2 and create!/2. create/2 returns {:ok, resource} or {:error, reason}. create!/2 will return just the resource on success and will raise an error on failure.

Connecting your Resource to a Phoenix LiveView
Now we know how to interact with our resource, let's connect it to a simple Phoenix LiveView. Here is the LiveView below:
lib/my_ash_phoenix_app_web/example_live_view.ex

defmodule MyAshPhoenixAppWeb.ExampleLiveView do
 use MyAshPhoenixAppWeb, :live_view
 import Phoenix.HTML.Form
 alias MyAshPhoenixApp.Blog.Post

 def render(assigns) do
 ~H"""
 <h2>Posts</h2>
 <div>
 <%= for post <- @posts do %>
 <div>
 <div><%= post.title %></div>
 <div><%= if Map.get(post, :content), do: post.content, else: "" %></div>
 <button phx-click="delete_post" phx-value-post-id={post.id}>delete</button>
 </div>
 <% end %>
 </div>
 <h2>Create Post</h2>
 <.form let={f} for={@create_form} phx-submit="create_post">
 <%= text_input f, :title, placeholder: "input title" %>
 <%= submit "create" %>
 </.form>
 <h2>Update Post</h2>
 <.form let={f} for={@update_form} phx-submit="update_post">
 <%= label f, :"post name" %>
 <%= select f, :post_id, @post_selector %>
 <%= text_input f, :content, value: "", placeholder: "input content" %>
 <%= submit "update" %>
 </.form>
 """
 end

 def mount(_params, _session, socket) do
 posts = Post.read_all!()

 socket =
 assign(socket,
 posts: posts,
 post_selector: post_selector(posts),
 # the `to_form/1` calls below are for liveview 0.18.12+. For earlier versions, remove those calls
 create_form: AshPhoenix.Form.for_create(Post, :create) |> to_form(),
 update_form: AshPhoenix.Form.for_update(List.first(posts, %Post{}), :update) |> to_form()
)

 {:ok, socket}
 end

 def handle_event("delete_post", %{"post-id" => post_id}, socket) do
 post_id |> Post.get_by_id!() |> Post.destroy!()
 posts = Post.read_all!()

 {:noreply, assign(socket, posts: posts, post_selector: post_selector(posts))}
 end

 def handle_event("create_post", %{"form" => %{"title" => title}}, socket) do
 Post.create(%{title: title})
 posts = Post.read_all!()

 {:noreply, assign(socket, posts: posts, post_selector: post_selector(posts))}
 end

 def handle_event("update_post", %{"form" => form_params}, socket) do
 %{"post_id" => post_id, "content" => content} = form_params

 post_id |> Post.get_by_id!() |> Post.update!(%{content: content})
 posts = Post.read_all!()

 {:noreply, assign(socket, posts: posts, post_selector: post_selector(posts))}
 end

 defp post_selector(posts) do
 for post <- posts do
 {post.title, post.id}
 end
 end
end
Don't forget to add the LiveView to your router.
lib/my_ash_phoenix_web_app/
 scope "/", MyAshPhoenixAppWeb do
 # ...
 live "/posts", ExampleLiveView
 end
All being well you should be able to load up what we have just created on http://localhost:4000/posts.
You can see how using functions created by our code_interface makes it easy to integrate Ash with Phoenix.
You may also notice this is the first time we've used the AshPhoenix library. The AshPhoenix library contains utilities to help Ash integrate with Phoenix and LiveView Seamlessly. One of these utilities is AshPhoenix.Form which can automatically produce changesets to be used in the forms.
That's it for this guide. We've gone from 0 to a fully working Phoenix App using Ash. To get a closer look, see the accompanying repo here.
Where to Next?
We are really just scratching the surface of what can be done in Ash. Look below for what to look at next.
Continue Learning
There's a few places you can go to learn more about how to use ash:
	Read more about how to query the data in your resources.
	Dig deeper into actions.
	Study resource relationship management

Ash Authentication & Ash Authentication Phoenix
See the power Ash can bring to your web app or API. Get authentication working in minutes.
Add an API (or two)
Check out the AshJsonApi and AshGraphql extensions to effortlessly build APIs around your resources.

Working With Phoenix

The AshPhoenix plugin adds lots of helpers for working with Phoenix Liveview (and regular views).
{:ash_phoenix, "~> 1.2.11"}
Whats in the box?
	AshPhoenix.Form - A form data structure for using resource actions with phoenix forms
	AshPhoenix.Form.Auto - Tools to automatically determine nested form structures based on calls manage_relationship for an action.
	AshPhoenix.FilterForm - A form data structure for building filter statements
	AshPhoenix.LiveView - Helpers for querying data and integrating changes
	AshPhoenix.SubdomainPlug - A plug to determine a tenant using subdomains for multitenancy
	AshPhoenix.FormData.Error - A protocol to allow errors to be rendered in forms
	Phoenix.HTML.Safe implementations for Ash.CiString and Ash.NotLoaded

AshPhoenix.FilterForm.Arguments

Represents the arguments to a calculation being filtered on

 Anchor for this section

 Summary

 Functions

 errors(arguments, transform_errors)

 new(params, arguments)

 validate_arguments(arguments, params)

 Anchor for this section

Functions

 Link to this function

 errors(arguments, transform_errors)

 View Source

 Link to this function

 new(params, arguments)

 View Source

 Link to this function

 validate_arguments(arguments, params)

 View Source

AshPhoenix.FilterForm

Create a new filter form.
Options:
	:params (term/0) - Initial parameters to create the form with The default value is %{}.

	:as (String.t/0) - Set the parameter name for the form. The default value is "filter".

	:transform_errors (term/0) - Allows for manual manipulation and transformation of errors.
If possible, try to implement AshPhoenix.FormData.Error for the error (if it as a custom one, for example).
If that isn't possible, you can provide this function which will get the predicate and the error, and should
return a list of ash phoenix formatted errors, e.g [{field :: atom, message :: String.t(), substituations :: Keyword.t()}]

	:remove_empty_groups? (boolean/0) - If true (the default), then any time a group would be made empty by removing a group or predicate, it is removed instead.
An empty form can still be added, this only affects a group if its last component is removed. The default value is false.

 Anchor for this section

 Summary

 Functions

 add_group(form, opts \\ [])

 Adde a group to the filter.

 add_predicate(form, field, operator_or_function, value, opts \\ [])

 Add a predicate to the filter.

 errors(form, opts \\ [])

 Returns a flat list of all errors on all predicates in the filter.

 fields(resource)

 Returns the list of available fields, which may be attributes, calculations, or aggregates.

 filter!(query, form)

 Same as filter/2 but raises on errors.

 filter(query, form)

 Converts the form into a filter, and filters the provided query or resource with that filter.

 new(resource, opts \\ [])

 params_for_query(form)

 Returns the minimal set of params (at the moment just strips ids) for use in a query string.

 predicates(resource)

 Returns the list of available predicates for the given resource, which may be functions or operators.

 remove_component(form, group_or_component_id)

 Removes the group or component with the given id

 remove_group(form, group_id)

 Remove the group with the given id

 remove_predicate(form, id)

 Remove the predicate with the given id

 to_filter!(form)

 Same as to_filter/1

 to_filter_expression(form)

 Returns a filter expression that can be provided to Ash.Query.filter/2

 to_filter_map(form)

 Returns a filter map that can be provided to Ash.Filter.parse

 update_predicate(form, id, func)

 Update the predicate with the given id

 validate(form, params \\ %{})

 Updates the filter with the provided input and validates it.

