

 ash_phoenix

 v0.5.14

 [image: Logo]

 Table of contents

 	AshPhoenix

 	Modules

 	AshPhoenix

 	AshPhoenix.Form

 	AshPhoenix.Form.Auto

 	AshPhoenix.FormData.Error

 	AshPhoenix.LiveView

 	AshPhoenix.SubdomainPlug

 	AshPhoenix.Form.NoActionConfigured

 	AshPhoenix.Form.NoDataLoaded

 	AshPhoenix.Form.NoFormConfigured

 	AshPhoenix.Form.NoResourceConfigured

 	Exceptions

 	AshPhoenix.Form.NoActionConfigured

 	AshPhoenix.Form.NoDataLoaded

 	AshPhoenix.Form.NoFormConfigured

 	AshPhoenix.Form.NoResourceConfigured

AshPhoenix
[image: Elixir CI]
[image: License: MIT]
[image: Coverage Status]
[image: Hex version badge]
See the module documentation for more information:
	AshPhoenix.LiveView: for liveview querying utilities
	AshPhoenix.Form: Utilities for using forms with Ash changesets

Roadmap:
	UI authorization utilities e.g <%= if authorized_to_do?(resource, action, actor) do %>
	Potentially helpers for easily connecting buttons to resource actions

def deps do
 [
 {:ash_phoenix, "~> 0.5.14"}
]
end

AshPhoenix

General helpers for AshPhoenix.
These will be deprecated at some point, once the work on AshPhoenix.Form is complete.

 Anchor for this section

 Summary

 Functions

 errors_for(changeset_or_query, opts \\ [])

 Gets all errors on a changeset or query.

 hide_errors(changeset)

 hiding_errors?(changeset)

 Anchor for this section

Functions

 Link to this function

 errors_for(changeset_or_query, opts \\ [])

 View Source

 Specs

 errors_for(Ash.Changeset.t() | Ash.Query.t(), Keyword.t()) ::
 [{atom(), {String.t(), Keyword.t()}}] | [String.t()] | map()

Gets all errors on a changeset or query.
This honors the AshPhoenix.FormData.Error protocol and applies any transform_errors.
See transform_errors/2 for more information.

 Link to this function

 hide_errors(changeset)

 View Source

 Link to this function

 hiding_errors?(changeset)

 View Source

AshPhoenix.Form

A module to allow you to fluidly use resources with phoenix forms.
The general workflow is, with either liveview or phoenix forms:
	Create a form with AshPhoenix.Form
	Render that form with Phoenix's form_for (or, if using surface, <Form>)
	To validate the form (e.g with on-change for liveview), pass the input to AshPhoenix.Form.validate(form, params)
	On form submission, pass the input to AshPhoenix.Form.validate(form, params) and then use AshPhoenix.Form.submid(form, ApiModule)

If your resource action accepts related data, (for example a managed relationship argument, or an embedded resource attribute), you can
use Phoenix's inputs_for for that field, but you must explicitly configure the behavior of it using the forms option.
See for_create/3 for more.
For example:
form =
 user
 |> AshPhoenix.Form.for_update(:update,
 api: MyApi,
 forms: [
 profile: [
 resource: MyApp.Profile,
 data: user.profile,
 create_action: :create,
 update_action: :update
 forms: [
 emails: [
 data: user.profile.emails,
 resource: MyApp.UserEmail,
 create_action: :create,
 update_action: :update
]
]
]
])
LiveView
AshPhoenix.Form (unlike ecto changeset based forms) expects to be reused throughout the lifecycle of the liveview.
You can use phoenix events to add and remove form entries and submit/2 to submit the form, like so:
alias MyApp.MyApi.{Comment, Post}

def render(assigns) do
 ~L"""
 <%= f = form_for @form, "#", [phx_change: :validate, phx_submit: :save] %>
 <%= label f, :text %>
 <%= text_input f, :text %>
 <%= error_tag f, :text %>

 <%= for comment_form <- inputs_for(f, :comments) do %>
 <%= hidden_inputs_for(comment_form) %>
 <%= text_input comment_form, :text %>

 <%= for sub_comment_form <- inputs_for(comment_form, :sub_comments) do %>
 <%= hidden_inputs_for(sub_comment_form) %>
 <%= text_input sub_comment_form, :text %>
 <button phx-click="remove_form" phx-value-path="<%= sub_comment_form.name %>">Add Comment</button>
 <% end %>

 <button phx-click="remove_form" phx-value-path="<%= comment_form.name %>">Add Comment</button>
 <button phx-click="add_form" phx-value-path="<%= comment_form.name %>">Add Comment</button>
 <% end %>

 <button phx-click="add_form" phx-value-path="<%= comment_form.name %>">Add Comment</button>

