

    

        ash

        v1.47.4


          [image: Logo]



    



  

    Table of contents

    
      



            	Dependency





          	Introduction
            


            	Getting Started


            	Getting Started with Phoenix



            

          




          	Topics
            


            	Expressions


            	Managing Relationships


            	Authorization


            	Identities


            	Pagination


            	Validation


            	Notifiers


            	Error Handling


            	Aggregates


            	Calculations


            	Embedded Resources


            	Context And Domains


            	Multitenancy



            

          




  	Modules
    

    	Ash.Api


    	Ash.Api.Dsl


    	Ash.Changeset


    	Ash.Query


    	Ash.Resource.Dsl


    	Ash.Filter


    	Ash.Sort


    	Ash.Resource.Validation


    	Ash.Resource.Validation.AttributeDoesNotEqual


    	Ash.Resource.Validation.AttributeEquals


    	Ash.Resource.Validation.Builtins


    	Ash.Resource.Change


    	Ash.Resource.Change.Builtins


    	Ash.Calculation


    	Ash.Query.Calculation


    	Ash.Resource.Calculation


    	Ash.Resource.Calculation.Argument


    	Ash.Resource.Calculation.Builtins


    	Ash.CiString


    	Ash.Type


    	Ash.Type.Atom


    	Ash.Type.Binary


    	Ash.Type.Boolean


    	Ash.Type.CiString


    	Ash.Type.Date


    	Ash.Type.Decimal


    	Ash.Type.Enum


    	Ash.Type.Float


    	Ash.Type.Function


    	Ash.Type.Integer


    	Ash.Type.Interval


    	Ash.Type.Map


    	Ash.Type.String


    	Ash.Type.Term


    	Ash.Type.UUID


    	Ash.Type.UrlEncodedBinary


    	Ash.Type.UtcDatetime


    	Ash.Type.UtcDatetimeUsec


    	Ash.DataLayer


    	Ash.DataLayer.Ets


    	Ash.DataLayer.Mnesia


    	Ash.DataLayer.Simple


    	Ash.DataLayer.Simple.Transformers.ValidateDslSections


    	Ash.Authorizer


    	Ash.Page


    	Ash.Page.Keyset


    	Ash.Page.Offset


    	Ash.Notifier


    	Ash.Notifier.Notification


    	Ash.Notifier.PubSub


    	Ash.Notifier.PubSub.Publication


    	Ash.Dsl.Entity


    	Ash.Dsl.Extension


    	Ash.Dsl.Section


    	Ash.Dsl.Transformer


    	Ash.Dsl


    	Ash.Resource.Transformers.BelongsToAttribute


    	Ash.Resource.Transformers.BelongsToSourceField


    	Ash.Resource.Transformers.CachePrimaryKey


    	Ash.Resource.Transformers.CountableActions


    	Ash.Resource.Transformers.CreateJoinRelationship


    	Ash.Resource.Transformers.DefaultAccept


    	Ash.Resource.Transformers.DefaultPrimaryKey


    	Ash.Resource.Transformers.HasDestinationField


    	Ash.Resource.Transformers.ReplaceTimestamps


    	Ash.Resource.Transformers.RequireUniqueActionNames


    	Ash.Resource.Transformers.SetPrimaryActions


    	Ash.Resource.Transformers.SetRelationshipSource


    	Ash.Resource.Transformers.SetTypes


    	Ash.Resource.Transformers.ValidateActionTypesSupported


    	Ash.Resource.Transformers.ValidateMultitenancy


    	Ash.Api.Transformers.EnsureResourcesCompiled


    	Ash.Api.Transformers.UniqueFunctionNames


    	Ash.Api.Transformers.ValidateManyToManyJoinAttributes


    	Ash.Api.Transformers.ValidateRelatedResourceInclusion


    	Ash.Api.Transformers.ValidateRelationshipAttributes


    	Ash.Query.Operator


    	Ash.Query.Operator.Basic


    	Ash.Query.Operator.Basic.Concat


    	Ash.Query.Operator.Basic.Div


    	Ash.Query.Operator.Basic.Minus


    	Ash.Query.Operator.Basic.Plus


    	Ash.Query.Operator.Basic.Times


    	Ash.Query.Operator.Eq


    	Ash.Query.Operator.GreaterThan


    	Ash.Query.Operator.GreaterThanOrEqual


    	Ash.Query.Operator.Has


    	Ash.Query.Operator.In


    	Ash.Query.Operator.IsNil


    	Ash.Query.Operator.LessThan


    	Ash.Query.Operator.LessThanOrEqual


    	Ash.Query.Operator.NotEq


    	Ash.Query.Function


    	Ash.Query.Function.Ago


    	Ash.Query.Function.Contains


    	Ash.Query.Function.If


    	Ash.Query.Function.IsNil


    	Ash.Query.BooleanExpression


    	Ash.Query.Call


    	Ash.Query.Not


    	Ash.Query.Ref


    	Ash.Filter.Predicate


    	Ash.Filter.Runtime


    	Ash.Filter.Simple


    	Ash.Filter.Simple.Not


    	Ash.Filter.TemplateHelpers


    	Ash.Resource


    	Ash.Resource.Actions


    	Ash.Resource.Actions.Argument


    	Ash.Resource.Actions.Create


    	Ash.Resource.Actions.Destroy


    	Ash.Resource.Actions.Read


    	Ash.Resource.Actions.Read.Pagination


    	Ash.Resource.Actions.Update


    	Ash.Resource.Aggregate


    	Ash.Resource.Attribute


    	Ash.Resource.Identity


    	Ash.Resource.Info


    	Ash.Resource.Interface


    	Ash.Resource.Preparation


    	Ash.Resource.Preparation.Builtins


    	Ash.Resource.Relationships


    	Ash.Resource.Relationships.BelongsTo


    	Ash.Resource.Relationships.HasMany


    	Ash.Resource.Relationships.HasOne


    	Ash.Resource.Relationships.ManyToMany


    	Ash.Api.ResourceReference


    	Ash.Engine


    	Ash.Engine.Request


    	Ash.Engine.Request.UnresolvedField


    	Ash.Error


    	Ash.Error.Exception


    	Ash.Error.Stacktrace


    	Ash.Changeset.ManagedRelationshipHelpers


    	Ash.NotLoaded


    	Ash.OptionsHelpers


    	Ash.Query.Aggregate


    	Ash.Query.Type


    	Ash.SatSolver


    	Ash.UUID


    	Comparable.Type.Ash.CiString.To.Ash.CiString


    	Comparable.Type.Ash.CiString.To.BitString


    	Comparable.Type.BitString.To.Ash.CiString


    	Ash.Error.Changes.InvalidArgument


    	Ash.Error.Changes.InvalidAttribute


    	Ash.Error.Changes.InvalidChanges


    	Ash.Error.Changes.InvalidRelationship


    	Ash.Error.Changes.NoSuchAttribute


    	Ash.Error.Changes.NoSuchRelationship


    	Ash.Error.Changes.Required


    	Ash.Error.Changes.UnknownError


    	Ash.Error.Dsl.DslError


    	Ash.Error.Forbidden


    	Ash.Error.Forbidden.MustPassStrictCheck


    	Ash.Error.Framework


    	Ash.Error.Framework.AssumptionFailed


    	Ash.Error.Framework.SynchronousEngineStuck


    	Ash.Error.Invalid


    	Ash.Error.Invalid.DuplicatedPath


    	Ash.Error.Invalid.ImpossiblePath


    	Ash.Error.Invalid.InvalidPrimaryKey


    	Ash.Error.Invalid.LimitRequired


    	Ash.Error.Invalid.MultipleResults


    	Ash.Error.Invalid.NoPrimaryAction


    	Ash.Error.Invalid.NoSuchAction


    	Ash.Error.Invalid.NoSuchResource


    	Ash.Error.Invalid.PaginationRequired


    	Ash.Error.Load.InvalidQuery


    	Ash.Error.Load.NoSuchRelationship


    	Ash.Error.Query.AggregatesNotSupported


    	Ash.Error.Query.CalculationsNotSupported


    	Ash.Error.Query.InvalidArgument


    	Ash.Error.Query.InvalidExpression


    	Ash.Error.Query.InvalidFilterValue


    	Ash.Error.Query.InvalidLimit


    	Ash.Error.Query.InvalidLoad


    	Ash.Error.Query.InvalidOffset


    	Ash.Error.Query.InvalidQuery


    	Ash.Error.Query.InvalidSortOrder


    	Ash.Error.Query.NoComplexSortsWithKeysetPagination


    	Ash.Error.Query.NoReadAction


    	Ash.Error.Query.NoSuchAttribute


    	Ash.Error.Query.NoSuchAttributeOrRelationship


    	Ash.Error.Query.NoSuchFilterPredicate


    	Ash.Error.Query.NoSuchFunction


    	Ash.Error.Query.NoSuchOperator


    	Ash.Error.Query.NoSuchRelationship


    	Ash.Error.Query.NotFound


    	Ash.Error.Query.ReadActionRequired


    	Ash.Error.Query.ReadActionRequiresActor


    	Ash.Error.Query.Required


    	Ash.Error.Query.UnsortableAttribute


    	Ash.Error.Query.UnsupportedPredicate


    	Ash.Error.Unknown


    

  



  	Exceptions
    

    	Ash.Error.Changes.InvalidArgument


    	Ash.Error.Changes.InvalidAttribute


    	Ash.Error.Changes.InvalidChanges


    	Ash.Error.Changes.InvalidRelationship


    	Ash.Error.Changes.NoSuchAttribute


    	Ash.Error.Changes.NoSuchRelationship


    	Ash.Error.Changes.Required


    	Ash.Error.Changes.UnknownError


    	Ash.Error.Dsl.DslError


    	Ash.Error.Forbidden


    	Ash.Error.Forbidden.MustPassStrictCheck


    	Ash.Error.Framework


    	Ash.Error.Framework.AssumptionFailed


    	Ash.Error.Framework.SynchronousEngineStuck


    	Ash.Error.Invalid


    	Ash.Error.Invalid.DuplicatedPath


    	Ash.Error.Invalid.ImpossiblePath


    	Ash.Error.Invalid.InvalidPrimaryKey


    	Ash.Error.Invalid.LimitRequired


    	Ash.Error.Invalid.MultipleResults


    	Ash.Error.Invalid.NoPrimaryAction


    	Ash.Error.Invalid.NoSuchAction


    	Ash.Error.Invalid.NoSuchResource


    	Ash.Error.Invalid.PaginationRequired


    	Ash.Error.Load.InvalidQuery


    	Ash.Error.Load.NoSuchRelationship


    	Ash.Error.Query.AggregatesNotSupported


    	Ash.Error.Query.CalculationsNotSupported


    	Ash.Error.Query.InvalidArgument


    	Ash.Error.Query.InvalidExpression


    	Ash.Error.Query.InvalidFilterValue


    	Ash.Error.Query.InvalidLimit


    	Ash.Error.Query.InvalidLoad


    	Ash.Error.Query.InvalidOffset


    	Ash.Error.Query.InvalidQuery


    	Ash.Error.Query.InvalidSortOrder


    	Ash.Error.Query.NoComplexSortsWithKeysetPagination


    	Ash.Error.Query.NoReadAction


    	Ash.Error.Query.NoSuchAttribute


    	Ash.Error.Query.NoSuchAttributeOrRelationship


    	Ash.Error.Query.NoSuchFilterPredicate


    	Ash.Error.Query.NoSuchFunction


    	Ash.Error.Query.NoSuchOperator


    	Ash.Error.Query.NoSuchRelationship


    	Ash.Error.Query.NotFound


    	Ash.Error.Query.ReadActionRequired


    	Ash.Error.Query.ReadActionRequiresActor


    	Ash.Error.Query.Required


    	Ash.Error.Query.UnsortableAttribute


    	Ash.Error.Query.UnsupportedPredicate


    	Ash.Error.Unknown


    

  



  	Mix Tasks
    

    	mix ash.formatter


    

  


      

    


  

[image: Logo]
[image: Elixir CI]
[image: License: MIT]
[image: Coverage Status]
[image: Hex version badge]
Documentation
All documentation is contained in the generated hex documentation located here. Head there for installation and usage information. What follows is only a brief introduction to Ash.
ALPHA NOTICE
Ash is in alpha. The package version is 1.0.0+, and most of the time that means stable, but in this case it does not. The 2.0 release will be the stable release.
Dependency
def deps do
  [
    {:ash, "~> 1.29.0-rc0"}
  ]
end
Links
Guides
	Getting Started Tutorial
	Resource DSL Documentation
	API DSL Documentation
	API interface documentation
	Query Documentation
	Changeset Documentation
	Example Application

Extensions
APIs
	AshJsonApi
	AshGraphql (beta)

Authorizers
	AshPolicyAuthorizer

Datalayers
	AshPostgres
	AshCsv
	Ets (built-in) - Only used for testing
	Mnesia (built-in)

Introduction
Traditional MVC Frameworks (Rails, Django, .Net, Phoenix, etc) leave it up to the user to build the glue between requests for data (HTTP requests in various forms as well as server-side domain logic) and their respective ORMs. In that space, there is an incredible amount of boilerplate code that must get written from scratch for each application (authentication, authorization, sorting, filtering, sideloading relationships, serialization, etc).
Ash is an opinionated yet configurable framework designed to reduce boilerplate in an Elixir application. Ash does this by providing a layer of abstraction over your system's data layer(s) with Resources. It is designed to be used in conjunction with a phoenix application, or on its own.
To riff on a famous JRR Tolkien quote, a Resource is "One Interface to rule them all, One Interface to find them" and will become an indispensable place to define contracts for interacting with data throughout your application.
To start using Ash, first declare your Resources using the Ash Resource DSL. You could technically stop there, and just leverage the Ash Elixir API to avoid writing boilerplate. More likely, you would use extensions like Ash.JsonApi or Ash.GraphQL with Phoenix to add external interfaces to those resources without having to write any extra code at all.
Ash is an open-source project and draws inspiration from similar ideas in other frameworks and concepts. The goal of Ash is to lower the barrier to adopting and using Elixir and Phoenix, and in doing so help these amazing communities attract new developers, projects, and companies.
Example Resource
defmodule Post do
  use Ash.Resource

  actions do
    read :read

    create :create
  end

  attributes do
    attribute :name, :string
  end

  relationships do
    belongs_to :author, Author
  end
end
See the Getting Started Tutorial for more information.
For those looking to add Ash extensions:
	see Ash.Dsl.Extension for adding configuration.
	If you are looking to write a new data source, also see the Ash.DataLayer documentation.
	If you are looking to write a new authorizer, see Ash.Authorizer
	If you are looking to write a "front end", something powered by Ash resources, a guide on
building those kinds of tools is in the works.