 Anchor for this section

Functions

 Link to this function

 add_group(form, opts \\ [])

 View Source

Adde a group to the filter.
Options:
	:to (String.t/0) - The nested group id to add the group to.

	:operator - The operator that the group should have internally. The default value is :and.

	:return_id? (boolean/0) - If set to true, the function returns {form, predicate_id} The default value is false.

 Link to this function

 add_predicate(form, field, operator_or_function, value, opts \\ [])

 View Source

Add a predicate to the filter.
Options:
	:to (String.t/0) - The group id to add the predicate to. If not set, will be added to the top level group.

	:return_id? (boolean/0) - If set to true, the function returns {form, predicate_id} The default value is false.

	:path - The relationship path to apply the predicate to

 Link to this function

 errors(form, opts \\ [])

 View Source

Returns a flat list of all errors on all predicates in the filter.

 Link to this function

 fields(resource)

 View Source

Returns the list of available fields, which may be attributes, calculations, or aggregates.

 Link to this function

 filter!(query, form)

 View Source

Same as filter/2 but raises on errors.

 Link to this function

 filter(query, form)

 View Source

Converts the form into a filter, and filters the provided query or resource with that filter.

 Link to this function

 new(resource, opts \\ [])

 View Source

 Link to this function

 params_for_query(form)

 View Source

Returns the minimal set of params (at the moment just strips ids) for use in a query string.

 Link to this function

 predicates(resource)

 View Source

Returns the list of available predicates for the given resource, which may be functions or operators.

 Link to this function

 remove_component(form, group_or_component_id)

 View Source

Removes the group or component with the given id

 Link to this function

 remove_group(form, group_id)

 View Source

Remove the group with the given id

 Link to this function

 remove_predicate(form, id)

 View Source

Remove the predicate with the given id

 Link to this function

 to_filter!(form)

 View Source

Same as to_filter/1

 Link to this function

 to_filter_expression(form)

 View Source

Returns a filter expression that can be provided to Ash.Query.filter/2
To add this to a query, remember to use ^, for example:
filter = AshPhoenix.FilterForm.to_filter_expression(form)

Ash.Query.filter(MyApp.Post, ^filter)
Alternatively, you can use the shorthand: filter/2 to apply the expression directly to a query.

 Link to this function

 to_filter_map(form)

 View Source

Returns a filter map that can be provided to Ash.Filter.parse
This allows for things like saving a stored filter. Does not currently support parameterizing calculations or functions.

 Link to this function

 update_predicate(form, id, func)

 View Source

Update the predicate with the given id

 Link to this function

 validate(form, params \\ %{})

 View Source

Updates the filter with the provided input and validates it.
At present, no validation actually occurs, but this will eventually be added.

AshPhoenix.FilterForm.Predicate

Represents an individual predicate appearing in a filter form.
Predicates are grouped up in an AshPhoenix.FilterForm to create boolean
filter statements.

 Anchor for this section

 Summary

 Functions

 errors(predicate, transform_errors)

 Anchor for this section

Functions

 Link to this function

 errors(predicate, transform_errors)

 View Source

AshPhoenix.Form

A module to allow you to fluidly use resources with phoenix forms.
Life cycle
The general workflow is, with either liveview or phoenix forms:
	Create a form with AshPhoenix.Form
	Render that form with Phoenix's form_for (or, if using surface, <Form>)
	To validate the form (e.g with on-change for liveview), pass the input to AshPhoenix.Form.validate(form, params)
	On form submission, pass the input to AshPhoenix.Form.validate(form, params) and then use AshPhoenix.Form.submit(form)
	On success, use the result to redirect or assign. On failure, reassign the provided form.

The following keys exist on the form to show where in the lifecycle you are:
	submitted_once? - If the form has ever been submitted. Useful for not showing any errors on the first attempt to fill out a form.
	just_submitted? - If the form has just been submitted and no validation has happened since. Useful for things like
triggering a UI effect that should stop when the form is modified again.
	.changed? - If something about the form is different than it originally was. Note that in some cases this can yield a
false positive, specifically if a nested form is removed and then a new one is added with the exact same values.
	.touched_forms - A MapSet containing all keys in the form that have been modified. When submitting a form, only these keys are included in the parameters.

Working with related data
If your resource action accepts related data, (for example a managed relationship argument, or an embedded resource attribute), you can
use Phoenix's inputs_for for that field, but you must do one of two things:
	Tell AshPhoenix.Form to automatically derive this behavior from your action, for example:

form =
 user
 |> AshPhoenix.Form.for_update(:update,
 api: MyApi,
 forms: [auto?: true]
])
	Explicitly configure the behavior of it using the forms option. See for_create/3 for more.

For example:
form =
 user
 |> AshPhoenix.Form.for_update(:update,
 api: MyApi,
 forms: [
 profile: [
 resource: MyApp.Profile,
 data: user.profile,
 create_action: :create,
 update_action: :update
 forms: [
 emails: [
 data: user.profile.emails,
 resource: MyApp.UserEmail,
 create_action: :create,
 update_action: :update
]
]
]
])
LiveView
AshPhoenix.Form (unlike ecto changeset based forms) expects to be reused throughout the lifecycle of the liveview.
You can use phoenix events to add and remove form entries and submit/2 to submit the form, like so:
alias MyApp.MyApi.{Comment, Post}

def render(assigns) do
 ~L"""
 <%= f = form_for @form, "#", [phx_change: :validate, phx_submit: :save] %>
 <%= label f, :text %>
 <%= text_input f, :text %>
 <%= error_tag f, :text %>

 <%= for comment_form <- inputs_for(f, :comments) do %>
 <%= hidden_inputs_for(comment_form) %>
 <%= text_input comment_form, :text %>

 <%= for sub_comment_form <- inputs_for(comment_form, :sub_comments) do %>
 <%= hidden_inputs_for(sub_comment_form) %>
 <%= text_input sub_comment_form, :text %>
 <button phx-click="remove_form" phx-value-path="<%= sub_comment_form.name %>">Add Comment</button>
 <% end %>

 <button phx-click="remove_form" phx-value-path="<%= comment_form.name %>">Add Comment</button>
 <button phx-click="add_form" phx-value-path="<%= comment_form.name %>">Add Comment</button>
 <% end %>

 <button phx-click="add_form" phx-value-path="<%= comment_form.name %>">Add Comment</button>

 <%= submit "Save" %>
 </form>
 """
end

def mount(%{"post_id" => post_id}, _session, socket) do
 post =
 Post
 |> MyApp.MyApi.get!(post_id)
 |> MyApi.load!(comments: [:sub_comments])

 form = AshPhoenix.Form.for_update(post,
 api: MyApp.MyApi,
 forms: [
 comments: [
 resource: Comment,
 data: post.comments,
 create_action: :create,
 update_action: :update
 forms: [
 sub_comments: [
 resource: Comment,
 data: &(&1.sub_comments),
 create_action: :create,
 update_action: :update
]
]
]
])