 <%= submit "Save" %>
 </form>
 """
end

def mount(%{"post_id" => post_id}, _session, socket) do
 post =
 Post
 |> MyApp.MyApi.get!(post_id)
 |> MyApi.load!(comments: [:sub_comments])

 form = AshPhoenix.Form.for_update(post,
 api: MyApp.MyApi,
 forms: [
 comments: [
 resource: Comment,
 data: post.comments,
 create_action: :create,
 update_action: :update
 forms: [
 sub_comments: [
 resource: Comment,
 data: &(&1.sub_comments),
 create_action: :create,
 update_action: :update
]
]
]
])

 {:ok, assign(socket, form: form)}
end

In order to use the `add_form` and `remove_form` helpers, you
need to make sure that you are validating the form on change
def handle_event("validate", %{"form" => params}, socket) do
 form = AshPhoenix.Form.validate(socket.assigns.form, params)
 # You can also skip errors by setting `errors: false` if you only want to show errors on submit
 # form = AshPhoenix.Form.validate(socket.assigns.form, params, errors: false)

 {:ok, assign(socket, :form, form)}
end

def handle_event("save", _params, socket) do
 case AshPhoenix.Form.submit(socket.assigns.form) do
 {:ok, result} ->
 # Do something with the result, like redirect
 {:error, form} ->
 assign(socket, :form, form)
 end
end

def handle_event("add_form", %{"path" => path}, socket) do
 form = AshPhoenix.Form.add_form(socket.assigns.form, path)
 {:noreply, assign(socket, :form, form)}
end

def handle_event("remove_form", %{"path" => path}) do
 form = AshPhoenix.Form.remove_form(socket.assigns.form, path)
 {:noreply, assign(socket, :form, form)}
end

 Anchor for this section

 Summary

 Types

 t()

 Functions

 add_form(form, path, opts \\ [])

 Adds a new form at the provided path.

 arguments(form)

 A utility to get the list of arguments the action underlying the form accepts

 attributes(form)

 A utility to get the list of attributes the action underlying the form accepts

 errors(form, opts \\ [])

 Returns the errors on the form.

 errors_for(form, path, type \\ :raw)

 deprecated

 for_action(resource_or_data, action, opts)

 Calls the corresponding for_* function depending on the action type

 for_create(resource, action, opts \\ [])

 Creates a form corresponding to a create action on a resource.

 for_destroy(data, action, opts \\ [])

 Creates a form corresponding to a destroy action on a record.

 for_read(resource, action, opts \\ [])

 Creates a form corresponding to a read action on a resource.

 for_update(data, action, opts \\ [])

 Creates a form corresponding to an update action on a record.

 get_form(form, path)

 params(form, opts \\ [])

 Returns the parameters from the form that would be submitted to the action.

 parse_path!(form, original_path)

 A utility for parsing paths of nested forms in query encoded format.

 remove_form(form, path)

 Removes a form at the provided path.

 set_data(form, data)

 Sets the data of the form, in addition to the data of the underlying source, if applicable.

 submit(form, opts \\ [])

 Submits the form by calling the appropriate function on the configured api.

 submit!(form, opts \\ [])

 Same as submit/2, but raises an error if the submission fails.

 update_form(form, path, func)

 validate(form, new_params, opts \\ [])

 Validates the parameters against the form.

 value(form, field)

 Gets the value for a given field in the form.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %AshPhoenix.Form{
 action: atom(),
 api: term(),
 data: nil | Ash.Resource.record(),
 data_updates: [prepend: [atom() | integer()], remove: [atom() | integer()]],
 errors: boolean(),
 form_keys: Keyword.t(),
 forms: map(),
 id: term(),
 just_submitted?: boolean(),
 method: String.t(),
 name: term(),
 opts: Keyword.t(),
 original_data: term(),
 params: map(),
 resource: Ash.Resource.t(),
 source: Ash.Changeset.t() | Ash.Query.t(),
 submit_errors: Keyword.t() | nil,
 submitted_once?: boolean(),
 touched_forms: term(),
 transform_errors:
 nil
 | (Ash.Changeset.t() | Ash.Query.t(), error :: Ash.Error.t() ->
 [
 {field :: atom(), message :: String.t(),
 substituations :: Keyword.t()}
]),
 type: :create | :update | :destroy | :read,
 valid?: boolean()
}

 Anchor for this section

Functions

 Link to this function

 add_form(form, path, opts \\ [])

 View Source

 Specs

 add_form(t(), String.t() | [atom() | integer()], Keyword.t()) :: t()

Adds a new form at the provided path.
Doing this requires that the form has a create_action and a resource configured.
path can be one of two things:
	A list of atoms and integers that lead to a form in the forms option provided. [:posts, 0, :comments] to add a comment to the first post.
	The html name of the form, e.g form[posts][0][comments] to mimic the above

	:prepend - If specified, the form is placed at the beginning of the list instead of the end of the list The default value is false.