Creating a new release of Ash
	check out the repository locally
	run mix git_ops.release (see git_ops documentation for more information)
	check the changelog/new release number
	push (with tags) and CI will automatically deploy the hex package




  

Getting Started Tutorial
This tutorial will walk you through creating a very simple application that uses
Ash. The finished application will look like this:
https://github.com/mario-mazo/my_app
Creating an application
The first step is to create an application.
mix new my_app
Note: alternatively you create a phoenix application with mix phx.new (which is covered in more detail in the next guide).
Add Ash
Add ash to your dependencies in mix.exs. The latest version can be found by running mix hex.info ash.
# in mix.exs
def deps() do
  [
    {:ash, "~> x.x.x"}
  ]
end
If you want to have a more idiomatic formatting (like the formatting used in the
documentation) of your Ash resource and APIs, you need to add :ash (and any other
extensions you use like :ash_postgres) to your .formatter.exs otherwise the
default Elixir formatter will wrap portions of the DSL in parenthesis.
 import_deps: [
    :ash # add this line
  ]
Without that, instead of:
attribute :id, :integer, allow_nil?: true
the Elixir formatter will change it to:
attribute(:id, :integer, allow_nil?: true)
Create an Ash API
Create an API module. This will be your primary way to interact with your Ash resources. We recommend lib/my_app/api.ex for simple setups. For more information on organizing resources into contexts/domains, see the Contexts and Domains guide.
# lib/my_app/api.ex
defmodule MyApp.Api do
  use Ash.Api

  resources do
  end
end
Create a resource
A resource is the primary entity in Ash. Your API module ties your resources together and gives them an interface, but the vast majority of your configuration will live in resources.
In your typical setup, you might have a resource per database table. For those already familiar with Ecto, a resource and an Ecto schema are very similar. In fact, all resources define an Ecto schema under the hood. This can be leveraged when you need to do things that are not yet implemented or fall outside of the scope of Ash. The current recommendation for where to put your resources is in lib/my_app/resources/<resource_name>.ex. Here are a few examples:
# in lib/my_app/resources/tweet.ex
defmodule MyApp.Tweet do
  use Ash.Resource

  attributes do
    uuid_primary_key :id

    attribute :body, :string do
      allow_nil? false
      constraints max_length: 255
    end

    # Alternatively, you can use the keyword list syntax
    # You can also set functional defaults, via passing in a zero
    # argument function or an MFA
    attribute :public, :boolean, allow_nil?: false, default: false

    # This is set on create
    create_timestamp :inserted_at
    # This is updated on all updates
    update_timestamp :updated_at

    # `create_timestamp` above is just shorthand for:
    # attribute :inserted_at, :utc_datetime_usec,
    #   private?: true,
    #   writable?: false,
    #   default: &DateTime.utc_now/0
  end

end

# in lib/my_app/resources/user.ex
defmodule MyApp.User do
  use Ash.Resource

  attributes do
    attribute :email, :string,
      allow_nil?: false,
      constraints: [
        # Note: This regex is just an example
        match: ~r/^[\w.!#$%&’*+\-\/=?\^`{|}~]+@[a-zA-Z0-9-]+(\.[a-zA-Z0-9-]+)*$/i
      ]

    uuid_primary_key :id
  end
end
For full details on defining a resource, see: Ash.Resource.Dsl.
Add resources to your API
Alter your API (lib/my_app/api.ex) to add the resources we created on the previous step:
resources do
  resource MyApp.User
  resource MyApp.Tweet
end
Test the resources
Now you are able to create changesets for your resources using Ash.Changeset.new/2:
iex(7)> changeset = Ash.Changeset.new(MyApp.User, %{email: "ash.man@enguento.com"})
#Ash.Changeset<
  action_type: :create,
  attributes: %{email: "ash.man@enguento.com"},
  relationships: %{},
  errors: [],
  data: %MyApp.User{
    __meta__: #Ecto.Schema.Metadata<:built, "">,
    __metadata__: %{},
    aggregates: %{},
    calculations: %{},
    email: nil,
    id: nil
  },
  valid?: true
>
If you try to use an invalid email (the email regex is for demonstration purposes only)
an error will be returned:
iex(6)> changeset = Ash.Changeset.new(MyApp.User, %{email: "@eng.com"})
#Ash.Changeset<
  action_type: :create,
  attributes: %{},
  relationships: %{},
  errors: [
    %Ash.Error.Changes.InvalidAttribute{
      class: :invalid,
      field: :email,
      message: {"must match the pattern %{regex}",
       [
         regex: "~r/^[\\w.!#$%&‚Äô*+\\-\\/=?\\^`{|}~]+@[a-zA-Z0-9-]+(\\.[a-zA-Z0-9-]+)*$/i"
       ]},
      path: [],
      stacktrace: #Stacktrace<>
    }
  ],
  data: %MyApp.User{
    __meta__: #Ecto.Schema.Metadata<:built, "">,
    __metadata__: %{},
    aggregates: %{},
    calculations: %{},
    email: nil,
    id: nil
  },
  valid?: false
>
Add your data layer
To be able to store and later on read your resources, a data layer is required. For more information, see the documentation for the data layer you would like to use. The currently supported data layers are listed below:
	Storage	Datalayer	Storage Documentation
	postgres	AshPostgres.DataLayer	Postgres Documentation
	csv	AshCsv.DataLayer	CSV Information
	ets	Ash.DataLayer.Ets	Erlang Term Storage Documentation
	mnesia	Ash.DataLayer.Mnesia	Mnesia Documentation

To add a data layer, we need to add it to the use Ash.Resource statement. In
this case we are going to use ETS which is a in-memory data layer that is built
into the BEAM and works well for testing purposes.
  # in both lib/my_app/resources/user.ex
  # and lib/my_app/resources/tweet.ex

  use Ash.Resource, data_layer: Ash.DataLayer.Ets
Add actions to enable functionality
Actions are the primary driver for adding specific interactions to your resource.
You can read the about Ash.Resource.Dsl actions
to learn how to customize the functionality. For now we will enable all of them with default implementations by adding the following block to your resources:
  # in both lib/my_app/resources/user.ex
  # and lib/my_app/resources/tweet.ex

  actions do
    create :create
    read :read
    update :update
    destroy :destroy
  end
Test functionality
Now you should be able to use your API to do CRUD operations on your resources.
Create resource
iex(1)> user_changeset = Ash.Changeset.new(MyApp.User, %{email: "ash.man@enguento.co
m"})
#Ash.Changeset<
  action_type: :create,
  attributes: %{email: "ash.man@enguento.com"},
  relationships: %{},
  errors: [],
  data: %MyApp.User{
    __meta__: #Ecto.Schema.Metadata<:built, "">,
    __metadata__: %{},
    aggregates: %{},
    calculations: %{},
    email: nil,
    id: nil
  },
  valid?: true
>
iex(2)> MyApp.Api.create(user_changeset)
{:ok,
 %MyApp.User{
   __meta__: #Ecto.Schema.Metadata<:built, "">,
   __metadata__: %{},
   aggregates: %{},
   calculations: %{},
   email: "ash.man@enguento.com",
   id: "2642ca11-330b-4a07-83c7-b0e9ef391df6"
 }}
List and Read a resource
iex(3)> MyApp.Api.read(MyApp.User)
{:ok,
 [
   %MyApp.User{
     __meta__: #Ecto.Schema.Metadata<:built, "">,
     __metadata__: %{},
     aggregates: %{},
     calculations: %{},
     email: "ash.man@enguento.com",
     id: "2642ca11-330b-4a07-83c7-b0e9ef391df6"
   }
 ]}
iex(4)> MyApp.Api.get(MyApp.User, "2642ca11-330b-4a07-83c7-b0e9ef391df6")
{:ok,
 %MyApp.User{
   __meta__: #Ecto.Schema.Metadata<:built, "">,
   __metadata__: %{},
   aggregates: %{},
   calculations: %{},
   email: "ash.man@enguento.com",
   id: "2642ca11-330b-4a07-83c7-b0e9ef391df6"
 }}
Add relationships
With our resources stored in a data layer we can move on
to create relationships between them. In this case we will
specify that a User can have many Tweets - this implies that
a Tweet belongs to a specific User.
# in lib/my_app/resources/user.ex
  relationships do
    has_many :tweets, MyApp.Tweet, destination_field: :user_id
  end

# in lib/my_app/resources/tweet.ex
  relationships do
    belongs_to :user, MyApp.User
  end
Test relationships
Now we can use the new relationship to create a Tweet that belongs to a specific User:
iex(8)> {:ok, user} = Ash.Changeset.new(MyApp.User, %{email: "ash.man@enguento.com"}) |> MyApp.Api.create()
{:ok,
 %MyApp.User{
   __meta__: #Ecto.Schema.Metadata<:built, "">,
   __metadata__: %{},
   aggregates: %{},
   calculations: %{},
   email: "ash.man@enguento.com",
   id: "0d7063f8-b07c-4d02-88b2-b671f1aa0ad9",
   tweets: #Ash.NotLoaded<:relationship>
 }}
iex(9)> MyApp.Tweet |> Ash.Changeset.new(%{body: "ashy slashy"}) |> Ash.Changeset.replace_relationship(:user, user) |> MyApp.Api.create()
{:ok,
 %MyApp.Tweet{
   __meta__: #Ecto.Schema.Metadata<:built, "">,
   __metadata__: %{},
   aggregates: %{},
   body: "ashy slashy",
   calculations: %{},
   inserted_at: ~U[2020-11-14 12:54:06Z],
   id: "f0b0b9d5-832c-45c9-9313-5e3fb9f1af24",
   public: false,
   updated_at: ~U[2020-11-14 12:54:06Z],
   user: %MyApp.User{
     __meta__: #Ecto.Schema.Metadata<:built, "">,
     __metadata__: %{},
     aggregates: %{},
     calculations: %{},
     email: "ash.man@enguento.com",
     id: "0d7063f8-b07c-4d02-88b2-b671f1aa0ad9",
     tweets: #Ash.NotLoaded<:relationship>
   },
   user_id: "0d7063f8-b07c-4d02-88b2-b671f1aa0ad9"
 }}
Add a Phoenix Frontend
Now that the Elixir API is complete, you can move on to the next
guide to learn how to change the data_layer to
PostgreSQL and expose it via a JSON API.
	AshJsonApi - can be used to build a spec compliant JSON:API.
	AshPostgres.DataLayer - can be used to persist your resources to PostgreSQL.

See Ash documentation for the rest
	Ash.Api for what you can do with your resources.
	Ash.Query for the kinds of queries you can make.
	Ash.Resource.Dsl for the resource DSL documentation.
	Ash.Api.Dsl for the API DSL documentation.