 {:ok, assign(socket, form: form)}
end

In order to use the `add_form` and `remove_form` helpers, you
need to make sure that you are validating the form on change
def handle_event("validate", %{"form" => params}, socket) do
 form = AshPhoenix.Form.validate(socket.assigns.form, params)
 # You can also skip errors by setting `errors: false` if you only want to show errors on submit
 # form = AshPhoenix.Form.validate(socket.assigns.form, params, errors: false)

 {:ok, assign(socket, :form, form)}
end

def handle_event("save", _params, socket) do
 case AshPhoenix.Form.submit(socket.assigns.form) do
 {:ok, result} ->
 # Do something with the result, like redirect
 {:error, form} ->
 assign(socket, :form, form)
 end
end

def handle_event("add_form", %{"path" => path}, socket) do
 form = AshPhoenix.Form.add_form(socket.assigns.form, path)
 {:noreply, assign(socket, :form, form)}
end

def handle_event("remove_form", %{"path" => path}) do
 form = AshPhoenix.Form.remove_form(socket.assigns.form, path)
 {:noreply, assign(socket, :form, form)}
end

 Anchor for this section

 Summary

 Types

 t()

 Functions

 add_form(form, path, opts \\ [])

 Adds a new form at the provided path.

 arguments(form)

 A utility to get the list of arguments the action underlying the form accepts

 attributes(form)

 A utility to get the list of attributes the action underlying the form accepts

 clear_value(form, field_or_fields)

 Clears a given input's value on a form.

 errors(form, opts \\ [])

 Returns the errors on the form.

 for_action(resource_or_data, action, opts)

 Calls the corresponding for_* function depending on the action type

 for_create(resource, action, opts \\ [])

 Creates a form corresponding to a create action on a resource.

 for_destroy(data, action, opts \\ [])

 Creates a form corresponding to a destroy action on a record.

 for_read(resource, action, opts \\ [])

 Creates a form corresponding to a read action on a resource.

 for_update(data, action, opts \\ [])

 Creates a form corresponding to an update action on a record.

 get_form(form, path)

 Gets the form at the specified path

 has_form?(form, path)

 Returns true if a given form path exists in the form

 hidden_fields(form)

 Returns the hidden fields for a form as a keyword list

 ignore(form)

 Toggles the form to be ignored or not ignored.

 ignored?(form)

 Returns true if the form is ignored

 merge_options(form, opts)

 Merge the new options with the saved options on a form. See update_options/2 for more.

 params(form, opts \\ [])

 Returns the parameters from the form that would be submitted to the action.

 parse_path!(form, original_path)

 A utility for parsing paths of nested forms in query encoded format.

 remove_form(form, path, opts \\ [])

 Removes a form at the provided path.

 set_data(form, data)

 Sets the data of the form, in addition to the data of the underlying source, if applicable.

 submit!(form, opts \\ [])

 Same as submit/2, but raises an error if the submission fails.

 submit(form, opts \\ [])

 Submits the form by calling the appropriate function on the configured api.

 touch(form, fields)

 Mark a field or fields as touched

 update_form(form, path, func, opts \\ [])

 Updates the form at the provided path using the given function.

 update_forms_at_path(form, path, func, opts \\ [])

 Updates the list of forms matching a given path. Does not validate that the path points at a single form like update_form/4.

 update_options(form, fun)

 Update the saved options on a form.

 validate(form, new_params, opts \\ [])

 Validates the parameters against the form.

 value(form, field)

 Gets the value for a given field in the form.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %AshPhoenix.Form{
 action: atom(),
 added?: term(),
 any_removed?: term(),
 api: term(),
 changed?: term(),
 data: nil | Ash.Resource.record(),
 errors: boolean(),
 form_keys: Keyword.t(),
 forms: map(),
 id: term(),
 just_submitted?: boolean(),
 method: String.t(),
 name: term(),
 opts: Keyword.t(),
 original_data: term(),
 params: map(),
 prepare_params: term(),
 prepare_source:
 nil
 | (Ash.Changeset.t() -> Ash.Changeset.t())
 | (Ash.Query.t() -> Ash.Query.t()),
 resource: Ash.Resource.t(),
 source: Ash.Changeset.t() | Ash.Query.t(),
 submit_errors: Keyword.t() | nil,
 submitted_once?: boolean(),
 touched_forms: term(),
 transform_errors:
 nil
 | (Ash.Changeset.t() | Ash.Query.t(), error :: Ash.Error.t() ->
 [
 {field :: atom(), message :: String.t(),
 substituations :: Keyword.t()}
]),
 transform_params: nil | (map() -> term()),
 type: :create | :update | :destroy | :read,
 valid?: boolean(),
 warn_on_unhandled_errors?: term()
}

 Anchor for this section

Functions

 Link to this function

 add_form(form, path, opts \\ [])

 View Source

 @spec add_form(t(), String.t() | atom() | [atom() | integer()], Keyword.t()) :: t()

 @spec add_form(
 Phoenix.HTML.Form.t(),
 String.t() | atom() | [atom() | integer()],
 Keyword.t()
) ::
 Phoenix.HTML.Form.t()

Adds a new form at the provided path.
Doing this requires that the form has a create_action and a resource configured.
path can be one of two things:
	A list of atoms and integers that lead to a form in the forms option provided. [:posts, 0, :comments] to add a comment to the first post.
	The html name of the form, e.g form[posts][0][comments] to mimic the above

If you pass parameters to this function, keep in mind that, unless they are string keyed in
the same shape they might come from your form, then the result of params/1 will reflect that,
i.e add_form(form, "foo", %{bar: 10}), could produce params like %{"field" => value, "foo" => [%{bar: 10}]}"}.
Notice how they are not string keyed as you would expect. However, once the form is changed (in liveview) and a call
to validate/2 is made with that input, then the parameters would become what you'd expect. In this way, if you are using
add_form with not string keys/values you may not be able to depend on the shape of the params map (which you should ideally
not depend on anyway).
	:prepend (boolean/0) - If specified, the form is placed at the beginning of the list instead of the end of the list The default value is false.

	:params (term/0) - The initial parameters to add the form with. The default value is %{}.

	:validate? (boolean/0) - Validates the new full form. The default value is true.

	:validate_opts (term/0) - Options to pass to validate. Only used if validate? is set to true (the default) The default value is [].

	:type - If type is set to :read, the form will be created for a read action. A hidden field will be set in the form called _form_type to track this information. The default value is :create.

	:data (term/0) - The data to set backing the form. Generally you'd only want to do this if you are adding a form with type: :read additionally.

 Link to this function

 arguments(form)

 View Source

A utility to get the list of arguments the action underlying the form accepts

 Link to this function

 attributes(form)

 View Source

A utility to get the list of attributes the action underlying the form accepts

 Link to this function

 clear_value(form, field_or_fields)

 View Source

 @spec clear_value(t(), atom() | [atom()]) :: t()

Clears a given input's value on a form.
Accepts a field (atom) or a list of fields (atoms) as a second argument.