	:params - The initial parameters to add the form with. The default value is %{}.

	:type - If type is set to :read, the form will be created for a read action. A hidden field will be set in the form called _form_type to track this information. The default value is :create.

 Link to this function

 arguments(form)

 View Source

A utility to get the list of arguments the action underlying the form accepts

 Link to this function

 attributes(form)

 View Source

A utility to get the list of attributes the action underlying the form accepts

 Link to this function

 errors(form, opts \\ [])

 View Source

 Specs

 errors(t(), Keyword.t()) ::
 [{atom(), {String.t(), Keyword.t()}}] | [String.t()] | [{atom(), String.t()}]

Returns the errors on the form.
By default, only errors on the form being passed in (not nested forms) are provided.
Use for_path to get errors for nested forms.
	:format - Values:
	:raw - [field:, {message, substitutions}}] (for translation)
	:simple - [field: "message w/ variables substituted"]
	:plaintext - ["field: message w/ variables substituted"] The default value is :simple.

	:for_path - The path of the form you want errors for, either as a list or as a string, e.g [:comments, 0] or form[comments][0]
Passing :all will cause this function to return a map of path to its errors, like so:
%{[:comments, 0] => [body: "is invalid"], ...}
``` The default value is `[]`.



  



    

  
    
      
      Link to this function
    
    errors_for(form, path, type \\ :raw)


      
       
       View Source
     


  


    
      This function is deprecated. Use errors/2 instead.
    


  

      Specs

      

          errors_for(
  t(),
  [atom() | integer()] | String.t(),
  type :: :simple | :raw | :plaintext
) :: [{atom(), {String.t(), Keyword.t()}}] | [String.t()] | map() | nil


      



  



  
    
      
      Link to this function
    
    for_action(resource_or_data, action, opts)


      
       
       View Source
     


  


  

Calls the corresponding for_* function depending on the action type

  



    

  
    
      
      Link to this function
    
    for_create(resource, action, opts \\ [])


      
       
       View Source
     


  


  

      Specs

      

          for_create(Ash.Resource.t(), action :: atom(), opts :: Keyword.t()) :: t()


      


Creates a form corresponding to a create action on a resource.
Options:
	:forms - Nested form configurations. See for_create/3 "Nested Form Options" docs for more.

	:api - The api module to use for form submission. If not set, calls to Form.submit/2 will fail

	:as - The name of the form in the submitted params. You will need to pull the form params out using this key. The default value is "form".

	:id - The html id of the form. Defaults to the value of :as if provided, otherwise "form"

	:transform_errors - Allows for manual manipulation and transformation of errors.
If possible, try to implement AshPhoenix.FormData.Error for the error (if it as a custom one, for example).
If that isn't possible, you can provide this function which will get the changeset and the error, and should
return a list of ash phoenix formatted errors, e.g [{field :: atom, message :: String.t(), substituations :: Keyword.t()}]

	:method - The http method to associate with the form. Defaults to post for creates, and put for everything else.


Any additional options will be passed to the underlying call to Ash.Changeset.for_create/4. This means
you can set things like the tenant/actor. These will be retained, and provided again when Form.submit/3 is called.

  
  Nested Form Options


To automatically determine the nested forms available for a given form, use forms: [auto?: true].
You can add additional nested forms by including them in the forms config alongside auto?: true.
See the module documentation of AshPhoenix.Form.Auto for more information. If you want to do some
manipulation of the auto forms, you can also call AshPhoenix.Form.Auto.auto/2, and then manipulate the
result and pass it to the forms option.
	:type - The cardinality of the nested form. The default value is :single.

	:sparse? - If the nested form is sparse, the form won't expect all inputs for all forms to be present.
Has no effect if the type is :single.
Normally, if you leave some forms out of a list of nested forms, they are removed from the parameters
passed to the action. For example, if you had a post with two comments [%Comment{id: 1}, %Comment{id: 2}]
and you passed down params like comments[0][id]=1&comments[1][text]=new_text, we would remove the second comment
from the input parameters, resulting in the following being passed into the action: %{"comments" => [%{"id" => 1, "text" => "new"}]}.
By setting it to sparse, you have to explicitly use remove_form for that removal to happen. So in the same scenario above, the parameters
that would be sent would actually be %{"comments" => [%{"id" => 1, "text" => "new"}, %{"id" => 2}]}.
One major difference with sparse? is that the form actually ignores the index provided, e.g comments[0]..., and instead uses the primary
key e.g comments[0][id] to match which form is being updated. This prevents you from having to find the index of the specific item you want to
update. Which could be very gnarly on deeply nested forms. If there is no primary key, or the primary key does not match anything, it is treated
as a new form.
REMEMBER: You need to use hidden_inputs_for (or HiddenInputs if using surface) for the id to be automatically placed into the form.

	:forms - Forms nested inside the current nesting level in all cases

	:for_type - What action types the form applies for. Leave blank for it to apply to all action types.

	:merge? - When building parameters, this input will be merged with its parent input. This allows for combining multiple forms into a single input. The default value is false.

	:for - When creating parameters for the action, the key that the forms should be gathered into. Defaults to the key used to configure the nested form. Ignored if merge? is true.