  

Getting started with Ash and Phoenix
In this guide we will convert the sample app from the getting
stated guide into
a full blown service backed by PostgreSQL as a storage and a Json Web API.
For the web part of the application we will rely on the
Phoenix framework as both frameworks are complementary.
Keep in mind that using Phoenix is not a requirement, you could
alternatively use Plug.
You can check out the completed application and source code in this repo.
Create Phoenix app
We create a simple Phoenix application and we remove some unnecessary parts,
also we are using --app to rename the application so it matches the name from
the getting started guide.
mix phx.new my_app --no-html --no-webpack --no-gettext
Add dependencies and formatter
Now we need to add the dependencies, ash and ash_postgres. To find out what the latest available version is you can use mix hex.info:
mix hex.info ash_postgres
mix hex.info ash
Next modify the the .formatter and mix.exs files:
--- a/.formatter.exs
+++ b/.formatter.exs
@@ -1,4 +1,13 @@
 [
+  import_deps: [
+    :ash_json_api,
+    :ash_postgres
+  ],

--- b/mix.exs
+++ b/mix.exs
@@ -33,6 +33,8 @@ defmodule MyAppPhx.MixProject do
   # Type `mix help deps` for examples and options.
   defp deps do
     [
+      {:ash_postgres, "~> 0.25.5"},
+      {:ash, "~> 1.24"}

Next, modify MyApp.Repo to use AshPostgres.Repo instead of Ecto.Repo.
defmodule MyApp.Repo do
  use AshPostgres.Repo,
    otp_app: :my_app
end
Make sure you can connect to Postgres by verifying that the credentials in config/dev.exs are correct and create the database by running:
mix ecto.create
* The database for MyApp.Repo has been created
To configure Phoenix to support the jsonapi content type, add the following configuration to config/config.exs:
--- a/config/config.exs
+++ b/config/config.exs
@@ -10,6 +10,10 @@ use Mix.Config
 config :my_app,
   ecto_repos: [MyApp.Repo]

+config :mime, :types, %{
+  "application/vnd.api+json" => ["json"]
+}
+
Reuse the files from the Getting Started guide
Copy the lib/my_app/api.ex, lib/my_app/resources/tweet.ex
and lib/my_app/resources/user.ex from the Getting Started
sample app into this project in the same path.
Switch data layer to Postgres
We can now proceed to switch the data layer from ETS
to PostgreSQL simply by changing the data_layer to
AshPostgres.DataLayer in our resources
and adding the table name and our repo. In this case we will
use the default repo created by Phoenix.
--- a/my_app_phx/lib/my_app/resources/tweet.ex
+++ b/my_app_phx/lib/my_app/resources/tweet.ex
@@ -1,6 +1,11 @@
 # in my_app_phx/lib/my_app/resources/tweet.ex
 defmodule MyApp.Tweet do
-  use Ash.Resource, data_layer: Ash.DataLayer.Ets
+  use Ash.Resource, data_layer: AshPostgres.DataLayer
+
+  postgres do
+    table "tweets"
+    repo MyApp.Repo
+  end

--- a/my_app_phx/lib/my_app/resources/user.ex
+++ b/my_app_phx/lib/my_app/resources/user.ex
@@ -1,6 +1,11 @@
 # in my_app_phx/lib/my_app/resources/user.ex
 defmodule MyApp.User do
-  use Ash.Resource, data_layer: Ash.DataLayer.Ets
+ use Ash.Resource, data_layer: AshPostgres.DataLayer
+
+  postgres do
+    table "users"
+    repo MyApp.Repo
+  end
Now you can tell Ash to generate the migrations from your API:
mix ash_postgres.generate_migrations --apis MyApp.Api
* creating priv/repo/migrations/20201120214857_migrate_resources1.exs
and run the ecto migration to generate the tables:
run mix ecto.migrate

23:23:46.067 [info]  == Running 20201120222312 MyApp.Repo.Migrations.MigrateResources1.up/0 forward

23:23:46.070 [info]  create table users

23:23:46.076 [info]  create table tweets

23:23:46.090 [info]  == Migrated 20201120222312 in 0.0s

Test PostgreSQL integration
Start IEx with iex -S mix phx.server and lets run the same test
we ran in the initial my_app. You will now see that SQL statements
are being executed and data is now stored in  your PostgreSQL database.
iex(1)> {:ok, user} = Ash.Changeset.new(MyApp.User, %{email: "ash.man@enguento.com"}) |> MyApp.Api.create()
[debug] QUERY OK db=1.2ms idle=1432.0ms
begin []
[debug] QUERY OK db=0.4ms
INSERT INTO "users" ("email","id") VALUES ($1,$2) ["ash.man@enguento.com", <<72, 22
6, 94, 187, 145, 81, 66, 25, 183, 79, 59, 199, 93, 88, 32, 243>>]
[debug] QUERY OK db=0.3ms
commit []
{:ok,
 %MyApp.User{
   __meta__: #Ecto.Schema.Metadata<:loaded, "users">,
   __metadata__: %{},
   aggregates: %{},
   calculations: %{},
   email: "ash.man@enguento.com",
   id: "48e25ebb-9151-4219-b74f-3bc75d5820f3",
   tweets: #Ash.NotLoaded<:relationship>
 }}

iex(2)> MyApp.Tweet |> Ash.Changeset.new(%{body: "ashy slashy"}) |> Ash.Changeset.r
eplace_relationship(:user, user) |> MyApp.Api.create()
[debug] QUERY OK db=0.1ms idle=1197.5ms
begin []
[debug] QUERY OK db=2.2ms
INSERT INTO "tweets" ("body","inserted_at","id","public","updated_at","user_id") VAL
UES ($1,$2,$3,$4,$5,$6) ["ashy slashy", ~U[2020-11-22 21:15:33Z], <<163, 22, 225, 4
3, 217, 10, 67, 242, 152, 149, 197, 133, 253, 154, 244, 95>>, false, ~U[2020-11-22
21:15:33Z], <<72, 226, 94, 187, 145, 81, 66, 25, 183, 79, 59, 199, 93, 88, 32, 243>
>]
[debug] QUERY OK db=0.3ms
commit []
{:ok,
 %MyApp.Tweet{
   __meta__: #Ecto.Schema.Metadata<:loaded, "tweets">,
   __metadata__: %{},
   aggregates: %{},
   body: "ashy slashy",
   calculations: %{},
   inserted_at: ~U[2020-11-22 21:15:33Z],
   id: "a316e12b-d90a-43f2-9895-c585fd9af45f",
   public: false,
   updated_at: ~U[2020-11-22 21:15:33Z],
   user: %MyApp.User{
     __meta__: #Ecto.Schema.Metadata<:loaded, "users">,
     __metadata__: %{},
     aggregates: %{},
     calculations: %{},
     email: "ash.man@enguento.com",
     id: "48e25ebb-9151-4219-b74f-3bc75d5820f3",
     tweets: #Ash.NotLoaded<:relationship>
   },
   user_id: "48e25ebb-9151-4219-b74f-3bc75d5820f3"
 }}
Exposing the API with a JSON API
First we need to add the extension dependency for ash_json_api.
mix hex.info ash_json_api
Add it to your dependencies and don't forget to run mix deps.get:
--- a/mix.exs
+++ b/mix.exs
@@ -33,6 +33,7 @@ defmodule MyApp.MixProject do
   # Type `mix help deps` for examples and options.
   defp deps do
     [
+      {:ash_json_api, "~> 0.24.1"},
       {:ash_postgres, "~> 0.25.5"},
       {:ash, "~> 1.24"},
       {:phoenix, "~> 1.5.6"},
With the dependencies in place the extension has to be added to your
API in MyApp.Api:
--- a/lib/my_app/api.ex
+++ b/lib/my_app/api.ex
@@ -1,6 +1,9 @@
 # lib/my_app/api.ex
 defmodule MyApp.Api do
-  use Ash.Api
+  use Ash.Api,
+    extensions: [
+      AshJsonApi.Api
+    ]
We can proceed to add a route in the Phoenix router to forward requests
to our Ash API. To do so we use AshJsonApi.forward/3 as shown in
lib/my_app_web/router.ex:
--- a/lib/my_app_web/router.ex
+++ b/lib/my_app_web/router.ex
@@ -1,12 +1,14 @@
 defmodule MyAppWeb.Router do
   use MyAppWeb, :router
-
+  require AshJsonApi
+
   pipeline :api do
     plug :accepts, ["json"]
   end

-  scope "/api", MyAppWeb do
+  scope "/api" do
     pipe_through :api
+    AshJsonApi.forward("/", MyApp.Api)
   end
After that, all we have to do is configure our resources for the JSON:API.
In this guide we will only expose an API for the user resource, exposing the tweet resource is left as an exercise for the reader.
We need to add the extension to our resource and define a mapping between
the REST verbs and our internal API actions.
--- a/lib/my_app/resources/user.ex
+++ b/lib/my_app/resources/user.ex
@@ -1,7 +1,24 @@
 # in lib/my_app/resources/user.ex
 defmodule MyApp.User do
- use Ash.Resource, data_layer: AshPostgres.DataLayer
+  use Ash.Resource, data_layer: AshPostgres.DataLayer,
+    extensions: [
+      AshJsonApi.Resource
+    ]

+  json_api do
+    type "user"
+
+    routes do
+      base "/users"
+
+      get :read
+      index :read
+      post :create
+      patch :update
+      delete :destroy
+    end
+  end
+
Test Web Json API
Fire up IEx with iex -S mix phx.server and curl the API:
curl -s --request GET --url 'http://localhost:4000/api/users' | jq

{
  "data": [
    {
      "attributes": {
        "email": "ash.man@enguento.com"
      },
      "id": "46b60ec8-5b0f-461d-95ab-bcc5169ff831",
      "links": {},
      "meta": {},
      "relationships": {},
      "type": "user"
    },
    {
      "attributes": {
        "email": "ash.man@enguento.com"
      },
      "id": "cd84148a-4af4-4f9f-952f-9daa28946e01",
      "links": {},
      "meta": {},
      "relationships": {},
      "type": "user"
    },
    {
      "attributes": {
        "email": "ash.man@enguento.com"
      },
      "id": "48e25ebb-9151-4219-b74f-3bc75d5820f3",
      "links": {},
      "meta": {},
      "relationships": {},
      "type": "user"
    }
  ],
  "jsonapi": {
    "version": "1.0"
  },
  "links": {
    "self": "http://localhost:4000/api/users"
  }
}



  

Expressions
Ash has an "expression" syntax, which can be used in filters and calculations. More uses will likely be implemented in the future.
Expressions are not evaluated in-line. They are stored for later use and may be translated to SQL/Elixir to be executed. To include a variable somewhere in an expression, use a ^, similar to how Ecto/pattern matching works. For example: Ash.Query.filter(id == ^id). That would filter a resource to records where their id equals the variable id.
Notice
The expression syntax is young, and in some cases may be missing basic operators/functions/syntax.
Please open a proposal issue in Ash. I generally release new versions of the project quickly, so if your proposal (and/or PR if you end up implementing the fix) will likely be released very soon. If you are using the ash_postgres datalayer, then you can often use fragment/* as an escape hatch. It works just like Ecto's fragment.
Filters
Ash.Query.filter/2 is a macro that accepts an expression by default. Here are some examples:
# simple boolean operators
Ash.Query.filter(User, email == "foo@bar.com")

# simple function calls
Ash.Query.filter(User, is_nil(deactivated_at))

# boolean operators
Ash.Query.filter(User, is_nil(deactivated_at) or email == "foo@bar.com")

# using fragment with a field reference
search = "Bob Sagat"
Ash.Query.filter(User, fragment("levenshtein(?, ?)", first_name, ^search))

# referencing a related resource
Ash.Query.filter(User, profile.first_name == "Zach Daniel")
You can use expressions in the filter of a read action as well. There are two important differences between Ash.Query.filter/2:
	You have to call Ash.Query.expr/1, which is automatically imported in that context
	It is technically a filter template, which allows you to add some amount of dynamism to the expression, since it is statically embedded in the resource.

Filter templates support referencing fields on the actor, via {:_actor, :field}, arguments of the read action, via {:_arg, :field}, and values in the context, via {:_context, :field}. For readability, corresponding functions, actor/1, arg/1, and context/1 that simply returns those values.
Here are some examples:
read :current_user do
  filter expr(id == ^actor(:id))
end

read :by_id do
  argument :id, :uuid, allow_nil?: false

  filter expr(id == ^arg(:id))
end

read :active do
  filter expr(not(is_nil(activated_at)))
end
Referencing related values
When referencing related values, if the reference is a has_one or belongs_to, the filter does exactly what it looks like (matches if the related value matches). If it is a has_many or a many_to_many, it matches if any of the related records match.
Referencing aggregates and calculations
Aggregates are simple, insofar as all aggregates can be referenced in filter expressions (if you are using a data layer that supports it).
For calculations, only those that define an expression can be referenced in other expressions.  See the section below on declaring calculations with expressions. 
Here are some examples:
# given a `full_name` calculation

Ash.Query.filter(User, full_name == "Hob Goblin")

# given a `full_name` calculation that accepts an argument called `delimiter`

Ash.Query.filter(User, full_name(delimiter: "~") == "Hob~Goblin")
Calculations
There are two ways to make a calculation with an expression. The simplest, is to define the expression in-line with expr/1. The other is to use a custom Ash.Calculation module, and define an expression/2 callback. This should return the expression that will ultimately be used. Doing this can allow you to define Elixir code that calculates the value of the expression (in calculate/3) as well. This means that, if the calculation is loaded but not referenced in a filter, sort or calculation, it can be calculated at runtime in Elixir. Eventually, logic will be added to support determining if an expression can be done at runtime, and this optimization will be added to inline expr/1 calculations as well.
Using expr/1
 Calculations can reference aggregates, other calculations, and attributes (but not relationships).
 Additionally, calculation expressions act as filter templates (see the filter template section above for more).
 For example:
calculations do
  calculate :full_name, :string, expr(first_name <> " " <> last_name)
end
If you want to refer to a related value, you can use the first aggregate. For example to support referencing first_name and last_name on a user record where that information is stored in a related profile:
aggregates do
  first :first_name, :profile, :first_name
  first :last_name, :profile, :last_name
end

calculations do
  calculate :full_name, :string, expr(first_name <> ^arg(:separator) <> last_name) do
    argument :separator, :string, default: " "
  end
end
As an aside: this also allows loading that value on the user, e.g Ash.Query.load(User, [:first_name, :last_name])
Using calculation modules
An example calculation module to accomplish similar concat behavior as the examples above:
defmodule MyApp.Calculations.Concat do
  @moduledoc false
  use Ash.Calculation
  require Ash.Query

  def init(opts) do
    if opts[:keys] && is_list(opts[:keys]) && Enum.all?(opts[:keys], &is_atom/1) do
      {:ok, opts}
    else
      {:error, "Expected a `keys` option for which keys to concat"}
    end
  end

  def select(_query, opts) do
    opts[:keys]
  end

  def expression(opts, _) do
    Enum.reduce(opts[:keys], nil, fn key, expr ->
      if expr do
        if opts[:separator] do
          Ash.Query.expr(expr <> ^opts[:separator] <> ref(^key))
        else
          Ash.Query.expr(expr <> ref(^key))
        end
      else
        Ash.Query.expr(ref(^key))
      end
    end)
  end

  def calculate(records, opts, _) do
    Enum.map(records, fn record ->
      Enum.map_join(opts[:keys], opts[:separator] || "", fn key ->
        to_string(Map.get(record, key))
      end)
    end)
  end
end
This can now be reused throughout your application, for example:
alias MyApp.Calculations.Concat

calculations do
  calculate :full_name, {Concat, keys: [:first_name, :last_name, separator: " "]}
end