 Link to this function

 errors(form, opts \\ [])

 View Source

 @spec errors(t() | Phoenix.HTML.Form.t(), Keyword.t()) ::
 ([{atom(), {String.t(), Keyword.t()}}]
 | [String.t()]
 | [{atom(), String.t()}])
 | %{
 required(list()) =>
 [{atom(), {String.t(), Keyword.t()}}]
 | [String.t()]
 | [{atom(), String.t()}]
 }

Returns the errors on the form.
By default, only errors on the form being passed in (not nested forms) are provided.
Use for_path to get errors for nested forms.
	:format - Values:
- `:raw` - `[field:, {message, substitutions}}]` (for translation)
- `:simple` - `[field: "message w/ variables substituted"]`
- `:plaintext` - `["field: message w/ variables substituted"]` The default value is `:simple`.

	:for_path (term/0) - The path of the form you want errors for, either as a list or as a string, e.g [:comments, 0] or form[comments][0]
Passing :all will cause this function to return a map of path to its errors, like so:
%{[:comments, 0] => [body: "is invalid"], ...} The default value is [].

 Link to this function

 for_action(resource_or_data, action, opts)

 View Source

Calls the corresponding for_* function depending on the action type

 Link to this function

 for_create(resource, action, opts \\ [])

 View Source

 @spec for_create(Ash.Resource.t(), action :: atom(), opts :: Keyword.t()) :: t()

Creates a form corresponding to a create action on a resource.
Options:
	:forms (keyword/0) - Nested form configurations. See for_create/3 "Nested Form Options" docs for more.

	:warn_on_unhandled_errors? (boolean/0) - Warns on any errors that don't match the form pattern of {:field, "message", [replacement: :vars]} or implement the AshPhoenix.FormData.Error protocol. The default value is true.

	:api (atom/0) - The api module to use for form submission. If not set, calls to Form.submit/2 will fail

	:as (String.t/0) - The name of the form in the submitted params. You will need to pull the form params out using this key. The default value is "form".

	:id (String.t/0) - The html id of the form. Defaults to the value of :as if provided, otherwise "form"

	:transform_errors (term/0) - Allows for manual manipulation and transformation of errors.
If possible, try to implement AshPhoenix.FormData.Error for the error (if it as a custom one, for example).
If that isn't possible, you can provide this function which will get the changeset and the error, and should
return a list of ash phoenix formatted errors, e.g [{field :: atom, message :: String.t(), substituations :: Keyword.t()}]

	:prepare_source (term/0) - Takes a function over a changeset and runs it before calling the relevant changeset function. This can be used to do things like:
	set private argument values before the validations are run using Ash.Changeset.set_arguments/2 or Ash.Changeset.set_argument/3
	set changeset context
	do any other pre-processing on the changeset

	:prepare_params - A function for pre-processing the form parameters before they are handled by the form.

	:transform_params - A function for post-processing the form parameters before they are used for changeset validation/submission.
Use a 3 argument function to pattern match on the AshPhoenix.Form struct.

	:method (String.t/0) - The http method to associate with the form. Defaults to post for creates, and put for everything else.

	:exclude_fields_if_empty - These fields will be ignored if they are empty strings.
This list of fields supports dead view forms. When a form is submitted from dead view
empty fields are submitted as empty strings. This is problematic for fields that allow_nil
or those that have default values.

Any additional options will be passed to the underlying call to Ash.Changeset.for_create/4. This means
you can set things like the tenant/actor. These will be retained, and provided again when Form.submit/3 is called.

 nested-form-options

 Nested Form Options

To automatically determine the nested forms available for a given form, use forms: [auto?: true].
You can add additional nested forms by including them in the forms config alongside auto?: true.
See the module documentation of AshPhoenix.Form.Auto for more information. If you want to do some
manipulation of the auto forms, you can also call AshPhoenix.Form.Auto.auto/2, and then manipulate the
result and pass it to the forms option. To pass options, use auto?: [option1: :value]. See the
documentation of AshPhoenix.Form.Auto for more.
	:type - The cardinality of the nested form. The default value is :single.

	:sparse? (boolean/0) - If the nested form is sparse, the form won't expect all inputs for all forms to be present.
Has no effect if the type is :single.
Normally, if you leave some forms out of a list of nested forms, they are removed from the parameters
passed to the action. For example, if you had a post with two comments [%Comment{id: 1}, %Comment{id: 2}]
and you passed down params like comments[0][id]=1&comments[1][text]=new_text, we would remove the second comment
from the input parameters, resulting in the following being passed into the action: %{"comments" => [%{"id" => 1, "text" => "new"}]}.
By setting it to sparse, you have to explicitly use remove_form for that removal to happen. So in the same scenario above, the parameters
that would be sent would actually be %{"comments" => [%{"id" => 1, "text" => "new"}, %{"id" => 2}]}.
One major difference with sparse? is that the form actually ignores the index provided, e.g comments[0]..., and instead uses the primary
key e.g comments[0][id] to match which form is being updated. This prevents you from having to find the index of the specific item you want to
update. Which could be very gnarly on deeply nested forms. If there is no primary key, or the primary key does not match anything, it is treated
as a new form.
REMEMBER: You need to use hidden_inputs_for (or HiddenInputs if using surface) for the id to be automatically placed into the form.

	:forms (keyword/0) - Forms nested inside the current nesting level in all cases

	:for_type - What action types the form applies for. Leave blank for it to apply to all action types.

	:merge? (boolean/0) - When building parameters, this input will be merged with its parent input. This allows for combining multiple forms into a single input. The default value is false.

	:for (atom/0) - When creating parameters for the action, the key that the forms should be gathered into. Defaults to the key used to configure the nested form. Ignored if merge? is true.

	:resource (atom/0) - The resource of the nested forms. Unnecessary if you are providing the data key, and not adding additional forms to this path.

	:create_action (atom/0) - The create action to use when building new forms. Only necessary if you want to use add_form/3 with this path.

	:update_action (atom/0) - The update action to use when building forms for data. Only necessary if you supply the data key.

	:data (term/0) - The current value or values that should have update forms built by default.
You can also provide a single argument function that will return the data based on the
data of the parent form. This is important for multiple nesting levels of :list type
forms, because the data depends on which parent is being rendered.

 Link to this function

 for_destroy(data, action, opts \\ [])

 View Source

 @spec for_destroy(Ash.Resource.record(), action :: atom(), opts :: Keyword.t()) :: t()

Creates a form corresponding to a destroy action on a record.
Options:
	:forms (keyword/0) - Nested form configurations. See for_create/3 "Nested Form Options" docs for more.

	:warn_on_unhandled_errors? (boolean/0) - Warns on any errors that don't match the form pattern of {:field, "message", [replacement: :vars]} or implement the AshPhoenix.FormData.Error protocol. The default value is true.

	:api (atom/0) - The api module to use for form submission. If not set, calls to Form.submit/2 will fail

	:as (String.t/0) - The name of the form in the submitted params. You will need to pull the form params out using this key. The default value is "form".