	:resource - The resource of the nested forms. Unnecessary if you are providing the data key, and not adding additional forms to this path.

	:create_action - The create action to use when building new forms. Only necessary if you want to use add_form/3 with this path.

	:update_action - The update action to use when building forms for data. Only necessary if you supply the data key.

	:data - The current value or values that should have update forms built by default.
You can also provide a single argument function that will return the data based on the
data of the parent form. This is important for multiple nesting levels of :list type
forms, because the data depends on which parent is being rendered.



  



    

  
    
      
      Link to this function
    
    for_destroy(data, action, opts \\ [])


      
       
       View Source
     


  


  

      Specs

      

          for_destroy(Ash.Resource.record(), action :: atom(), opts :: Keyword.t()) :: t()


      


Creates a form corresponding to a destroy action on a record.
Options:
	:forms - Nested form configurations. See for_create/3 "Nested Form Options" docs for more.

	:api - The api module to use for form submission. If not set, calls to Form.submit/2 will fail

	:as - The name of the form in the submitted params. You will need to pull the form params out using this key. The default value is "form".

	:id - The html id of the form. Defaults to the value of :as if provided, otherwise "form"

	:transform_errors - Allows for manual manipulation and transformation of errors.
If possible, try to implement AshPhoenix.FormData.Error for the error (if it as a custom one, for example).
If that isn't possible, you can provide this function which will get the changeset and the error, and should
return a list of ash phoenix formatted errors, e.g [{field :: atom, message :: String.t(), substituations :: Keyword.t()}]

	:method - The http method to associate with the form. Defaults to post for creates, and put for everything else.


Any additional options will be passed to the underlying call to Ash.Changeset.for_destroy/4. This means
you can set things like the tenant/actor. These will be retained, and provided again when Form.submit/3 is called.

  



    

  
    
      
      Link to this function
    
    for_read(resource, action, opts \\ [])


      
       
       View Source
     


  


  

      Specs

      

          for_read(Ash.Resource.t(), action :: atom(), opts :: Keyword.t()) :: t()


      


Creates a form corresponding to a read action on a resource.
Options:
	:forms - Nested form configurations. See for_create/3 "Nested Form Options" docs for more.

	:api - The api module to use for form submission. If not set, calls to Form.submit/2 will fail

	:as - The name of the form in the submitted params. You will need to pull the form params out using this key. The default value is "form".

	:id - The html id of the form. Defaults to the value of :as if provided, otherwise "form"

	:transform_errors - Allows for manual manipulation and transformation of errors.
If possible, try to implement AshPhoenix.FormData.Error for the error (if it as a custom one, for example).
If that isn't possible, you can provide this function which will get the changeset and the error, and should
return a list of ash phoenix formatted errors, e.g [{field :: atom, message :: String.t(), substituations :: Keyword.t()}]

	:method - The http method to associate with the form. Defaults to post for creates, and put for everything else.


Any additional options will be passed to the underlying call to Ash.Query.for_read/4. This means
you can set things like the tenant/actor. These will be retained, and provided again when Form.submit/3 is called.
Keep in mind that the source of the form in this case is a query, not a changeset. This means that, very likely,
you would not want to use nested forms here. However, it could make sense if you had a query argument that was an
embedded resource, so the capability remains.

  
  Nested Form Options


	:type - The cardinality of the nested form. The default value is :single.

	:sparse? - If the nested form is sparse, the form won't expect all inputs for all forms to be present.
Has no effect if the type is :single.
Normally, if you leave some forms out of a list of nested forms, they are removed from the parameters
passed to the action. For example, if you had a post with two comments [%Comment{id: 1}, %Comment{id: 2}]
and you passed down params like comments[0][id]=1&comments[1][text]=new_text, we would remove the second comment
from the input parameters, resulting in the following being passed into the action: %{"comments" => [%{"id" => 1, "text" => "new"}]}.
By setting it to sparse, you have to explicitly use remove_form for that removal to happen. So in the same scenario above, the parameters
that would be sent would actually be %{"comments" => [%{"id" => 1, "text" => "new"}, %{"id" => 2}]}.
One major difference with sparse? is that the form actually ignores the index provided, e.g comments[0]..., and instead uses the primary
key e.g comments[0][id] to match which form is being updated. This prevents you from having to find the index of the specific item you want to
update. Which could be very gnarly on deeply nested forms. If there is no primary key, or the primary key does not match anything, it is treated
as a new form.
REMEMBER: You need to use hidden_inputs_for (or HiddenInputs if using surface) for the id to be automatically placed into the form.

	:forms - Forms nested inside the current nesting level in all cases

	:for_type - What action types the form applies for. Leave blank for it to apply to all action types.

	:merge? - When building parameters, this input will be merged with its parent input. This allows for combining multiple forms into a single input. The default value is false.

	:for - When creating parameters for the action, the key that the forms should be gathered into. Defaults to the key used to configure the nested form. Ignored if merge? is true.