  

Managing Relationships
In Ash, managing related data is done via Ash.Changeset.manage_relationship/4. There are various ways to leverage the functionality expressed there. If you are working with changesets directly, you can call that function. However, if you want that logic to be portable (e.g available in ash_graphql mutations and ash_json_api actions), then you want to use the following argument + change pattern:
actions do
  update :update do
    argument :add_comment, :map do
      allow_nil? false
    end

    argument :tags, {:array, :uuid} do
      allow_nil? false
    end

    # First argument is the name of the action argument to use
    # Second argument is the relationship to be managed
    # Third argument is options. For more, see `Ash.Changeset.manage_relationship/4`. This accepts the same options.
    change manage_relationship(:add_comment, :comments, type: :create)

    # Second argument can be ommitted, as the argument name is the same as the relationship
    change manage_relationship(:tags, type: :replace)
  end
end
With this, those arguments can be used simply in action input:
post
|> Ash.Changeset.for_update(:update, tags: [tag1_uuid, tag2_uuid], add_comment: %{text: "comment text"})
|> MyApi.update!()
It gets even simpler if you are using the code_interface, for example:
# With this in your resource
code_interface do
  define :update_post, action: :update
end

# You can use it like so:

MyApi.update_post!(%{tags: [tag1_uuid, tag2_uuid], add_comment: %{text: "comment text"}})
These arguments will also be exposed as fields in ash_graphql and ash_json_api. 
Argument Types
Notice how we provided a map as input to add_comment. The only types supported by manage_relationship are values that map to the primary key of the resource, which is why tags allowed the list of :uuids. However, %{text: "comment text"} must be a map,
as it will eventually be passed to a create action on the Comment resource. The ergonomics of this are still being worked out, but there are ways to make it such that your action accepts input like add_comment: "comment text". For now, the only way to do it would be by adding a private argument to hold the proper input for add_comment, and a change to set that argument, based on the provided value. For example:
defmodule MyApp.Post.Changes.SetAddCommentArgument do
  use Ash.Resource.Change


  def change(changeset, _, _) do
    case Ash.Changeset.fetch_argument(changeset, :add_comment) do
      {:ok, comment_text} -> Ash.Changeset.set_argument(changeset, :private_add_comment, %{text: comment_text})
      :error -> changeset
    end
  end
end

actions do
  update :update do
    argument :add_comment, :string do
      allow_nil? false
    end

    argument :private_add_comment, :map do
      # Extensions know not to expose private arguments
      private? true
    end

    change MyApp.Post.Changes.SetAddCommentArgument

    change manage_relationship(:private_add_comment, :comments, type: :create)
  end
end
Graphql Input Types
In ash_graphql, a type of :map simply translates to :json. Right now, there is nothing that can automatically generate the requisite input object for a given argument that eventually gets passed to manage_relationship/3. So if you want typed input objects to use with those arguments, you will need to use a custom map type implementation, and have it refer to a custom absinthe type. Thankfully, absinthe makes it very easy to define new input_object types. For example:
defmodule MyApp.Types.CreateCommentInput do
  use Ash.Type

  def graphql_input_type, do: :create_comment_input

  defdelegate storage_type, to: Ash.Type.Map
  defdelegate cast_input(value, constraints), to: Ash.Type.Map
  defdelegate cast_stored(value, constraints), to: Ash.Type.Map
  defdelegate dump_to_native(value, constraints), to: Ash.Type.Map
end
Given that type definition, you could then add the following to your absinthe schema:
input_object :create_comment_input do
   field :text, :string
end
We're open to suggestions on making this process more ergonomic in general.



  

Authorization
Ash Policy Authorizer
Generally speaking, you will want to use ash_policy_authorizer to authorize access to your resources.
use mix hex.info ash_policy_authorizer to get the latest version, and add it to your dependencies:
{:ash_policy_authorizer, "~> x.x.x"}
For usage, see the ash_policy_authorizer documentation for the rest
Implementing a custom authorizer
Implementing a custom authorizer is pretty complex. Instead of writing a guide, it would be best to just have some discussions if/when someone thinks that they need one. Make an issue and we'll talk it over.



  

Identities
Identities can be used to describe the ways that a resource is uniquely identified. For example, you may have a user resource that has an id primary key, but is uniquely identifiable via the email attribute as well.
To configure this, add an identities block to your resource
For example:
identities do
  identity :unique_email, [:email]
end
Effects
Identities are used in various ways across Ash and it's extensions. This list is not necessarily exhaustive:
Ash
	Identities can be used with Ash.Api.get/3, e.g MyApi.get(User, [email: "foo@bar.com"])

AshPostgres
	The migration generator creates unique constraints for identities

AshJsonApi
	Get routes can be configured to use a specific identity, creating a route like GET /users/foo@bar.com

AshGraphql
	Get queries and mutations can be configured to use a specific identity, to create a query like the following. (Arbitrary filtering is supported on list queries, this is is for creating queries that return a single result)

query{
  getUser(email: "foo@bar.com"){
      id
  }
}



  

Pagination
Pagination is configured at the action level. There are two kinds of pagination supported: keyset and offset. There are
pros and cons to each. An action can support both at the same time, or only one (or none). A full count of records can be
requested by passing page: [count: true], but it should be kept in mind that doing this requires running the same query
twice, one of which is a count of all records. Ash does these in parallel, but it can still be quite expensive on large
datasets. For more information on the options for configuring actions to support pagination, see the pagination section in Ash.Resource.Dsl.
Offset Pagination
Offset pagination is done via providing a limit and an offset. A limit is how many records that should be returned on the page.
An offset is how many records from the beginning should be skipped. Using this, you might make requests like the following:
# Get the first ten records
Api.read(Resource, page: [limit: 10])
# Get the second ten records
Api.read(Resource, page: [limit: 10, offset: 10])
# No need to do this in practice, see `c:Ash.Api.page/2`
Offset Pros
	Simple to think about
	Possible to skip to a page by number. E.g the 5th page of 10 records is offset: 40
	Easy to reason about what page you are currently on (if the total number of records is requested)
	Can go to the last page (even though, if done by using the full count, the data could have changed)

Offset Cons
	Does not perform well on large datasets
	When moving between pages, if data was created or deleted, records may appear on multiple pages or be skipped

Keyset Pagination
Keyset pagination is done via providing an after or before option, as well as a limit. The value of this option should be
a keyset that has been returned from a previous request. Keysets are returned when a request is made with a limit to an action
that supports keyset pagination, and they are stored in the __metadata__ key of each record. The keyset is a special value that
can be passed into the after or before options, to get records that occur after or before.
For example:
page = Api.read(Resource, page: [limit: 10])

last_record = List.last(page.results)

# No need to do this in practice, see `c:Ash.Api.page/2`
next_page = Api.read(Resource, page: [limit: 10, after: last_record.__metadata__.keyset])
Important Limitation
Keyset pagination cannot currently be used in conjunction with aggregate and calculation sorting.
Combining them will result in an error on the query.
Keyset Pros
	Performs very well on large datasets (assuming indices exist on the columns being sorted on)
	Behaves well as data changes. The record specified will always be the first or last item in the page

Keyset Cons
	A bit more complex
	Can't go to a specific page number
	Can't use aggregate and calculation sorting

For more information on keyset vs offset based pagination, see:
	Offset vs Seek Pagination




  

Validations
In ash, there are three kinds of validations.
	The simple allow_nil? and writable? validations provided for attributes
	Type constraints, specific to each type
	The validations section

allow_nil/writable?
These are considered simple/global enough to warrant being specified at the attribute level.
attributes do
  attribute :some_field, :integer, writable?: false
  attribute :some_other_field, :integer, allow_nil?: false
end
To see the equivalent statements using the validations section of a resource, see the
corresponding section below.
Type constraints
Each type (including custom types) can expose constraints. When declaring an attribute
these constraints can be provided with the constraints option. For example:
attributes do
  attribute :some_field, :integer, constraints: [min: 1, max: 5]
  attribute :some_other_field, :string, constraints: [max_length: 255]
end
Validations Section
The validations section allows you to create validations based on the changeset.
The only information available is the changeset. If you want to adjust the behavior based
on other details of the request, like the current user, you are most likely looking for
authorization.
A validation is simply a module that implements the Ash.Resource.Validation behaviour. The built in validations
expose utility functions that are imported into the resource's scope, to make them easier to read. You
can do this with custom validations as well. See the documentation in Ash.Resource.Validation for more information.
Right now, there are not very many built in validations, but the idea is that eventually we will have a rich
library of built in validations to choose from.
Validations can be scoped to the type (:create, :update, :destroy) of action (but not to specific actions). If you would like to adjust the validations for a specific action, that is (not yet, at the time of writing) supported by options on the action declaration.
Important Note
By default, validations run on create and update only. Many validations don't make sense in the context of deletes.
Examples
validations do
  validate present([:foo, :bar]), on: :update
  validate present([:foo, :bar, :baz], at_least: 2), on: :create
  validate absent([:foo, :bar, :baz], exactly: 1), on: [:update, :destroy]
  validate {MyCustomValidation, [foo: :bar]}, on: :create
end



  

Notifiers
Built-in Notifiers
	PubSub: Ash.Notifier.PubSub

Creating a notifier
A notifier is a simple extension that must implement a single callback notify/1. Notifiers do not have to implement an Ash DSL extension, but they may in order to configure how that notifier should behave. See Ash.Notifier.Notification for the currently available fields. Notifiers should not do anything intensive synchronously. If any heavy work needs to be done, they should delegate to something else to handle the notification, like sending it to a GenServer or GenStage.
Eventually, there will likely be built in notifiers that will make setting up an GenStage that reacts to your resource changes easy. Until then, you'll have to write your own.
For more information on creating a DSL extension to configure your notifier, see the docs for Ash.Dsl.Extension.
Example notifier
defmodule ExampleNotifier do
  use Ash.Notifier

  def notify(%Ash.Notifier.Notification{resource: resource, action: %{type: :create}, actor: actor}) do
    if actor do
      Logger.info("#{actor.id} created a #{resource}")
    else
      Logger.info("A non-logged in user created a #{resource}")
    end
  end
end
Including a notifier in a resource
defmodule MyResource do
  use Ash.Resource,
    notifiers: [ExampleNotifier]
end
Transactions
API calls involving resources who's datalayer supports transactions (like Postgres), notifications are saved up and sent after the transaction is closed. For example, the api call below ultimately results in many many database calls.
Post
|> Ash.Changeset.new(%{})
|> Ash.Changeset.append_to_relationship(:related_posts, [1, 2, 3])
|> Ash.Changeset.remove_from_relationship(:related_posts, [4, 5])
|> Ash.Changeset.append_to_relationship(:comments, [10])
|> Api.update!()
Ash doesn't support bulk database operations yet, so it performs the following operations:
	a read of the currently related posts
	a read of the currently related comments
	a creation of a post_link to relate to 1
	a creation of a post_link to relate to 2
	a creation of a post_link to relate to 3
	a destruction of the post_link related to 4
	a destruction of the post_link related to 5
	an update to comment 10, to set its post_id to this post

If all three of these resources have notifiers configured, we need to send a notification for each operation (notifications are not sent for reads). For data consistency reasons, if a data layer supports transactions, all writes are done in a transaction. However, if you try to read the record from the database that you have just received a notification about before the transaction has been closed, in a different process, the information will be wrong. For this reason, Ash accumulates notifications until they can be sent.
If you need to perform multiple operations against your resources in your own transaction, you will have to handle that case yourself. To support this, Ash.Api.create/2, Ash.Api.update/2 and Ash.Api.destroy/2 support a return_notifications?: true option. This causes the api call to return {:ok, result, notifications} in the succesful case. Here is an example of how you might use it.
result =
  Ash.DataLayer.transaction(resource, fn ->
    {:ok, something, notifications1} = create_something()
    {:ok, result, notifications2} = create_another_thing(something)
    {:ok, notifications3} = destroy_something(something)

    {result, Enum.concat([notifications1, notifications2, notifications3])}
  end)

case result do
  {:ok, value, notifications} ->
     Ash.Notifier.notify(notifications)

     value
  {:error, error} ->
    handle_error(error)
end



  

Error Handling
Error handling in Ash is still a work in progress, but the pattern is mostly formed at this point. There is a difficult balance to cut between informative errors and enabling simple reactions to those errors. Since many extensions may need to work with and/or adapt their behavior based on errors coming from Ash, we need rich error messages. However, when you have a hundred different exceptions to represent the various kinds of errors a system can produce, it becomes difficult to say something like "try this code, and if it is invalid, do x, if it is forbidden, do y.
Error Classes
To this effect, exceptions in Ash have one of four classes mapping to the top level exceptions:
	forbidden - Ash.Error.Forbidden
	invalid - Ash.Error.Invalid
	framework - Ash.Error.Framework
	unknown - Ash.Error.Unknown

Since many actions can be happening at once, we want to support the presence of multiple errors as a result of a request to Ash. We do this by grouping up the errors into one before returning or raising.
We choose an exception based on the order of the exceptions listed above. If there is a single forbidden, we choose Ash.Error.Forbidden, if there is a single invalid, we choose Ash.Error.Invalid and so on. The actual errors will be included in the errors key on the exception. The exception's message will contain a bulleted list of all the underlying exceptions that occured. This makes it easy to react to specific kinds of errors, as well as to react to any/all of the errors present.
An example of a single error being raised, representing multiple underlying errors:
AshExample.Representative
|> Ash.Changeset.new(%{employee_id: "dabes"})
|> AshExample.Api.create!()
 ** (Ash.Error.Invalid) Input Invalid
 * employee_id: must be absent.
 * first_name, last_name: at least 1 must be present.
    (ash 1.3.0) lib/ash/api/api.ex:534: Ash.Api.unwrap_or_raise!/1
This allows easy rescuing of the major error classes, as well as inspection of the underlying cases
try do
  AshExample.Representative
  |> Ash.Changeset.new(%{employee_id: "dabes"})
  |> AshExample.Api.create!()
rescue
  e in Ash.Error.Invalid ->
    "Encountered #{Enum.count(e.errors)} errors"
end

"Encountered 2 errors"
This approach is relatively experimental. I haven't seen it done this way elsewhere, but it seems like a decent middle ground from a system that can generate multiple disparate errors on each pass.