	:id (String.t/0) - The html id of the form. Defaults to the value of :as if provided, otherwise "form"

	:transform_errors (term/0) - Allows for manual manipulation and transformation of errors.
If possible, try to implement AshPhoenix.FormData.Error for the error (if it as a custom one, for example).
If that isn't possible, you can provide this function which will get the changeset and the error, and should
return a list of ash phoenix formatted errors, e.g [{field :: atom, message :: String.t(), substituations :: Keyword.t()}]

	:prepare_source (term/0) - Takes a function over a changeset and runs it before calling the relevant changeset function. This can be used to do things like:
	set private argument values before the validations are run using Ash.Changeset.set_arguments/2 or Ash.Changeset.set_argument/3
	set changeset context
	do any other pre-processing on the changeset

	:prepare_params - A function for pre-processing the form parameters before they are handled by the form.

	:transform_params - A function for post-processing the form parameters before they are used for changeset validation/submission.
Use a 3 argument function to pattern match on the AshPhoenix.Form struct.

	:method (String.t/0) - The http method to associate with the form. Defaults to post for creates, and put for everything else.

	:exclude_fields_if_empty - These fields will be ignored if they are empty strings.
This list of fields supports dead view forms. When a form is submitted from dead view
empty fields are submitted as empty strings. This is problematic for fields that allow_nil
or those that have default values.

Any additional options will be passed to the underlying call to Ash.Changeset.for_destroy/4. This means
you can set things like the tenant/actor. These will be retained, and provided again when Form.submit/3 is called.

 Link to this function

 for_read(resource, action, opts \\ [])

 View Source

 @spec for_read(Ash.Resource.t(), action :: atom(), opts :: Keyword.t()) :: t()

Creates a form corresponding to a read action on a resource.
Options:
	:forms (keyword/0) - Nested form configurations. See for_create/3 "Nested Form Options" docs for more.

	:warn_on_unhandled_errors? (boolean/0) - Warns on any errors that don't match the form pattern of {:field, "message", [replacement: :vars]} or implement the AshPhoenix.FormData.Error protocol. The default value is true.

	:api (atom/0) - The api module to use for form submission. If not set, calls to Form.submit/2 will fail

	:as (String.t/0) - The name of the form in the submitted params. You will need to pull the form params out using this key. The default value is "form".

	:id (String.t/0) - The html id of the form. Defaults to the value of :as if provided, otherwise "form"

	:transform_errors (term/0) - Allows for manual manipulation and transformation of errors.
If possible, try to implement AshPhoenix.FormData.Error for the error (if it as a custom one, for example).
If that isn't possible, you can provide this function which will get the changeset and the error, and should
return a list of ash phoenix formatted errors, e.g [{field :: atom, message :: String.t(), substituations :: Keyword.t()}]

	:prepare_source (term/0) - Takes a function over a changeset and runs it before calling the relevant changeset function. This can be used to do things like:
	set private argument values before the validations are run using Ash.Changeset.set_arguments/2 or Ash.Changeset.set_argument/3
	set changeset context
	do any other pre-processing on the changeset

	:prepare_params - A function for pre-processing the form parameters before they are handled by the form.

	:transform_params - A function for post-processing the form parameters before they are used for changeset validation/submission.
Use a 3 argument function to pattern match on the AshPhoenix.Form struct.

	:method (String.t/0) - The http method to associate with the form. Defaults to post for creates, and put for everything else.

	:exclude_fields_if_empty - These fields will be ignored if they are empty strings.
This list of fields supports dead view forms. When a form is submitted from dead view
empty fields are submitted as empty strings. This is problematic for fields that allow_nil
or those that have default values.

Any additional options will be passed to the underlying call to Ash.Query.for_read/4. This means
you can set things like the tenant/actor. These will be retained, and provided again when Form.submit/3 is called.
Keep in mind that the source of the form in this case is a query, not a changeset. This means that, very likely,
you would not want to use nested forms here. However, it could make sense if you had a query argument that was an
embedded resource, so the capability remains.

 nested-form-options

 Nested Form Options

	:type - The cardinality of the nested form. The default value is :single.

	:sparse? (boolean/0) - If the nested form is sparse, the form won't expect all inputs for all forms to be present.
Has no effect if the type is :single.
Normally, if you leave some forms out of a list of nested forms, they are removed from the parameters
passed to the action. For example, if you had a post with two comments [%Comment{id: 1}, %Comment{id: 2}]
and you passed down params like comments[0][id]=1&comments[1][text]=new_text, we would remove the second comment
from the input parameters, resulting in the following being passed into the action: %{"comments" => [%{"id" => 1, "text" => "new"}]}.
By setting it to sparse, you have to explicitly use remove_form for that removal to happen. So in the same scenario above, the parameters
that would be sent would actually be %{"comments" => [%{"id" => 1, "text" => "new"}, %{"id" => 2}]}.
One major difference with sparse? is that the form actually ignores the index provided, e.g comments[0]..., and instead uses the primary
key e.g comments[0][id] to match which form is being updated. This prevents you from having to find the index of the specific item you want to
update. Which could be very gnarly on deeply nested forms. If there is no primary key, or the primary key does not match anything, it is treated
as a new form.
REMEMBER: You need to use hidden_inputs_for (or HiddenInputs if using surface) for the id to be automatically placed into the form.

	:forms (keyword/0) - Forms nested inside the current nesting level in all cases

	:for_type - What action types the form applies for. Leave blank for it to apply to all action types.

	:merge? (boolean/0) - When building parameters, this input will be merged with its parent input. This allows for combining multiple forms into a single input. The default value is false.

	:for (atom/0) - When creating parameters for the action, the key that the forms should be gathered into. Defaults to the key used to configure the nested form. Ignored if merge? is true.

	:resource (atom/0) - The resource of the nested forms. Unnecessary if you are providing the data key, and not adding additional forms to this path.

	:create_action (atom/0) - The create action to use when building new forms. Only necessary if you want to use add_form/3 with this path.

	:update_action (atom/0) - The update action to use when building forms for data. Only necessary if you supply the data key.

	:data (term/0) - The current value or values that should have update forms built by default.
You can also provide a single argument function that will return the data based on the
data of the parent form. This is important for multiple nesting levels of :list type
forms, because the data depends on which parent is being rendered.

 Link to this function

 for_update(data, action, opts \\ [])

 View Source

 @spec for_update(Ash.Resource.record(), action :: atom(), opts :: Keyword.t()) :: t()

Creates a form corresponding to an update action on a record.
Options:
	:forms (keyword/0) - Nested form configurations. See for_create/3 "Nested Form Options" docs for more.

	:warn_on_unhandled_errors? (boolean/0) - Warns on any errors that don't match the form pattern of {:field, "message", [replacement: :vars]} or implement the AshPhoenix.FormData.Error protocol. The default value is true.

	:api (atom/0) - The api module to use for form submission. If not set, calls to Form.submit/2 will fail

	:as (String.t/0) - The name of the form in the submitted params. You will need to pull the form params out using this key. The default value is "form".