	:resource - The resource of the nested forms. Unnecessary if you are providing the data key, and not adding additional forms to this path.

	:create_action - The create action to use when building new forms. Only necessary if you want to use add_form/3 with this path.

	:update_action - The update action to use when building forms for data. Only necessary if you supply the data key.

	:data - The current value or values that should have update forms built by default.
You can also provide a single argument function that will return the data based on the
data of the parent form. This is important for multiple nesting levels of :list type
forms, because the data depends on which parent is being rendered.



  



    

  
    
      
      Link to this function
    
    for_update(data, action, opts \\ [])


      
       
       View Source
     


  


  

      Specs

      

          for_update(Ash.Resource.record(), action :: atom(), opts :: Keyword.t()) :: t()


      


Creates a form corresponding to an update action on a record.
Options:
	:forms - Nested form configurations. See for_create/3 "Nested Form Options" docs for more.

	:api - The api module to use for form submission. If not set, calls to Form.submit/2 will fail

	:as - The name of the form in the submitted params. You will need to pull the form params out using this key. The default value is "form".

	:id - The html id of the form. Defaults to the value of :as if provided, otherwise "form"

	:transform_errors - Allows for manual manipulation and transformation of errors.
If possible, try to implement AshPhoenix.FormData.Error for the error (if it as a custom one, for example).
If that isn't possible, you can provide this function which will get the changeset and the error, and should
return a list of ash phoenix formatted errors, e.g [{field :: atom, message :: String.t(), substituations :: Keyword.t()}]

	:method - The http method to associate with the form. Defaults to post for creates, and put for everything else.


Any additional options will be passed to the underlying call to Ash.Changeset.for_update/4. This means
you can set things like the tenant/actor. These will be retained, and provided again when Form.submit/3 is called.

  



  
    
      
      Link to this function
    
    get_form(form, path)


      
       
       View Source
     


  


  

      Specs

      

          get_form(t(), [atom() | integer()] | String.t()) :: t() | nil


      



  



    

  
    
      
      Link to this function
    
    params(form, opts \\ [])


      
       
       View Source
     


  


  

Returns the parameters from the form that would be submitted to the action.
This can be useful if you want to get the parameters and manipulate them/build a custom changeset
afterwards.

  



  
    
      
      Link to this function
    
    parse_path!(form, original_path)


      
       
       View Source
     


  


  

A utility for parsing paths of nested forms in query encoded format.
For example:
parse_path!(form, "post[comments][0][sub_comments][0])

[:comments, 0, :sub_comments, 0]

  



  
    
      
      Link to this function
    
    remove_form(form, path)


      
       
       View Source
     


  


  

Removes a form at the provided path.
See add_form/3 for more information on the path argument.
If you are not using liveview, and you want to support removing forms that were created based on the data
option from the browser, you'll need to include in the form submission a custom list of strings to remove, and
then manually iterate over them in your controller, for example:
Enum.reduce(removed_form_paths, form, &AshPhoenix.Form.remove_form(&2, &1))

  



  
    
      
      Link to this function
    
    set_data(form, data)


      
       
       View Source
     


  


  

Sets the data of the form, in addition to the data of the underlying source, if applicable.
Queries do not track data (because that wouldn't make sense), so this will not update the data
for read actions

  



    

  
    
      
      Link to this function
    
    submit(form, opts \\ [])


      
       
       View Source
     


  


  

      Specs

      

          submit(t(), Keyword.t()) :: {:ok, Ash.Resource.record()} | :ok | {:error, t()}


      


Submits the form by calling the appropriate function on the configured api.
For example, a form created with for_update/3 will call api.update(changeset), where
changeset is the result of passing the Form.params/3 into Ash.Changeset.for_update/4.
If the submission returns an error, the resulting form can simply be rerendered. Any nested
errors will be passed down to the corresponding form for that input.
Options:
	:force? - Submit the form even if it is invalid in its current state. The default value is false.

	:params - If specified, validate/3 is called with the new params before submitting the form.
This is a shortcut to avoid needing to explicitly validate before every submit.
For example:  
form
|> AshPhoenix.Form.validate(params)
|> AshPhoenix.Form.submit()
Is the same as:  
form
|> AshPhoenix.Form.submit(params: params)

	:before_submit - A function to apply to the source (changeset or query) just before submitting the action. Must return the modified changeset.



  



    

  
    
      
      Link to this function
    
    submit!(form, opts \\ [])


      
       
       View Source
     


  


  

      Specs

      

          submit!(t(), Keyword.t()) :: Ash.Resource.record() | :ok | no_return()


      


Same as submit/2, but raises an error if the submission fails.

  



  
    
      
      Link to this function
    
    update_form(form, path, func)


      
       
       View Source
     


  


  

      Specs

      

          update_form(t(), [atom() | integer()] | String.t(), (t() -> t())) :: t()


      



  



    

  
    
      
      Link to this function
    