  

Aggregates
Aggregates in Ash allow for retrieving summary information over groups of related data. A simple example might be to show the "count of published posts for a user".
Declaring aggregates on a resource
Example:
aggregates do
  count :count_of_posts, :posts, filter: [published: true]
end
See the documentation for the aggregates section in Ash.Resource.Dsl for more information.
The aggregates declared on a resource allow for declaring a set of named aggregates that can be used by extensions.
They can also be loaded in the query using Ash.Query.load/2, or after the fact using Ash.Api.load/3. Aggregates declared on the resource will be keys in the resource's struct.
Custom aggregates in the query
Example:
User
|> Ash.Query.new()
|> Ash.Query.aggregate(:count_of_posts, :count, :posts, filter: [published: true])
See the documentation for Ash.Query.aggregate/4 for more information.



  

Calculations
Calculations in Ash allow for displaying complex values as a top level value of a resource.
They are relatively limited in their current form, supporting only functional calculations,
where you provide a module that takes a list of records and returns a list of values for that
calculation. Eventually, there will be support for calculations that can be embedded into the
data layer(for things like postgres) that will allow for sorting and filtering on calculated
data.
Declaring calculations on a resource
Example:
defmodule Concat do
  # An example concatenation calculation, that accepts the delimeter as an argument,
  #and the fields to concatenate as options
  use Ash.Calculation, type: :string

  # Optional callback that verifies the passed in options (and optionally transforms them)
  @impl true
  def init(opts) do
    if opts[:keys] && is_list(opts[:keys]) && Enum.all?(opts[:keys], &is_atom/1) do
      {:ok, opts}
    else
      {:error, "Expected a `keys` option for which keys to concat"}
    end
  end

  @impl true
  def calculate(records, opts, %{separator: separator}) do
    Enum.map(records, fn record ->
      Enum.map_join(opts[:keys], separator, fn key ->
        to_string(Map.get(record, key))
      end)
    end)
  end
end

# Usage in a resource
calculations do
  calculate :full_name, {Concat, keys: [:first_name, :last_name]} do
    # You currently need to use the [allow_empty?: true, trim?: false] constraints here.
    # The separator could be an empty string or require a leading or trailing space, 
    # but would be trimmed or even set to `nil` without the constraints.
    argument :separator, :string, constraints: [allow_empty?: true, trim?: false]
  end
end
See the documentation for the calculations section in Ash.Resource.Dsl and the Ash.Calculation docs for more information.
The calculations declared on a resource allow for declaring a set of named calculations that can be used by extensions.
They can also be loaded in the query using Ash.Query.load/2, or after the fact using Ash.Api.load/3. Calculations declared on the resource will be keys in the resource's struct.
Custom calculations in the query
Example:
User
|> Ash.Query.new()
|> Ash.Query.calculate(:full_name, {Concat, keys: [:first_name, :last_name]}, :string, %{separator: ","})
See the documentation for Ash.Query.calculate/4 for more information.



  

Embedded Resources
Embedded resources function very similarly to embedded schemas in Ecto.
The primary difference is the same as the primary difference between Ecto schemas and Ash resources: the full lifecycle
of the resource is managed by its configuration. For example, you can add validations, calculations, and even authorization policies to an embedded resource. Here is an example of a simple embedded resource:
defmodule MyApp.Profile do
  use Ash.Resource,
    data_layer: :embedded # Use the atom `:embedded` as the data layer.

  attributes do
    attribute :first_name, :string
    attribute :last_name, :string
  end
end
Embedded resources cannot have relationships or aggregates.
Adding embedded resource attributes
Embedded resources simply define an Ash.Type under the hood, meaning you can use them anywhere you would 
use an Ash type.
defmodule MyApp.User do
  use Ash.Resource, ...

  attributes do
    ...

    attribute :profile, MyApp.Profile
    attribute :profiles, {:array, MyApp.Profile} # You can also have an array of embeds
  end
end
Editing embedded attributes
If you manually supply instances of the embedded structs, the structs you provide are used with no validation. For example:
Ash.Changeset.new(user, %{profile: %MyApp.Profile{first_name: "first_name", last_name: "last_name}})
However, you can also treat embedded resources like regular resources that can be "created", "updated", and "destroyed".
To do this, provide maps as the input, instead of structs. In the example above, if you just wanted to change the first_name, you'd provide:
Ash.Changeset.new(user, %{profile: %{first_name: "first_name"}})
This will call the primary update action on the resource. This allows you to define an action on the embed, and add validations to it. For example, you might have something like this:
defmodule MyApp.Profile do
  use Ash.Resource,
    data_layer: :embedded # Use the atom `:embedded` as the data layer.

  attributes do
    attribute :first_name, :string
    attribute :last_name, :string
  end

  validations do
    validate present([:first_name, :last_name], at_least: 1)
  end
end
Calculations
Calculations can be added to embedded resources. When you use an embedded resource, you declare what calculations to load via a constraint.
For example:
defmodule MyApp.Profile do
  use Ash.Resource,
    data_layer: :embedded # Use the atom `:embedded` as the data layer.

  attributes do
    attribute :first_name, :string
    attribute :last_name, :string
  end

  calculations do
    calculate :full_name, :string, concat([:first_name, :last_name], " ")
  end
end

defmodule MyApp.User do
  use Ash.Resource,
    ...

  attributes do
    attribute :profile, MyApp.Profile do
      constraints [load: [:full_name]]
    end
  end
end
Determining what action(s) will be called:
Remember: default actions are already implemented for a resource, with no need to add them. They are called :create, :update, :destroy, and :read. You can use those without defining them. You only need to define them if you wish to override their configuration.
Single Embeds
	If the current value is nil - a create with the provided values
	If the current value is not nil - an update with the provided values
	If the current value is not nil and the new value is nil - a destroy with the original value

Array Embeds
All values in the original array are destroyed, and all maps in the new array are used to create new records.
Adding a primary key
Adding a primary key to your embedded resources is especially useful when managing lists of data. Specifically, it allows you to consider changes to elements with matching primary key values as updates.
For example:
defmodule MyApp.Tag do
  use Ash.Resource,
    data_layer: :embedded

  attributes do
    uuid_primary_key :id
    attribute :name, :string
    attribute :counter, :integer
  end

  validations do
    validate {Increasing, field: :counter}, on: :update
  end
end
Now, you can accept input meant to update individual list items. The entire list must still be provided, but any items with a matching id will be considered an update instead of a destroy + create.
Determining what action(s) will be called with a primary key:
Single Embeds with primary keys
	If the current value is nil - a create with the provided values
	If the current value is not nil and the primary keys match - an update with the provided values
	If the current value is not nil and the primary keys don't match - a destroy of the original value and a create of the new value
	If the current value is not nil and the new value is nil - a destroy with the original value

Array Embeds with primary keys
	Any values in the original list with no primary key matching in the new list are destroyed.
	Any values in the new list with no primary key matching in the original list are created.
	Any values with a primary key match in the original list and the new list are updated

Filtering and Sorting
Currently embedded resources cannot be filtered on or sorted. However, this will be supported eventually.
Usage in Extensions
The AshJsonApi extension simply exposes these attributes as maps. However, the AshGraphql extension allows you
to specify a type (but not queries/mutations) for an embedded resource. If you do, instead of being treated as a :json type it will get its own named input object type and field type.
Accessing the source changeset
When building changesets for embedded resources, the source changeset will be available in action changes under changeset.context.__source__.
This allows you to customize the action based on the details of the parent changeset.



  

Contexts and Domains
It is suggested that you read a bit on Domain Driven Design before proceeding. If you are using phoenix or are familiar with phoenix contexts, then this will make sense to you.
In order to support domain driven design, Ash supports defining multiple APIs, each with their own set of resources. It is possible to share a resource between APIs, but this gets untenable very quickly because any resources related to the shared resource must both appear in each API.
An experimental "Delegation" data layer was added to allow you to use other resources in other APIs as the data layer for a resource, but it created a significant amount of complexity in determining data layer behavior. Instead, simply use the same data layer and configuration in both resources.
Things missing to make this work well:
	Define the ecto schema as a separate module (prerequisite for hidden attributes)
	"hidden" attributes - attributes that are defined on the schema but not the Ash struct
	ability to filter on hidden fields in certain places (haven't determined where this needs to happen)
	ability to add a "base_filter" that can leverage hidden attributes




  

Multitenancy
Multitenancy is the idea of splitting up your data into discrete areas, typically by customer. One of the most common examples of this, is the idea of splitting up a postgres database into "schemas" one for each customer that you have. Then, when making any queries, you ensure to always specify the "schema" you are querying, and you never need to worry about data crossing over between customers. The biggest benefits of this kind of strategy are the simplification of authorization logic, and better performance. Instead of all queries from all customers needing to use the same large table, they are each instead all using their own smaller tables. Another benefit is that it is much easier to delete a single customer's data on request.
In Ash, there are a two primary strategies for implementing multitenancy. The first (and simplest) works for any data layer that supports filtering, and requires very little maintenance/mental overhead. It is done via expecting a given attribute to line up with the tenant, and is called :attribute. The second, is based on the data layer backing your resource, and is called :context. For information on
context based multitenancy, see the documentation of your datalayer. For example, AshPostgres uses postgres schemas. While the :attribute strategy is simple to implement, it also offers fewer advantages, primarily acting as another way to ensure your data is filtered to the correct tenant.
Attribute Multitenancy
defmodule MyApp.Users do
  use Ash.Resource, ...

  multitenancy do
    strategy :attribute
    attribute :organization_id
  end

  ...

  relationships do
    belongs_to :organization, MyApp.Organization
  end
end
In this case, if you were to try to run a query without specifying a tenant, you would get an error telling you that the tenant is required.
Setting the tenant when using the code API is done via Ash.Query.set_tenant/2 and Ash.Changeset.set_tenant/2. If you are using an extension, such as AshJsonApi or AshGraphql the method of setting tenant context is explained in that extension's documentation.
Example usage of the above:
# Error when not setting a tenant
MyApp.Users
|> Ash.Query.filter(name == "fred")
|> MyApi.read!()
** (Ash.Error.Unknown)

* "Queries against the Helpdesk.Accounts.User resource require a tenant to be specified"
    (ash 1.22.0) lib/ash/api/api.ex:944: Ash.Api.unwrap_or_raise!/2

# Automatically filtering by `organization_id == 1`
MyApp.Users
|> Ash.Query.filter(name == "fred")
|> Ash.Query.set_tenant(1)
|> MyApi.read!()

[...]

# Automatically setting `organization_id` to `1`
MyApp.Users
|> Ash.Changeset.new(name: "fred")
|> Ash.Changeset.set_tenant(1)
|> MyApi.create!()

%MyApp.User{organization_id: 1}
If you want to enable running queries without a tenant as well as queries with a tenant, the global? option supports this. You will likely need to incorporate this ability into any authorization rules though, to ensure that users from one tenant can't access other tenant's data.
multitenancy do
  strategy :attribute
  attribute :organization_id
  global? true
end
You can also provide the parse_attribute? option if the tenant being set doesn't exactly match the attribute value, e.g the tenant is org_10 and the attribute is organization_id, which requires just 10.
Context Multitenancy
For AshPostgres multitenancy, see the guide



  

    
Ash.Api behaviour
    



      
An Api allows you to interact with your resources, and holds non-resource-specific configuration.
For example, the json api extension adds an api extension that lets you toggle authorization on/off
for all resources in that Api. You include them in an Api like so:
defmodule MyApp.Api do
  use Ash.Api

  resources do
    resource OneResource
    resource SecondResource
  end
end
Then you can interact through that Api with the actions that those resources expose.
For example: MyApp.Api.create(changeset), or MyApp.Api.read(query). Corresponding
actions must be defined in your resources in order to call them through the Api.
Interface
The functions documented here can be used to call any action on any resource in the Api.
For example, MyApi.read(Myresource, [...]).
Additionally, you can define a code_interface on each resource to be exposed in the Api module.
See the resource DSL documentation for more.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    load_statement()

  





  
    page_request()

  





  
    t()

  





  


  
    
      Functions
    


  
    destroy_opts_schema()

  





  
    handle_before_compile(opts)

  





  
    handle_opts(opts)

  





  
    init(opts)

  





  
    page(api, page, n)

  





  
    page!(api, keyset, request)

  





  
    resource(api, resource)

  





  
    resource_references(api)

  





  
    resources(api)

  





  


  
    
      Callbacks
    


  
    create(arg1, params)

  


    Create a record.






  
    create!(arg1, params)

  


    Create a record. See create/2 for more information.






  
    destroy(arg1, params)

  


    Destroy a record.






  
    destroy!(arg1, params)

  


    Destroy a record. See destroy/2 for more information.






  
    get(resource, id_or_filter, params)

  


    Get a record by a primary key.






  
    get!(resource, id_or_filter, params)

  


    Get a record by a primary key. See get/3 for more.






  
    load(record_or_records, query, opts)

  


    Load fields or relationships on already fetched records.






  
    load!(record_or_records, query, opts)

  


    Load fields or relationships on already fetched records. See load/3 for more information.






  
    page(arg1, page_request)

  


    Fetch a page relative to the provided page.






  
    page!(arg1, page_request)

  


    Fetch a page relative to the provided page.






  
    read(arg1, params)

  


    Run a query on a resource.






  
    read!(arg1, params)

  


    Run an ash query. See read/2 for more.






  
    read_one(arg1, params)

  


    Run a query on a resource, but fail on more than one result






  
    read_one!(arg1, params)

  


    Run an ash query, raising on more than one result. See read_one/2 for more.






  
    reload(record)

  


    Refetches a record by primary key.






  
    reload!(record, params)

  


    Refetches a record by primary key. See reload/1 for more.






  
    update(arg1, params)

  


    Update a record.






  
    update!(arg1, params)

  


    Update a record. See update/2 for more information.