	:id (String.t/0) - The html id of the form. Defaults to the value of :as if provided, otherwise "form"

	:transform_errors (term/0) - Allows for manual manipulation and transformation of errors.
If possible, try to implement AshPhoenix.FormData.Error for the error (if it as a custom one, for example).
If that isn't possible, you can provide this function which will get the changeset and the error, and should
return a list of ash phoenix formatted errors, e.g [{field :: atom, message :: String.t(), substituations :: Keyword.t()}]

	:prepare_source (term/0) - Takes a function over a changeset and runs it before calling the relevant changeset function. This can be used to do things like:
	set private argument values before the validations are run using Ash.Changeset.set_arguments/2 or Ash.Changeset.set_argument/3
	set changeset context
	do any other pre-processing on the changeset

	:prepare_params - A function for pre-processing the form parameters before they are handled by the form.

	:transform_params - A function for post-processing the form parameters before they are used for changeset validation/submission.
Use a 3 argument function to pattern match on the AshPhoenix.Form struct.

	:method (String.t/0) - The http method to associate with the form. Defaults to post for creates, and put for everything else.

	:exclude_fields_if_empty - These fields will be ignored if they are empty strings.
This list of fields supports dead view forms. When a form is submitted from dead view
empty fields are submitted as empty strings. This is problematic for fields that allow_nil
or those that have default values.

Any additional options will be passed to the underlying call to Ash.Changeset.for_update/4. This means
you can set things like the tenant/actor. These will be retained, and provided again when Form.submit/3 is called.

 Link to this function

 get_form(form, path)

 View Source

 @spec get_form(t() | Phoenix.HTML.Form.t(), [atom() | integer()] | String.t()) ::
 t() | nil

Gets the form at the specified path

 Link to this function

 has_form?(form, path)

 View Source

 @spec has_form?(t(), [atom() | integer()] | String.t()) :: boolean()

Returns true if a given form path exists in the form

 Link to this function

 hidden_fields(form)

 View Source

 @spec hidden_fields(t() | Phoenix.HTML.Form.t()) :: Keyword.t()

Returns the hidden fields for a form as a keyword list

 Link to this function

 ignore(form)

 View Source

 @spec ignore(t()) :: t()

Toggles the form to be ignored or not ignored.
To set this manually in an html form, use the field :_ignored and set it
to the string "true". Any other value will not result in the form being ignored.

 Link to this function

 ignored?(form)

 View Source

 @spec ignored?(t() | Phoenix.HTML.Form.t()) :: boolean()

Returns true if the form is ignored

 Link to this function

 merge_options(form, opts)

 View Source

 @spec merge_options(t(), Keyword.t()) :: t()

 @spec merge_options(Phoenix.HTML.Form.t(), Keyword.t()) :: Phoenix.HTML.Form.t()

Merge the new options with the saved options on a form. See update_options/2 for more.

 Link to this function

 params(form, opts \\ [])

 View Source

Returns the parameters from the form that would be submitted to the action.
This can be useful if you want to get the parameters and manipulate them/build a custom changeset
afterwards.

 Link to this function

 parse_path!(form, original_path)

 View Source

 @spec parse_path!(t() | Phoenix.HTML.Form.t(), String.t()) ::
 [atom() | integer()] | no_return()

A utility for parsing paths of nested forms in query encoded format.
For example:
parse_path!(form, "post[comments][0][sub_comments][0])

[:comments, 0, :sub_comments, 0]

 Link to this function

 remove_form(form, path, opts \\ [])

 View Source

Removes a form at the provided path.
See add_form/3 for more information on the path argument.
If you are not using liveview, and you want to support removing forms that were created based on the data
option from the browser, you'll need to include in the form submission a custom list of strings to remove, and
then manually iterate over them in your controller, for example:
Enum.reduce(removed_form_paths, form, &AshPhoenix.Form.remove_form(&2, &1))
	:validate? (boolean/0) - Validates the new full form. The default value is true.

	:validate_opts (term/0) - Options to pass to validate. Only used if validate? is set to true (the default) The default value is [].

 Link to this function

 set_data(form, data)

 View Source

Sets the data of the form, in addition to the data of the underlying source, if applicable.
Queries do not track data (because that wouldn't make sense), so this will not update the data
for read actions

 Link to this function

 submit!(form, opts \\ [])

 View Source

 @spec submit!(t(), Keyword.t()) :: Ash.Resource.record() | :ok | no_return()

Same as submit/2, but raises an error if the submission fails.

 Link to this function

 submit(form, opts \\ [])

 View Source

 @spec submit(t(), Keyword.t()) ::
 {:ok, Ash.Resource.record() | nil | [Ash.Notifier.Notification.t()]}
 | {:ok, Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
 | :ok
 | {:error, t()}

 @spec submit(Phoenix.HTML.Form.t(), Keyword.t()) ::
 {:ok, Ash.Resource.record() | nil | [Ash.Notifier.Notification.t()]}
 | {:ok, Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
 | :ok
 | {:error, Phoenix.HTML.Form.t()}

Submits the form by calling the appropriate function on the configured api.
For example, a form created with for_update/3 will call api.update(changeset), where
changeset is the result of passing the Form.params/3 into Ash.Changeset.for_update/4.
If the submission returns an error, the resulting form can simply be rerendered. Any nested
errors will be passed down to the corresponding form for that input.
Options:
	:force? (boolean/0) - Submit the form even if it is invalid in its current state. The default value is false.

	:api_opts (keyword/0) - Opts to pass to the call to the api when submitting The default value is [].

	:errors (boolean/0) - Wether or not to show errors after submitting. The default value is true.

	:override_params (term/0) - If specified, then the params are not extracted from the form.
How this different from params: providing params is simply results in calling validate(form, params) before proceeding.
The values that are passed into the action are then extracted from the form using params/2. With override_params, the form
is not validated again, and the override_params are passed directly into the action.

	:params (term/0) - If specified, validate/3 is called with the new params before submitting the form.
This is a shortcut to avoid needing to explicitly validate before every submit.
For example:
 form
 |> AshPhoenix.Form.validate(params)
 |> AshPhoenix.Form.submit()
Is the same as:
 form
 |> AshPhoenix.Form.submit(params: params)

	:read_one? (boolean/0) - If submitting a read form, a single result will be returned (via read_one) instead of a list of results.
Ignored for non-read forms. The default value is false.

	:before_submit (function of arity 1) - A function to apply to the source (changeset or query) just before submitting the action. Must return the modified changeset.

 Link to this function

 touch(form, fields)

 View Source

Mark a field or fields as touched
To mark nested fields as touched use with update_form/4 or update_forms_at_path/4

 Link to this function

 update_form(form, path, func, opts \\ [])

 View Source

Updates the form at the provided path using the given function.
Marks all forms along the path as touched by default. To prevent it, provide mark_as_touched?: false.
This can be useful if you have a button that should modify a nested form in some way, for example.

 Link to this function

 update_forms_at_path(form, path, func, opts \\ [])

 View Source

Updates the list of forms matching a given path. Does not validate that the path points at a single form like update_form/4.
Additionally, if it gets to a list of child forms and the next part of the path is not an integer,
it will update all of the forms at that path.

 Link to this function

 update_options(form, fun)

 View Source

Update the saved options on a form.
When a form is created, options like actor and authorize? are stored in the opts key.
If you have a case where these options change over time, for example a select box that determines the actor, use this function to override those opts.
You may want to validate again after this has been changed if it can change the results of your form validation.