    validate(form, new_params, opts \\ [])


      
       
       View Source
     


  


  

      Specs

      

          validate(t(), map(), Keyword.t()) :: t()


      


Validates the parameters against the form.
Options:
	:errors - Set to false to hide errors after validation The default value is true.


  



  
    
      
      Link to this function
    
    value(form, field)


      
       
       View Source
     


  


  

      Specs

      

          value(t(), atom()) :: any()


      


Gets the value for a given field in the form.

  


        

      



  

    
AshPhoenix.Form.Auto
    



      
A (slightly) experimental tool to automatically generate available nested forms based on a resource and action.
To use this, specify forms: [auto?: true] when creating the form.
There are two things that this builds forms for:
	Attributes/arguments who's type is an embedded resource.
	Arguments that have a corresponding change manage_relationship(..) configured.

For more on relationships see the documentation for Ash.Changeset.manage_relationship/4.
When building forms, you can switch on the action type and/or resource of the form, in order to have different
fields depending on the form. For example, if you have a simple relationship called :comments with
on_match: :update and on_no_match: :create, there are two types of forms that can be in inputs_for(form, :comments).
In which case you may have something like this:
<%= for comment_form <- inputs_for(f, :comments) do %>
  <%= hidden_inputs_for(comment_form) %>
  <%= if comment_form.source.type == :create do %>
    <%= text_input comment_form, :text %>
    <%= text_input comment_form, :on_create_field %>
  <% else %>
    <%= text_input comment_form, :text %>
    <%= text_input comment_form, :on_create_field %>
  <% end %>

  <button phx-click="remove_form" phx-value-path="<%= comment_form.name %>">Add Comment</button>
  <button phx-click="add_form" phx-value-path="<%= comment_form.name %>">Add Comment</button>
<% end %>
This also applies to adding forms of different types manually. For instance, if you had a "search" field
to allow them to search for a record (e.g in a liveview), and you had an on_lookup read action, you could
render a search form for that read action, and once they've selected a record, you could render the fields
to update that record (in the case of on_lookup: :relate_and_update configurations).
Special Considerations
on_lookup: :relate_and_update
For on_lookup: :relate_and_update configurations, the "read" form for that relationship will use the appropriate read action.
However, you may also want to include the relevant fields for the update that would subsequently occur. To that end, a special
nested form called :_update is created, that uses an empty instance of that resource as the base of its changeset. This may require
some manual manipulation of that data before rendering the relevant form because it assumes all the default values. To solve for this,
if you are using liveview, you could actually look up the record using the input from the read action, and then use AshPhoenix.Form.update_form/3
to set that looked up record as the data of the _update form.
Many to Many Relationshisp
In the case that a manage_change option points to a join relationship, that form is presented via a special nested form called
_join. So the first form in inputs_for(form, :relationship) would be for the destination, and then inside of that you could say
inputs_for(nested_form, :_join). The parameters are merged together during submission.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    auto(resource, action, opts \\ [])

  





  
    embedded(resource, action, auto_opts)

  





  
    related(resource, action, auto_opts)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


    

  
    
      
      Link to this function
    
    auto(resource, action, opts \\ [])


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    embedded(resource, action, auto_opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    related(resource, action, auto_opts)


      
       
       View Source
     


  


  


  


        

      



  

    
AshPhoenix.FormData.Error protocol
    




      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


  
    
      Functions
    


  
    to_form_error(exception)

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: term()


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    to_form_error(exception)


      
       
       View Source
     


  


  


  


        

      



  

    
AshPhoenix.LiveView
    



      
Utilities for keeping ash query results up to date in a live view.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    assign()

  





  
    assigns()

  





  
    callback()

  





  
    callback_result()

  





  
    liveness_options()

  





  
    socket()

  





  
    topic()

  





  


  
    
      Functions
    


  
    can_link_to_page?(page, target)

  





  
    change_page(socket, assign, target)

  





  
    handle_live(socket, notification, assigns, refetch_info \\ [])

  


    Incorporates an Ash.Notifier.Notification into the query results, based on the liveness configuration.






  
    keep_live(socket, assign, callback, opts \\ [])

  


    Runs the callback, and stores the information required to keep it live in the socket assigns.






  
    last_page(arg1)

  





  
    next_page?(page)

  





  
    on_page?(page, num)

  





  
    page_from_params(params, default_limit, count? \\ false)

  





  
    page_link_params(offset, target)

  





  
    page_number(arg1)

  





  
    page_params(keyset)

  





  
    prev_page?(page)

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    assign()


      
       
       View Source
     


  


  

      Specs

      

          assign() :: atom()


      



  



  
    
      
      Link to this type
    
    assigns()


      
       
       View Source
     


  


  