  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    load_statement()


      
       
       View Source
     


  


  

      Specs

      

          load_statement() ::
  Ash.Query.t()
  | [atom()]
  | atom()
  | Keyword.t()
  | [atom() | {atom(), atom() | Keyword.t()}]


      



  



  
    
      
      Link to this type
    
    page_request()


      
       
       View Source
     


  


  

      Specs

      

          page_request() :: :next | :prev | :first | :last | integer()


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: module()


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    destroy_opts_schema()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    handle_before_compile(opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    handle_opts(opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    init(opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    page(api, page, n)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    page!(api, keyset, request)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    resource(api, resource)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    resource_references(api)


      
       
       View Source
     


  


  

      Specs

      

          resource_references(t()) :: [Ash.Api.ResourceReference.t()]


      



  



  
    
      
      Link to this function
    
    resources(api)


      
       
       View Source
     


  


  

      Specs

      

          resources(t()) :: [Ash.Resource.t()]


      



  


        

      

      
        
          
            
            Anchor for this section
          
Callbacks
        

        


  
    
      
      Link to this callback
    
    create(arg1, params)


      
       
       View Source
     


  


  

      Specs

      

          create(Ash.Changeset.t(), params :: Keyword.t()) ::
  {:ok, Ash.Resource.record()} | {:error, term()}


      


Create a record.
	:upsert? - If a conflict is found based on the primary key, the record is updated in the database (requires upsert support) The default value is false.

	:upsert_identity - The identity to use when detecting conflicts for upsert?. By default, the primary key is used. Has no effect if upsert?: true is not provided

	:verbose? - Log engine operations (very verbose!) The default value is false.

	:action - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user.

	:stacktraces? - For Ash errors, wether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant - A tenant to set on the query or changeset

	:actor - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:return_notifications? - Use this if you're running ash actions in your own transaction and you want notifications to happen still.
If a transaction is ongoing, and this is false, notifications will be discarded, otherwise
the return value is {:ok, result, notifications} (or {:ok, notifications})
To send notifications later, use Ash.Notifier.notify(notifications). It sends any notifications
that can be sent, and returns the rest. The default value is false.



  



  
    
      
      Link to this callback
    
    create!(arg1, params)


      
       
       View Source
     


  


  

      Specs

      

          create!(Ash.Changeset.t(), params :: Keyword.t()) ::
  Ash.Resource.record() | no_return()


      


Create a record. See create/2 for more information.

  



  
    
      
      Link to this callback
    
    destroy(arg1, params)


      
       
       View Source
     


  


  

      Specs

      

          destroy(Ash.Changeset.t() | Ash.Resource.record(), params :: Keyword.t()) ::
  :ok | {:error, term()}


      


Destroy a record.
	:verbose? - Log engine operations (very verbose!) The default value is false.

	:action - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user.

	:stacktraces? - For Ash errors, wether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant - A tenant to set on the query or changeset

	:actor - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:return_notifications? - Use this if you're running ash actions in your own transaction and you want notifications to happen still.
If a transaction is ongoing, and this is false, notifications will be discarded, otherwise
the return value is {:ok, result, notifications} (or {:ok, notifications})
To send notifications later, use Ash.Notifier.notify(notifications). It sends any notifications
that can be sent, and returns the rest. The default value is false.



  



  
    
      
      Link to this callback
    
    destroy!(arg1, params)


      
       
       View Source
     


  


  

      Specs

      

          destroy!(Ash.Changeset.t() | Ash.Resource.record(), params :: Keyword.t()) ::
  :ok | no_return()


      


Destroy a record. See destroy/2 for more information.

  



  
    
      
      Link to this callback
    
    get(resource, id_or_filter, params)


      
       
       View Source
     


  


  

      Specs

      

          get(resource :: Ash.Resource.t(), id_or_filter :: term(), params :: Keyword.t()) ::
  {:ok, Ash.Resource.record()} | {:error, term()}


      


Get a record by a primary key.
For a resource with a composite primary key, pass a keyword list, e.g
MyApi.get(MyResource, first_key: 1, second_key: 2)
	:load - Fields or relationships to load in the query. See Ash.Query.load/2

	:context - Context to be set on the query being run

	:verbose? - Log engine operations (very verbose!) The default value is false.

	:action - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user.

	:stacktraces? - For Ash errors, wether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant - A tenant to set on the query or changeset

	:actor - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access



  



  
    
      
      Link to this callback
    
    get!(resource, id_or_filter, params)


      
       
       View Source
     


  


  

      Specs

      

          get!(
  resource :: Ash.Resource.t(),
  id_or_filter :: term(),
  params :: Keyword.t()
) :: Ash.Resource.record() | no_return()


      


Get a record by a primary key. See get/3 for more.

  



  
    
      
      Link to this callback
    
    load(record_or_records, query, opts)


      
       
       View Source
     


  


  

      Specs

      

          load(
  record_or_records :: Ash.Resource.record() | [Ash.Resource.record()],
  query :: load_statement(),
  opts :: Keyword.t()
) :: {:ok, Ash.Resource.record() | [Ash.Resource.record()]} | {:error, term()}


      


Load fields or relationships on already fetched records.
Accepts a list of non-loaded fields and loads them on the provided records or a query, in
which case the loaded fields of the query are used. Relationship loads can be nested, for
example: MyApi.load(record, [posts: [:comments]]).
	:verbose? - Log engine operations (very verbose!) The default value is false.

	:action - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user.

	:stacktraces? - For Ash errors, wether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant - A tenant to set on the query or changeset

	:actor - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access



  



  
    
      
      Link to this callback
    
    load!(record_or_records, query, opts)


      
       
       View Source
     


  


  

      Specs

      

          load!(
  record_or_records :: Ash.Resource.record() | [Ash.Resource.record()],
  query :: load_statement(),
  opts :: Keyword.t()
) :: Ash.Resource.record() | [Ash.Resource.record()] | no_return()


      


Load fields or relationships on already fetched records. See load/3 for more information.

  



  
    
      
      Link to this callback
    
    page(arg1, page_request)


      
       
       View Source
     


  


  

      Specs

      

          page(Ash.Page.page(), page_request()) ::
  {:ok, Ash.Page.page()} | {:error, term()}


      


Fetch a page relative to the provided page.
A page is the return value of a paginated action called via read/2.

  



  
    
      
      Link to this callback
    
    page!(arg1, page_request)


      
       
       View Source
     


  


  

      Specs

      

          page!(Ash.Page.page(), page_request()) :: Ash.Page.page() | no_return()


      


Fetch a page relative to the provided page.

  



  
    
      
      Link to this callback
    
    read(arg1, params)


      
       
       View Source
     


  


  

      Specs

      

          read(Ash.Query.t(), params :: Keyword.t()) ::
  {:ok, [Ash.Resource.record()]}
  | {:ok, [Ash.Resource.record()], Ash.Query.t()}
  | {:error, term()}


      


Run a query on a resource.
For more information, on building a query, see Ash.Query.
	:page - Nested pagination options, see the section on pagination for more

	:return_query? - If true, the query that was ultimately used is returned as a third tuple element.
The query goes through many potential changes during a request, potentially adding
authorization filters, or replacing relationships for other data layers with their
corresponding ids. This option can be used to get the true query that was sent to
the data layer. The default value is false.

	:verbose? - Log engine operations (very verbose!) The default value is false.

	:action - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user.

	:stacktraces? - For Ash errors, wether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant - A tenant to set on the query or changeset

	:actor - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access



  
  Pagination


Limit/offset pagination
	:offset - The number of records to skip from the beginning of the query

	:limit - The number of records to include in the page

	:filter - A filter to apply for pagination purposes, that should not be considered in the full count.
This is used by the liveview paginator to only fetch the records that were already on the
page when refreshing data, to avoid pages jittering.

	:count - Whether or not to return the page with a full count of all records


Keyset pagination
	:before - Get records that appear before the provided keyset (mutually exclusive with after)

	:after - Get records that appear after the provided keyset (mutually exclusive with before)

	:limit - How many records to include in the page

	:filter - See the filter option for offset pagination, this behaves the same.

	:count - Whether or not to return the page with a full count of all records



  



  
    
      
      Link to this callback
    
    read!(arg1, params)


      
       
       View Source
     


  


  

      Specs

      

          read!(Ash.Query.t() | Ash.Resource.t(), params :: Keyword.t()) ::
  [Ash.Resource.record()]
  | {[Ash.Resource.record()], Ash.Query.t()}
  | no_return()


      


Run an ash query. See read/2 for more.

  



  
    
      
      Link to this callback
    
    read_one(arg1, params)


      
       
       View Source
     


  


  

      Specs

      

          read_one(Ash.Query.t() | Ash.Resource.t(), params :: Keyword.t()) ::
  {:ok, Ash.Resource.record()}
  | {:ok, Ash.Resource.record(), Ash.Query.t()}
  | {:error, term()}


      


Run a query on a resource, but fail on more than one result
This is useful if you have a query that doesn't include a primary key
but you know that it will only ever return a single result

  



  
    
      
      Link to this callback
    
    read_one!(arg1, params)


      
       
       View Source
     


  


  

      Specs

      

          read_one!(Ash.Query.t() | Ash.Resource.t(), params :: Keyword.t()) ::
  Ash.Resource.record() | {Ash.Resource.record(), Ash.Query.t()} | no_return()


      


Run an ash query, raising on more than one result. See read_one/2 for more.

  



  
    
      
      Link to this callback
    
    reload(record)


      
       
       View Source
     


  


  

      Specs

      

          reload(record :: Ash.Resource.record()) ::
  {:ok, Ash.Resource.record()} | {:error, term()}


      


Refetches a record by primary key.

  



  
    
      
      Link to this callback
    
    reload!(record, params)


      
       
       View Source
     


  


  

      Specs

      

          reload!(record :: Ash.Resource.record(), params :: Keyword.t()) ::
  Ash.Resource.record() | no_return()


      


Refetches a record by primary key. See reload/1 for more.

  



  
    
      
      Link to this callback
    
    update(arg1, params)


      
       
       View Source
     


  


  

      Specs

      

          update(Ash.Changeset.t(), params :: Keyword.t()) ::
  {:ok, Ash.Resource.record()} | {:error, term()}


      


Update a record.
	:verbose? - Log engine operations (very verbose!) The default value is false.

	:action - The action to use, either an Action struct or the name of the action

	:authorize? - If an actor option is provided (even if it is nil), authorization happens automatically. If not, this flag can be used to authorize with no user.

	:stacktraces? - For Ash errors, wether or not each error has a stacktrace. See the error_handling guide for more. The default value is true.

	:tenant - A tenant to set on the query or changeset

	:actor - If an actor is provided, it will be used in conjunction with the authorizers of a resource to authorize access

	:return_notifications? - Use this if you're running ash actions in your own transaction and you want notifications to happen still.
If a transaction is ongoing, and this is false, notifications will be discarded, otherwise
the return value is {:ok, result, notifications} (or {:ok, notifications})
To send notifications later, use Ash.Notifier.notify(notifications). It sends any notifications
that can be sent, and returns the rest. The default value is false.



  



  
    
      
      Link to this callback
    
    update!(arg1, params)


      
       
       View Source
     


  


  

      Specs

      

          update!(Ash.Changeset.t(), params :: Keyword.t()) ::
  Ash.Resource.record() | no_return()


      


Update a record. See update/2 for more information.

  


        

      



  

    
Ash.Api.Dsl
    



      
A small DSL for declaring APIs
Apis are the entrypoints for working with your resources.
Table of Contents
	resources	resource



resources
List the resources present in this API
	resource

Examples:
resources do
  resource MyApp.User
  resource MyApp.Post
  resource MyApp.Comment
end


resource
A reference to a resource
Introspection Target:
Ash.Api.ResourceReference
Examples:
resource MyApp.User
	:as - false A short name for the resource.
Can be used in calls to Api modules, e.g Api.read(:special_thing).