 Link to this function

 validate(form, new_params, opts \\ [])

 View Source

 @spec validate(t(), map(), Keyword.t()) :: t()

 @spec validate(Phoenix.HTML.Form.t(), map(), Keyword.t()) :: Phoenix.HTML.Form.t()

Validates the parameters against the form.
Options:
	:errors (boolean/0) - Set to false to hide errors after validation The default value is true.

 Link to this function

 value(form, field)

 View Source

 @spec value(t() | Phoenix.HTML.Form.t(), atom()) :: any()

Gets the value for a given field in the form.

AshPhoenix.Form.Auto

A tool to automatically generate available nested forms based on a resource and action.
To use this, specify forms: [auto?: true] when creating the form.
Keep in mind, you can always specify these manually when creating a form by simply specifying the forms option.
There are two things that this builds forms for:
	Attributes/arguments who's type is an embedded resource.
	Arguments that have a corresponding change manage_relationship(..) configured.

For more on relationships see the documentation for Ash.Changeset.manage_relationship/4.
When building forms, you can switch on the action type and/or resource of the form, in order to have different
fields depending on the form. For example, if you have a simple relationship called :comments with
on_match: :update and on_no_match: :create, there are two types of forms that can be in inputs_for(form, :comments).
In which case you may have something like this:
<%= for comment_form <- inputs_for(f, :comments) do %>
 <%= hidden_inputs_for(comment_form) %>
 <%= if comment_form.source.type == :create do %>
 <%= text_input comment_form, :text %>
 <%= text_input comment_form, :on_create_field %>
 <% else %>
 <%= text_input comment_form, :text %>
 <%= text_input comment_form, :on_update_field %>
 <% end %>

 <button phx-click="remove_form" phx-value-path="<%= comment_form.name %>">Add Comment</button>
 <button phx-click="add_form" phx-value-path="<%= comment_form.name %>">Add Comment</button>
<% end %>
This also applies to adding forms of different types manually. For instance, if you had a "search" field
to allow them to search for a record (e.g in a liveview), and you had an on_lookup read action, you could
render a search form for that read action, and once they've selected a record, you could render the fields
to update that record (in the case of on_lookup: :relate_and_update configurations).
Options
	:relationship_fetcher (term/0) - A two argument function that receives the parent data, the relationship to fetch.
The default simply fetches the relationship value, and if it isn't loaded, it uses [] or nil.

	:sparse_lists? (boolean/0) - Sets all list type forms to sparse?: true by default. Has no effect on forms derived for embedded resources. The default value is false.

	:include_non_map_types? (boolean/0) - Creates form for non map or array of map type inputs The default value is false.

Special Considerations
on_lookup: :relate_and_update
For on_lookup: :relate_and_update configurations, the "read" form for that relationship will use the appropriate read action.
However, you may also want to include the relevant fields for the update that would subsequently occur. To that end, a special
nested form called :_update is created, that uses an empty instance of that resource as the base of its changeset. This may require
some manual manipulation of that data before rendering the relevant form because it assumes all the default values. To solve for this,
if you are using liveview, you could actually look up the record using the input from the read action, and then use AshPhoenix.Form.update_form/3
to set that looked up record as the data of the _update form.
Many to Many Relationships
In the case that a manage_change option points to a join relationship, that form is presented via a special nested form called
_join. So the first form in inputs_for(form, :relationship) would be for the destination, and then inside of that you could say
inputs_for(nested_form, :_join). The parameters are merged together during submission.

 Anchor for this section

 Summary

 Functions

 auto(resource, action, opts \\ [])

 embedded(resource, action, auto_opts)

 related(resource, action, auto_opts)

 Anchor for this section

Functions

 Link to this function

 auto(resource, action, opts \\ [])

 View Source

 Link to this function

 embedded(resource, action, auto_opts)

 View Source

 Link to this function

 related(resource, action, auto_opts)

 View Source

AshPhoenix.FormData.Error protocol

A protocol for allowing errors to be rendered into a form.
To implement, define a to_form_error/1 and return a single error or list of errors of the following shape:
{:field_name, message, replacements}
Replacements is a keyword list to allow for translations, by extracting out the constants like numbers from the message.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 to_form_error(exception)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: term()

 Anchor for this section

Functions

 Link to this function

 to_form_error(exception)

 View Source

AshPhoenix.LiveView

Utilities for keeping ash query results up to date in a live view.

 Anchor for this section

 Summary

 Types

 assign()

 assigns()

 callback()

 callback_result()

 liveness_options()

 socket()

 topic()

 Functions

 can_link_to_page?(page, target)

 change_page(socket, assign, target)

 handle_live(socket, notification, assigns, refetch_info \\ [])

 Incorporates an Ash.Notifier.Notification into the query results, based on the liveness configuration.

 keep_live(socket, assign, callback, opts \\ [])

 Runs the callback, and stores the information required to keep it live in the socket assigns.

 last_page(arg1)

 next_page?(page)

 on_page?(page, num)

 page_from_params(params, default_limit, count? \\ false)

 page_link_params(offset, target)

 page_number(arg1)

 page_params(keyset)

 prev_page?(page)

 Anchor for this section

Types

 Link to this type

 assign()

 View Source

 @type assign() :: atom()

 Link to this type

 assigns()

 View Source

 @type assigns() :: map()

 Link to this type

 callback()

 View Source

 @type callback() ::
 (socket() -> callback_result())
 | (socket(), Keyword.t() | nil -> callback_result())

 Link to this type

 callback_result()

 View Source

 @type callback_result() :: struct() | [struct()] | Ash.Page.page() | nil

 Link to this type

 liveness_options()

 View Source

 @type liveness_options() :: Keyword.t()

 Link to this type

 socket()

 View Source

 @type socket() :: term()

 Link to this type

 topic()

 View Source

 @type topic() :: String.t()

 Anchor for this section

Functions

 Link to this function

 can_link_to_page?(page, target)

 View Source

 Link to this function

 change_page(socket, assign, target)

 View Source

 Link to this function

 handle_live(socket, notification, assigns, refetch_info \\ [])

 View Source

Incorporates an Ash.Notifier.Notification into the query results, based on the liveness configuration.
You will want to match on receiving a notification from Ash, and the easiest way to do that is to match
on the payload like so:
 @impl true
def handle_info(%{topic: topic, payload: %Ash.Notifier.Notification{}}, socket) do
 {:noreply, handle_live(socket, topic, [:query1, :query2, :query3])}
end
Feel free to intercept notifications and do your own logic to respond to events. Ultimately, all
that matters is that you also call handle_live/3 if you want it to update your query results.
The assign or list of assigns passed as the third argument must be the same names passed into
keep_live. If you only want some queries to update based on some events, you can define multiple
matches on events, and only call handle_live/3 with the assigns that should be updated for that
notification.