      Specs

      

          assigns() :: map()


      



  



  
    
      
      Link to this type
    
    callback()


      
       
       View Source
     


  


  

      Specs

      

          callback() ::
  (socket() -> callback_result())
  | (socket(), Keyword.t() | nil -> callback_result())


      



  



  
    
      
      Link to this type
    
    callback_result()


      
       
       View Source
     


  


  

      Specs

      

          callback_result() :: struct() | [struct()] | Ash.Page.page() | nil


      



  



  
    
      
      Link to this type
    
    liveness_options()


      
       
       View Source
     


  


  

      Specs

      

          liveness_options() :: Keyword.t()


      



  



  
    
      
      Link to this type
    
    socket()


      
       
       View Source
     


  


  

      Specs

      

          socket() :: term()


      



  



  
    
      
      Link to this type
    
    topic()


      
       
       View Source
     


  


  

      Specs

      

          topic() :: String.t()


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    can_link_to_page?(page, target)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    change_page(socket, assign, target)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    handle_live(socket, notification, assigns, refetch_info \\ [])


      
       
       View Source
     


  


  

Incorporates an Ash.Notifier.Notification into the query results, based on the liveness configuration.
You will want to match on receiving a notification from Ash, and the easiest way to do that is to match
on the payload like so:
  @impl true
def handle_info(%{topic: topic, payload: %Ash.Notifier.Notification{}}, socket) do
  {:noreply, handle_live(socket, topic, [:query1, :query2, :query3])}
end
Feel free to intercept notifications and do your own logic to respond to events. Ultimately, all
that matters is that you also call handle_live/3 if you want it to update your query results.
The assign or list of assigns passed as the third argument must be the same names passed into
keep_live. If you only want some queries to update based on some events, you can define multiple
matches on events, and only call handle_live/3 with the assigns that should be updated for that
notification.

  



    

  
    
      
      Link to this function
    
    keep_live(socket, assign, callback, opts \\ [])


      
       
       View Source
     


  


  

      Specs

      

          keep_live(socket(), assign(), callback(), liveness_options()) :: socket()


      


Runs the callback, and stores the information required to keep it live in the socket assigns.
The data will be assigned to the provided key, e.g keep_live(socket, :me, ...) would assign the results
to :me (accessed as @me in the template).
Additionally, you'll need to define a handle_info/2 callback for your liveview to receive any
notifications, and pass that notification into handle_live/3. See handle_live/3 for more.

  
  Pagination


To make paginated views convenient, as well as making it possible to keep those views live, Ash does not
simply rerun the query when it gets an update, as that could involve shuffling the records around on the
page. Eventually this will be configurable, but for now, Ash simply adjusts the query to only include the
records that are on the page. If a record would be removed from a page due to a data change, it will simply
be left there. For the best performance, use keyset pagination. If you need the ability to jump to a
page by number, you'll want to use offset pagination, but keep in mind that it performs worse on large
tables.
To support this, accept a second parameter to your callback function, which will be the options to use in page_opts

  
  Options:


	:subscribe - A topic or list of topics that should cause this data to update.

	:refetch? - A boolean flag indicating whether a refetch is allowed to happen. Defaults to true

	:results - For list and page queries, by default the records shown are never changed (unless the page changes) The default value is :keep.

	:load_until_connected? - If the socket is not connected, then the value of the provided assign is set to :loading. Has no effect if initial is provided.

	:initial - Results to use instead of running the query immediately.

	:api - For paginated views, in order to use change_page/3, you must set the Api to use for pagination

	:refetch_interval - An interval (in ms) to periodically refetch the query

	:refetch_window - The minimum time (in ms) between refetches, including refetches caused by notifications.


A great way to get readable millisecond values, you can use the functions in erlang's :timer module,
like :timer.hours/1, :timer.minutes/1, and :timer.seconds/1
refetch_interval
If this option is set, a message is sent as {:refetch, assign_name, opts} on that interval.
You can then match on that event, like so:
def handle_info({:refetch, assign, opts}, socket) do
  {:noreply, handle_live(socket, :refetch, assign, opts)}
end
This is the equivalent of :timer.send_interval(interval, {:refetch, assign, opts}), so feel free to
roll your own solution if you have complex refetching requirements.
refetch_window
Normally, when a pubsub message is received the query is rerun. This option will cause the query to wait at least
this amount of time before doing a refetch. This is accomplished with Process.send_after/4, and recording the
last time each query was refetched. For example if a refetch happens at time 0, and the refetch_window is
10,000 ms, we would refetch, and record the time. Then if another refetch should happen 5,000 ms later, we would
look and see that we need to wait another 5,000ms. So we use Process.send_after/4 to send a
{:refetch, assign, opts} message in 5,000ms. The time that a refetch was requested is tracked, so if the
data has since been refetched, it won't be refetched again.
Future Plans