	:resource - Required. The module of the resource



      





  

    
Ash.Changeset
    



      
Changesets are used to create and update data in Ash.
Create a changeset with new/1 or new/2, and alter the attributes
and relationships using the functions provided in this module.  Nothing in this module
actually incurs changes in a data layer. To commit a changeset, see Ash.Api.create/2
and Ash.Api.update/2.
For example:
Ash.Changeset.replace_relationship(changeset, :linked_tickets, [
  {1, %{link_type: "blocking"}},
  {a_ticket, %{link_type: "caused_by"}},
  {%{id: 2}, %{link_type: "related_to"}}
])
Ash.Changeset.replace_relationship/3, Ash.Changeset.append_to_relationship/3 and Ash.Changeset.remove_from_relationship/3
are simply about managing what data is/isn't related. A simple example might be updating the tags of a post, where all the tags
already exist, we simply want to edit the information. They are shorthands for calling Ash.Changeset.manage_relationship/4 with
a specific set of options.
See the action DSL documentation for more.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    manage_relationship_type()

  





  
    t()

  





  


  
    
      Functions
    


  
    add_error(changeset, errors, path \\ [])

  


    Adds an error to the changesets errors list, and marks the change as valid?: false






  
    after_action(changeset, func)

  


    Adds an after_action hook to the changeset.






  
    append_to_relationship(changeset, relationship, record_or_records, opts \\ [])

  


    Appends a record or a list of records to a relationship.






  
    apply_attributes(changeset, opts \\ [])

  


    Returns the original data with attribute changes merged, if the changeset is valid.






  
    before_action(changeset, func)

  


    Adds a before_action hook to the changeset.






  
    change_attribute(changeset, attribute, value)

  


    Adds a change to the changeset, unless the value matches the existing value






  
    change_attributes(changeset, changes)

  


    Calls change_attribute/3 for each key/value pair provided






  
    change_new_attribute(changeset, attribute, value)

  


    Change an attribute only if is not currently being changed






  
    change_new_attribute_lazy(changeset, attribute, func)

  


    Change an attribute if is not currently being changed, by calling the provided function






  
    changing_attribute?(changeset, attribute)

  


    Returns true if an attribute exists in the changes






  
    changing_relationship?(changeset, relationship)

  


    Returns true if a relationship exists in the changes






  
    clear_change(changeset, field)

  


    Clears an attribute or relationship change off of the changeset






  
    delete_argument(changeset, argument_or_arguments)

  


    Remove an argument from the changeset






  
    deselect(changeset, fields)

  


    Ensure the the specified attributes are nil in the changeset results.






  
    ensure_selected(changeset, fields)

  


    Ensures that the given attributes are selected.






  
    fetch_argument(changeset, argument)

  


    fetches the value of an argument provided to the changeset or :error






  
    fetch_argument_or_change(changeset, attribute)

  


    Gets the value of an argument provided to the changeset, falling back to Ash.Changeset.fetch_change/2 if nothing was provided






  
    fetch_change(changeset, attribute)

  


    Gets the new value for an attribute, or :error if it is not being changed






  
    for_create(initial, action, params \\ %{}, opts \\ [])

  


    Constructs a changeset for a given create action, and validates it.






  
    for_destroy(initial, action_name, params \\ %{}, opts \\ [])

  


    Constructs a changeset for a given destroy action, and validates it.






  
    for_update(initial, action, params \\ %{}, opts \\ [])

  


    Constructs a changeset for a given update action, and validates it.






  
    force_change_attribute(changeset, attribute, value)

  


    Changes an attribute even if it isn't writable






  
    force_change_attributes(changeset, changes)

  


    Calls force_change_attribute/3 for each key/value pair provided






  
    force_change_new_attribute_lazy(changeset, attribute, func)

  


    Force change an attribute if is not currently being changed, by calling the provided function






  
    get_argument(changeset, argument)

  


    Gets the value of an argument provided to the changeset






  
    get_argument_or_attribute(changeset, attribute)

  


    Gets the value of an argument provided to the changeset, falling back to Ash.Changeset.get_attribute/2 if nothing was provided






  
    get_attribute(changeset, attribute)

  


    Gets the changing value or the original value of an attribute






  
    get_data(changeset, attribute)

  


    Gets the original value for an attribute






  
    handle_errors(changeset, func)

  


    Sets a custom error handler on the changeset.






  
    manage_relationship(changeset, relationship, input, opts \\ [])

  


    Manages the related records by creating, updating, or destroying them as necessary.






  
    manage_relationship_opts(atom)

  





  
    new(resource, params \\ %{})

  


    Return a changeset over a resource or a record. params can be either attributes, relationship values or arguments.






  
    put_context(changeset, key, value)

  


    Puts a key/value in the changeset context that can be used later






  
    remove_from_relationship(changeset, relationship, record_or_records, opts \\ [])

  


    Removes a record or a list of records to a relationship.






  
    replace_relationship(changeset, relationship, record_or_records, opts \\ [])

  


    Alias for






  
    select(changeset, fields, opts \\ [])

  


    Ensure that only the specified attributes are present in the results.






  
    selecting?(changeset, field)

  





  
    set_argument(changeset, argument, value)

  


    Add an argument to the changeset, which will be provided to the action






  
    set_arguments(changeset, map)

  


    Merge a map of arguments to the arguments list






  
    set_context(changeset, map)

  


    Deep merges the provided map into the changeset context that can be used later






  
    set_tenant(changeset, tenant)

  





  
    with_hooks(changeset, func)

  


    Wraps a function in the before/after action hooks of a changeset.






  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    manage_relationship_type()


      
       
       View Source
     


  


  

      Specs

      

          manage_relationship_type() :: :replace | :append | :remove | :direct_control


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Changeset{
  __validated_for_action__: term(),
  action: term(),
  action_failed?: term(),
  action_type: term(),
  after_action: term(),
  api: term(),
  arguments: term(),
  attributes: term(),
  before_action: term(),
  change_dependencies: term(),
  context: term(),
  data: Ash.Resource.record(),
  errors: term(),
  handle_errors: term(),
  params: term(),
  relationships: term(),
  resource: term(),
  select: term(),
  tenant: term(),
  valid?: term()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

  
    
      
      Link to this function
    
    add_error(changeset, errors, path \\ [])


      
       
       View Source
     


  


  

Adds an error to the changesets errors list, and marks the change as valid?: false

  



  
    
      
      Link to this function
    
    after_action(changeset, func)


      
       
       View Source
     


  


  

      Specs

      

          after_action(
  t(),
  (t(), Ash.Resource.record() ->
     {:ok, Ash.Resource.record()}
     | {:ok, Ash.Resource.record(), [Ash.Notifier.Notification.t()]}
     | {:error, term()})
) :: t()


      


Adds an after_action hook to the changeset.

  



    

  
    
      
      Link to this function
    
    append_to_relationship(changeset, relationship, record_or_records, opts \\ [])


      
       
       View Source
     


  


  

      Specs

      

          append_to_relationship(
  t(),
  atom(),
  Ash.Resource.record()
  | map()
  | term()
  | [Ash.Resource.record() | map() | term()],
  Keyword.t()
) :: t()


      


Appends a record or a list of records to a relationship.
Alias for:
manage_relationship(changeset, relationship, input,
  on_lookup: :relate, # If a record is not in the relationship, and can be found, relate it
  on_no_match: :error, # If a record is not found in the relationship or the database, we error
  on_match: :ignore, # If a record is found in the relationship we don't change it
  on_missing: :ignore, # If a record is not found in the input, we ignore it
)
Provide opts to customize/override the behavior.

  



    

  
    
      
      Link to this function
    
    apply_attributes(changeset, opts \\ [])


      
       
       View Source
     


  


  

      Specs

      

          apply_attributes(t(), opts :: Keyword.t()) ::
  {:ok, Ash.Resource.record()} | {:error, t()}


      


Returns the original data with attribute changes merged, if the changeset is valid.
Options:
	force? - applies current attributes even if the changeset is not valid


  



  
    
      
      Link to this function
    
    before_action(changeset, func)


      
       
       View Source
     


  


  

      Specs

      

          before_action(
  t(),
  (t() -> t() | {t(), %{notificactions: [Ash.Notifier.Notification.t()]}})
) :: t()


      


Adds a before_action hook to the changeset.

  



  
    
      
      Link to this function
    
    change_attribute(changeset, attribute, value)


      
       
       View Source
     


  


  

Adds a change to the changeset, unless the value matches the existing value

  



  
    
      
      Link to this function
    
    change_attributes(changeset, changes)


      
       
       View Source
     


  


  

      Specs

      

          change_attributes(t(), map() | Keyword.t()) :: t()


      


Calls change_attribute/3 for each key/value pair provided

  



  
    
      
      Link to this function
    
    change_new_attribute(changeset, attribute, value)


      
       
       View Source
     


  


  

      Specs

      

          change_new_attribute(t(), atom(), term()) :: t()


      


Change an attribute only if is not currently being changed

  



  
    
      
      Link to this function
    
    change_new_attribute_lazy(changeset, attribute, func)


      
       
       View Source
     


  


  

      Specs

      

          change_new_attribute_lazy(t(), atom(), (() -> any())) :: t()


      


Change an attribute if is not currently being changed, by calling the provided function
Use this if you want to only perform some expensive calculation for an attribute value
only if there isn't already a change for that attribute

  



  
    
      
      Link to this function
    
    changing_attribute?(changeset, attribute)


      
       
       View Source
     


  


  

      Specs

      

          changing_attribute?(t(), atom()) :: boolean()


      


Returns true if an attribute exists in the changes

  



  
    
      
      Link to this function
    
    changing_relationship?(changeset, relationship)


      
       
       View Source
     


  


  

      Specs

      

          changing_relationship?(t(), atom()) :: boolean()


      


Returns true if a relationship exists in the changes

  



  
    
      
      Link to this function
    
    clear_change(changeset, field)


      
       
       View Source
     


  


  

Clears an attribute or relationship change off of the changeset

  



  
    
      
      Link to this function
    
    delete_argument(changeset, argument_or_arguments)


      
       
       View Source
     


  


  

Remove an argument from the changeset

  



  
    
      
      Link to this function
    
    deselect(changeset, fields)


      
       
       View Source
     


  


  

Ensure the the specified attributes are nil in the changeset results.

  



  
    
      
      Link to this function
    
    ensure_selected(changeset, fields)


      
       
       View Source
     


  


  

Ensures that the given attributes are selected.
The first call to select/2 will limit the fields to only the provided fields.
Use ensure_selected/2 to say "select this field (or these fields) without deselecting anything else".
See select/2 for more.

  



  
    
      
      Link to this function
    
    fetch_argument(changeset, argument)


      
       
       View Source
     


  


  

      Specs

      

          fetch_argument(t(), atom()) :: {:ok, term()} | :error


      


fetches the value of an argument provided to the changeset or :error

  



  
    
      
      Link to this function
    
    fetch_argument_or_change(changeset, attribute)


      
       
       View Source
     


  


  

      Specs

      

          fetch_argument_or_change(t(), atom()) :: {:ok, any()} | :error


      


Gets the value of an argument provided to the changeset, falling back to Ash.Changeset.fetch_change/2 if nothing was provided

  



  
    
      
      Link to this function
    
    fetch_change(changeset, attribute)


      
       
       View Source
     


  


  

      Specs

      

          fetch_change(t(), atom()) :: {:ok, any()} | :error


      


Gets the new value for an attribute, or :error if it is not being changed

  



    

    

  
    
      
      Link to this function
    
    for_create(initial, action, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

Constructs a changeset for a given create action, and validates it.
Anything that is modified prior to for_create/4 is validated against the rules of the action, while anything after it is not.
This runs any changes contained on your action. To have your logic execute only during the action, you can use after_action/2
or before_action/2.
Multitenancy is not validated until an action is called. This allows you to avoid specifying a tenant until just before calling
the api action.

  
  Params


params may be attributes, relationships, or arguments. You can safely pass user/form input directly into this function.
Only public attributes and relationships are supported. If you want to change private attributes as well, see the
Customization section below. params are stored directly as given in the params field of the changeset, which is used

  
  Opts


	:relationships - customize relationship behavior.
By default, any relationships are ignored. There are three ways to change relationships with this function:  

  
  Action Arguments (preferred)


Create an argument on the action and add a Ash.Resource.Change.Builtins.manage_relationship/3 change to the action.  

  
  Overrides


You can pass the relationships option to specify the behavior. It is a keyword list of relationship and either

	one of the preset manage types: [:replace, :append, :remove, :direct_control, :create]

	explicit options, in the form of {:manage, [...opts]}  
Ash.Changeset.for_create(MyResource, :create, params, relationships: [relationship: :append, other_relationship: {:manage, [...opts]}])
You can also use explicit calls to manage_relationship/4.

	:require? - If set to true, values are only required when the action is run (instead of immediately). The default value is false.

	:actor - set the actor, which can be used in any Ash.Resource.Changes configured on the action. (in the context argument)

	:tenant - set the tenant on the changeset



  
  Customization


A changeset can be provided as the first argument, instead of a resource, to allow
setting specific attributes ahead of time.
For example:
MyResource
|> Ash.Changeset.new()
|> Ash.Changeset.change_attribute(:foo, 1)
|> Ash.Changeset.for_create(:create, ...opts)
Once a changeset has been validated by for_create/4 (or for_update/4), it isn't validated again in the action.
New changes added are validated individually, though. This allows you to create a changeset according
to a given action, and then add custom changes if necessary.

  



    

    

  
    
      
      Link to this function
    
    for_destroy(initial, action_name, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

Constructs a changeset for a given destroy action, and validates it.

  
  Opts


	:actor - set the actor, which can be used in any Ash.Resource.Changes configured on the action. (in the context argument)
	:tenant - set the tenant on the changeset

Anything that is modified prior to for_destroy/4 is validated against the rules of the action, while anything after it is not.
Once a changeset has been validated by for_destroy/4, it isn't validated again in the action.
New changes added are validated individually, though. This allows you to create a changeset according
to a given action, and then add custom changes if necessary.