 Link to this function

 keep_live(socket, assign, callback, opts \\ [])

 View Source

 @spec keep_live(socket(), assign(), callback(), liveness_options()) :: socket()

Runs the callback, and stores the information required to keep it live in the socket assigns.
The data will be assigned to the provided key, e.g keep_live(socket, :me, ...) would assign the results
to :me (accessed as @me in the template).
Additionally, you'll need to define a handle_info/2 callback for your liveview to receive any
notifications, and pass that notification into handle_live/3. See handle_live/3 for more.

 important

 Important

The logic for handling events to keep data live is currently very limited. It will simply rerun the query
every time. To this end, you should feel free to intercept individual events and handle them yourself for
more optimized liveness.

 pagination

 Pagination

To make paginated views convenient, as well as making it possible to keep those views live, Ash does not
simply rerun the query when it gets an update, as that could involve shuffling the records around on the
page. Eventually this will be configurable, but for now, Ash simply adjusts the query to only include the
records that are on the page. If a record would be removed from a page due to a data change, it will simply
be left there. For the best performance, use keyset pagination. If you need the ability to jump to a
page by number, you'll want to use offset pagination, but keep in mind that it performs worse on large
tables.
To support this, accept a second parameter to your callback function, which will be the options to use in page_opts

 options

 Options:

	:subscribe - A topic or list of topics that should cause this data to update.

	:refetch? (boolean/0) - A boolean flag indicating whether a refetch is allowed to happen. Defaults to true

	:after_fetch (term/0) - A two argument function that takes the results, and the socket, and returns the new socket. Can be used to set assigns based on the result of the query.

	:results - For list and page queries, by default the records shown are never changed (unless the page changes) The default value is :keep.

	:load_until_connected? (boolean/0) - If the socket is not connected, then the value of the provided assign is set to :loading. Has no effect if initial is provided.

	:initial (term/0) - Results to use instead of running the query immediately.

	:api (atom/0) - For paginated views, in order to use change_page/3, you must set the Api to use for pagination

	:refetch_interval (non_neg_integer/0) - An interval (in ms) to periodically refetch the query

	:refetch_window (non_neg_integer/0) - The minimum time (in ms) between refetches, including refetches caused by notifications.

A great way to get readable millisecond values is to use the functions in erlang's :timer module,
like :timer.hours/1, :timer.minutes/1, and :timer.seconds/1
refetch_interval
If this option is set, a message is sent as {:refetch, assign_name, opts} on that interval.
You can then match on that event, like so:
def handle_info({:refetch, assign, opts}, socket) do
 {:noreply, handle_live(socket, :refetch, assign, opts)}
end
This is the equivalent of :timer.send_interval(interval, {:refetch, assign, opts}), so feel free to
roll your own solution if you have complex refetching requirements.
refetch_window
Normally, when a pubsub message is received the query is rerun. This option will cause the query to wait at least
this amount of time before doing a refetch. This is accomplished with Process.send_after/4, and recording the
last time each query was refetched. For example if a refetch happens at time 0, and the refetch_window is
10,000 ms, we would refetch, and record the time. Then if another refetch should happen 5,000 ms later, we would
look and see that we need to wait another 5,000ms. So we use Process.send_after/4 to send a
{:refetch, assign, opts} message in 5,000ms. The time that a refetch was requested is tracked, so if the
data has since been refetched, it won't be refetched again.
Future Plans
One interesting thing here is that, given that we know the scope of data that a resource cares about,
we should be able to make optimizations to this code, to support partial refetches, or even just updating
the data directly. However, this will need to be carefully considered, as the risks involve showing users
data they could be unauthorized to see, or having state in the socket that is inconsistent.

 Link to this function

 last_page(arg1)

 View Source

 Link to this function

 next_page?(page)

 View Source

 Link to this function

 on_page?(page, num)

 View Source

 Link to this function

 page_from_params(params, default_limit, count? \\ false)

 View Source

 Link to this function

 page_link_params(offset, target)

 View Source

 Link to this function

 page_number(arg1)

 View Source

 Link to this function

 page_params(keyset)

 View Source

 Link to this function

 prev_page?(page)

 View Source

AshPhoenix.SubdomainPlug

This is a basic plug that loads the current tenant assign from a given
value set on subdomain.
This was copied from Triplex.SubdomainPlug, here:
 https://github.com/ateliware/triplex/blob/master/lib/triplex/plugs/subdomain_plug.ex
Options:
	:endpoint (atom/0) - Required. The endpoint that the plug is in, used for deterining the host

	:assign (atom/0) - The key to use when assigning the current tenant The default value is :current_tenant.

	:handle_subdomain - An mfa to call with the conn and a subdomain value. Can be used to do something like fetch the current user given the tenant. Must return the new conn.

To plug it on your router, you can use:
plug AshPhoenix.SubdomainPlug,
 endpoint: MyApp.Endpoint
An additional helper here can be used for determining the host in your liveview, and/or using
the host that was already assigned to the conn.
For example:
def handle_params(params, uri, socket) do
 socket =
 assign_new(socket, :current_tenant, fn ->
 AshPhoenix.SubdomainPlug.live_tenant(socket, uri)
 end)

 socket =
 assign_new(socket, :current_organization, fn ->
 if socket.assigns[:current_tenant] do
 MyApp.Accounts.Api.get!(MyApp.Accounts.Organization,
 subdomain: socket.assigns[:current_tenant]
)
 end
 end)

 {:noreply, socket}
end

 Anchor for this section

 Summary

 Functions

 live_tenant(socket, url)

 Anchor for this section

Functions

 Link to this function

 live_tenant(socket, url)

 View Source

AshPhoenix.Form.InvalidPath exception

Raised when an invalid path is used to find, update or remove a form

 Anchor for this section

 Summary

 Functions

 message(map)

 Callback implementation for Exception.message/1.

 Anchor for this section

Functions

 Link to this function

 message(map)

 View Source

Callback implementation for Exception.message/1.

AshPhoenix.Form.NoActionConfigured exception

Raised when a form action should happen but no action of the appropriate type has been configured

 Anchor for this section

 Summary

 Functions

 message(map)

 Callback implementation for Exception.message/1.

 Anchor for this section

Functions

 Link to this function

 message(map)

 View Source

Callback implementation for Exception.message/1.

AshPhoenix.Form.NoDataLoaded exception

Raised when a data needed to be used but the required data was not loaded

 Anchor for this section

 Summary

 Functions

 message(map)

 Callback implementation for Exception.message/1.

 Anchor for this section

Functions

 Link to this function

 message(map)

 View Source

Callback implementation for Exception.message/1.

AshPhoenix.Form.NoFormConfigured exception

Raised when attempting to refer to a form but no nested form with that name was configured.

 Anchor for this section

 Summary

 Functions

 message(map)

 Callback implementation for Exception.message/1.

 Anchor for this section

Functions

 Link to this function

 message(map)

 View Source

Callback implementation for Exception.message/1.

AshPhoenix.Form.NoResourceConfigured exception

Raised when a form needed to be constructed but the resource for that form could not be determined

 Anchor for this section

 Summary

 Functions

 message(map)

 Callback implementation for Exception.message/1.

 Anchor for this section

Functions

 Link to this function

 message(map)

 View Source

Callback implementation for Exception.message/1.

 OEBPS/dist/app-db64fcdc429a9b460caa.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