One interesting thing here is that, given that we know the scope of data that a resource cares about,
we should be able to make optimizations to this code, to support partial refetches, or even just updating
the data directly. However, this will need to be carefully considered, as the risks involve showing users
data they could be unauthorized to see, or having state in the socket that is inconsistent.

  



  
    
      
      Link to this function
    
    last_page(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    next_page?(page)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    on_page?(page, num)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    page_from_params(params, default_limit, count? \\ false)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    page_link_params(offset, target)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    page_number(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    page_params(keyset)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    prev_page?(page)


      
       
       View Source
     


  


  


  


        

      



  

    
AshPhoenix.SubdomainPlug
    



      
This is a basic plug that loads the current tenant assign from a given
value set on subdomain.
This was copied from Triplex.SubdomainPlug, here:
  https://github.com/ateliware/triplex/blob/master/lib/triplex/plugs/subdomain_plug.ex
Options:
	:endpoint - Required. The endpoint that the plug is in, used for deterining the host

	:assign - The key to use when assigning the current tenant The default value is :current_tenant.

	:handle_subdomain - An mfa to call with the conn and a subdomain value. Can be used to do something like fetch the current user given the tenant. Must return the new conn.


To plug it on your router, you can use:
plug Ash.SubdomainPlug,
  endpoint: MyApp.Endpoint
An additional helper here can be used for determining the host in your liveview, and/or using
the host that was already assigned to the conn.
For example:
def handle_params(params, uri, socket) do
  socket =
    assign_new(socket, :current_tenant, fn ->
      AshPhoenix.SubdomainPlug.live_tenant(socket, uri)
    end)

  socket =
    assign_new(socket, :current_organization, fn ->
      if socket.assigns[:current_tenant] do
        MyApp.Accounts.Api.get!(MyApp.Accounts.Organization,
          subdomain: socket.assigns[:current_tenant]
        )
      end
    end)

  {:noreply, socket}
end

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    live_tenant(socket, url)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    live_tenant(socket, url)


      
       
       View Source
     


  


  


  


        

      



  

    
AshPhoenix.Form.NoActionConfigured exception
    




      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    message(map)

  


    Callback implementation for Exception.message/1.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    message(map)


      
       
       View Source
     


  


  

Callback implementation for Exception.message/1.

  


        

      



  

    
AshPhoenix.Form.NoDataLoaded exception
    




      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    message(map)

  


    Callback implementation for Exception.message/1.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    message(map)


      
       
       View Source
     


  


  

Callback implementation for Exception.message/1.

  


        

      



  

    
AshPhoenix.Form.NoFormConfigured exception
    




      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    message(map)

  


    Callback implementation for Exception.message/1.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    message(map)


      
       
       View Source
     


  


  

Callback implementation for Exception.message/1.

  


        

      



  

    
AshPhoenix.Form.NoResourceConfigured exception
    




      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    message(map)

  


    Callback implementation for Exception.message/1.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    message(map)


      
       
       View Source
     


  


  

Callback implementation for Exception.message/1.

  


        

      



  

    
AshPhoenix.Form.NoActionConfigured exception
    




      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    message(map)

  


    Callback implementation for Exception.message/1.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    message(map)


      
       
       View Source
     


  


  

Callback implementation for Exception.message/1.

  


        

      



  

    
AshPhoenix.Form.NoDataLoaded exception
    




      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    message(map)

  


    Callback implementation for Exception.message/1.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    message(map)


      
       
       View Source
     


  


  

Callback implementation for Exception.message/1.

  


        

      



  

    
AshPhoenix.Form.NoFormConfigured exception
    




      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    message(map)

  


    Callback implementation for Exception.message/1.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    message(map)


      
       
       View Source
     


  


  

Callback implementation for Exception.message/1.

  


        

      



  

    
AshPhoenix.Form.NoResourceConfigured exception
    




      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    message(map)

  


    Callback implementation for Exception.message/1.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    message(map)


      
       
       View Source
     


  


  

Callback implementation for Exception.message/1.

  


        

      



  OEBPS/dist/app-db64fcdc429a9b460caa.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&amp;").replace(/</g,"&lt;").replace(/>/g,"&gt;").replace(/"/g,"&quot;")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});