  



    

    

  
    
      
      Link to this function
    
    for_update(initial, action, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

Constructs a changeset for a given update action, and validates it.
Anything that is modified prior to for_update/4 is validated against the rules of the action, while anything after it is not.
See for_create/4 for more information

  



  
    
      
      Link to this function
    
    force_change_attribute(changeset, attribute, value)


      
       
       View Source
     


  


  

      Specs

      

          force_change_attribute(t(), atom(), any()) :: t()


      


Changes an attribute even if it isn't writable

  



  
    
      
      Link to this function
    
    force_change_attributes(changeset, changes)


      
       
       View Source
     


  


  

      Specs

      

          force_change_attributes(t(), map()) :: t()


      


Calls force_change_attribute/3 for each key/value pair provided

  



  
    
      
      Link to this function
    
    force_change_new_attribute_lazy(changeset, attribute, func)


      
       
       View Source
     


  


  

      Specs

      

          force_change_new_attribute_lazy(t(), atom(), (() -> any())) :: t()


      


Force change an attribute if is not currently being changed, by calling the provided function
See change_new_attribute_lazy/3 for more.

  



  
    
      
      Link to this function
    
    get_argument(changeset, argument)


      
       
       View Source
     


  


  

      Specs

      

          get_argument(t(), atom()) :: term()


      


Gets the value of an argument provided to the changeset

  



  
    
      
      Link to this function
    
    get_argument_or_attribute(changeset, attribute)


      
       
       View Source
     


  


  

      Specs

      

          get_argument_or_attribute(t(), atom()) :: term()


      


Gets the value of an argument provided to the changeset, falling back to Ash.Changeset.get_attribute/2 if nothing was provided

  



  
    
      
      Link to this function
    
    get_attribute(changeset, attribute)


      
       
       View Source
     


  


  

      Specs

      

          get_attribute(t(), atom()) :: term()


      


Gets the changing value or the original value of an attribute

  



  
    
      
      Link to this function
    
    get_data(changeset, attribute)


      
       
       View Source
     


  


  

      Specs

      

          get_data(t(), atom()) :: {:ok, any()} | :error


      


Gets the original value for an attribute

  



  
    
      
      Link to this function
    
    handle_errors(changeset, func)


      
       
       View Source
     


  


  

      Specs

      

          handle_errors(
  t(),
  (t(), error :: term() ->
     :ignore | t() | (error :: term()) | {error :: term(), t()})
  | {module(), atom(), [term()]}
) :: t()


      


Sets a custom error handler on the changeset.
The error handler should be a two argument function or an mfa, in which case the first two arguments will be set
to the changeset and the error, w/ the supplied arguments following those.
Any errors generated are passed to handle_errors, which can return any of the following:
	:ignore - the error is discarded, and the changeset is not marked as invalid
	changeset - a new (or the same) changeset. The error is not added (you'll want to add an error yourself), but the changeset is marked as invalid.
	{changeset, error} - a new (or the same) error and changeset. The error is added to the changeset, and the changeset is marked as invalid.
	anything_else - is treated as a new, transformed version of the error. The result is added as an error to the changeset, and the changeset is marked as invalid.


  



    

  
    
      
      Link to this function
    
    manage_relationship(changeset, relationship, input, opts \\ [])


      
       
       View Source
     


  


  

Manages the related records by creating, updating, or destroying them as necessary.
Keep in mind that the default values for all on_* are :ignore, meaning nothing will happen
unless you provide instructions.
The input provided to manage_relationship should be a map, in the case of to_one relationships, or a list of maps
in the case of to_many relationships. The following steps are followed for each input provided:
	The input is checked against the currently related records to find any matches. The primary key and unique identities are used to find matches.
	For any input that had a match in the current relationship, the :on_match behavior is triggered
	For any input that does not have a match:	if there is on_lookup behavior:	we try to find the record in the data layer.
	if the record is found, the on_lookup behavior is triggered
	if the record is not found, the on_no_match behavior is triggered


	if there is no on_lookup behavior:	the on_no_match behavior is triggered




	finally, for any records present in the current relationship that had no match in the input, the on_missing behavior is triggered


  
  Options


	:type - If the type is specified, the default values of each option is modified to match that type of operation.
This allows for specifying certain operations much more succinctly. The defaults that are modified are listed below  

  
  :replace


[
on_lookup: :relate,
on_no_match: :error,
on_match: :ignore,
on_missing: :unrelate
]  

  
  :append


[
on_lookup: :relate,
on_no_match: :error,
on_match: :ignore,
on_missing: :ignore
]  

  
  :remove


[
on_no_match: :error,
on_match: :unrelate,
on_missing: :ignore
]  

  
  :direct_control


[
on_lookup: :ignore,
on_no_match: :create,
on_match: :update,
on_missing: :destroy
]  

  
  :create


[
on_no_match: :create,
on_match: :ignore
]

	:authorize? - Authorize reads and changes to the destination records, if the primary change is being authorized as well. The default value is true.

	:on_no_match - instructions for handling records where no matching record existed in the relationship
	:ignore(default) - those inputs are ignored
	:match - For "has_one" and "belongs_to" only, any input is treated as a match for an existing value. For has_many and many_to_many, this is the same as :ignore.
	:create - the records are created using the destination's primary create action
	{:create, :action_name} - the records are created using the specified action on the destination resource
	{:create, :action_name, :join_table_action_name, [:list, :of, :join_table, :params]} - Same as {:create, :action_name} but takes
  the list of params specified out and applies them when creating the join table row, with the provided join_table_action_name.
	:error  - an eror is returned indicating that a record would have been created	 If on_lookup is set, and the data contained a primary key or identity, then the error is a NotFound error
	Otherwise, an InvalidRelationship error is returned The default value is :ignore.




	:on_lookup - Before creating a record(because no match was found in the relationship), the record can be looked up and related.
	:ignore(default) - Does not look for existing entries (matches in the current relationship are still considered updates)
	:relate - Same as calling {:relate, primary_action_name}
	{:relate, :action_name} - the records are looked up by primary key/the first identity that is found (using the primary read action), and related. The action should be:	many_to_many - a create action on the join resource
	has_many - an update action on the destination resource
	has_one - an update action on the destination resource
	belongs_to - an update action on the source resource


	{:relate, :action_name, :read_action_name} - Same as the above, but customizes the read action called to search for matches.
	:relate_and_update - Same as :relate, but the remaining parameters from the lookup are passed into the action that is used to change the relationship key
	{:relate_and_update, :action_name} - Same as the above, but customizes the action used. The action should be:	many_to_many - a create action on the join resource
	has_many - an update action on the destination resource
	has_one - an update action on the destination resource
	belongs_to - an update action on the source resource


	{:relate_and_update, :action_name, :read_action_name} - Same as the above, but customizes the read action called to search for matches.
	{:relate_and_update, :action_name, :read_action_name, [:list, :of, :join_table, :params]} - Same as the above, but uses the provided list of parameters when creating
 the join row (only relevant for many to many relationships). Use :all to only update the join table row, and pass all parameters to its action The default value is :ignore.


	:on_match - instructions for handling records where a matching record existed in the relationship already
	:ignore(default) - those inputs are ignored
	:update - the record is updated using the destination's primary update action
	{:update, :action_name} - the record is updated using the specified action on the destination resource
	{:update, :action_name, :join_table_action_name, [:list, :of, :params]} - Same as {:update, :action_name} but takes
  the list of params specified out and applies them as an update to the join table row (only valid for many to many).
	:error  - an eror is returned indicating that a record would have been updated
	:no_match - ignores the primary key match and follows the on_no_match instructions with these records instead.
	:unrelate - the related item is not destroyed, but the data is "unrelated", making this behave like remove_from_relationship/3. The action should be:	many_to_many - the join resource row is destroyed
	has_many - the destination_field (on the related record) is set to nil
	has_one - the destination_field (on the related record) is set to nil
	belongs_to - the source_field (on this record) is set to nil


	{:unrelate, :action_name} - the record is unrelated using the provided update action. The action should be:	many_to_many - a destroy action on the join resource
	has_many - an update action on the destination resource
	has_one - an update action on the destination resource
	belongs_to - an update action on the source resource The default value is :ignore.




	:on_missing - instructions for handling records that existed in the current relationship but not in the input
	:ignore(default) - those inputs are ignored
	:destroy - the record is destroyed using the destination's primary destroy action
	{:destroy, :action_name} - the record is destroyed using the specified action on the destination resource
	{:destroy, :action_name, :join_resource_action_name, [:join, :keys]} - the record is destroyed using the specified action on the destination resource,
but first the join resource is destroyed with its specified action
	:error  - an error is returned indicating that a record would have been updated
	:unrelate - the related item is not destroyed, but the data is "unrelated", making this behave like remove_from_relationship/3. The action should be:	many_to_many - the join resource row is destroyed
	has_many - the destination_field (on the related record) is set to nil
	has_one - the destination_field (on the related record) is set to nil
	belongs_to - the source_field (on this record) is set to nil


	{:unrelate, :action_name} - the record is unrelated using the provided update action. The action should be:	many_to_many - a destroy action on the join resource
	has_many - an update action on the destination resource
	has_one - an update action on the destination resource
	belongs_to - an update action on the source resource The default value is :ignore.




	:relationships - A keyword list of instructions for nested relationships. The default value is [].

	:meta - Freeform data that will be retained along with the options, which can be used to track/manage the changes that are added to the relationships key.

	:ignore? - This tells Ash to ignore the provided inputs when actually running the action. This can be useful for
building up a set of instructions that you intend to handle manually The default value is false.


Each call to this function adds new records that will be handled according to their options. For example,
if you tracked "tags to add" and "tags to remove" in separate fields, you could input them like so:
changeset
|> Ash.Changeset.manage_relationship(
  :tags,
  [%{name: "backend"}],
  on_lookup: :relate, #relate that tag if it exists in the database
  on_no_match: :error # error if a tag with that name doesn't exist
)
|> Ash.Changeset.manage_relationship(
  :tags,
  [%{name: "frontend"}],
  on_no_match: :error, # error if a tag with that name doesn't exist in the relationship
  on_match: :unrelate # if a tag with that name is related, unrelate it
)
When calling this multiple times with the on_missing option set, the list of records that are considered missing are checked
after each set of inputs is processed. For example, if you manage the relationship once with on_missing: :unrelate, the records
missing from your input will be removed, and then your next call to manage_relationship will be resolved (with those records unrelated).
For this reason, it is suggested that you don't call this function multiple times with an on_missing instruction, as you may be
surprised by the result.
If you want the input to update existing entities, you need to ensure that the primary key (or unique identity) is provided as
part of the input. See the example below:
changeset
|> Ash.Changeset.manage_relationship(
  :comments,
  [%{rating: 10, contents: "foo"}],
  on_no_match: {:create, :create_action},
  on_missing: :ignore
)
|> Ash.Changeset.manage_relationship(
  :comments,
  [%{id: 10, rating: 10, contents: "foo"}],
  on_match: {:update, :update_action},
  on_no_match: {:create, :create_action})
This is a simple way to manage a relationship. If you need custom behavior, you can customize the action that is
called, which allows you to add arguments/changes. However, at some point you may want to forego this function
and make the changes yourself. For example:
input = [%{id: 10, rating: 10, contents: "foo"}]

changeset
|> Ash.Changeset.after_action(fn _changeset, result ->
  # An example of updating comments based on a result of other changes
  for comment <- input do
    comment = MyApi.get(Comment, comment.id)

    comment
    |> Map.update(:rating, 0, &(&1 * result.rating_weight))
    |> MyApi.update!()
  end

  {:ok, result}
end)

  
  Using records as input


Records can be supplied as the input values. If you do:
	if it would be looked up due to on_lookup, the record is used as-is
	if it would be created due to on_no_match, the record is used as-is
	Instead of specifying join_keys, those keys must go in __metadata__.join_keys. If join_keys is specified in the options, it is ignored.

For example:
post1 =
  changeset
  |> Api.create!()
  |> Ash.Resource.Info.put_metadata(:join_keys, %{type: "a"})

post1 =
  changeset2
  |> Api.create!()
  |> Ash.Resource.Info.put_metadata(:join_keys, %{type: "b"})

author = Api.create!(author_changeset)

Ash.Changeset.manage_relationship(
  author,
  :posts,
  [post1, post2],
  on_lookup: :relate
)

  



  
    
      
      Link to this function
    
    manage_relationship_opts(atom)


      
       
       View Source
     


  


  

      Specs

      

          manage_relationship_opts(manage_relationship_type()) :: Keyword.t()


      



  



    

  
    
      
      Link to this function
    
    new(resource, params \\ %{})


      
       
       View Source
     


  


  

      Specs

      

          new(Ash.Resource.t() | Ash.Resource.record(), params :: map()) :: t()


      


Return a changeset over a resource or a record. params can be either attributes, relationship values or arguments.
If you are using external input, you almost certainly want to use Ash.Changeset.for_<action_type>. However, you can
use Ash.Changeset.new/2 to start a changeset and make a few changes prior to calling for_action. For example:
Ash.Changeset.new()
|> Ash.Changeset.change_attribute(:name, "foobar")
|> Ash.Changeset.for_action(...)
Anything that is modified prior to for_action is validated against the rules of the action, while anything after it is not.
This changeset does not consider an action, and so allows you to change things with minimal validation. Values are
validated when changed, and the existence of attributes and relationships are validated. If you want to essentially
"run an action", and get back a changeset with any errors that would be generated by that action (with the exception
of errors that can only be generated by the data layer), use for_action/4.
Additionally, this format only supports supplying attributes in the params. This is because we don't know what the
behavior should be for relationship changes, nor what arguments are available. You can manage them yourself with
the functions that allow managing arguments/relationships that are provided in this module, e.g set_argument/3 and
replace_relationship/3

  



  
    
      
      Link to this function
    
    put_context(changeset, key, value)


      
       
       View Source
     


  


  

      Specs

      

          put_context(t(), atom(), term()) :: t()


      


Puts a key/value in the changeset context that can be used later
Do not use the private key in your custom context, as that is reserved for internal use.

  



    

  
    
      
      Link to this function
    
    remove_from_relationship(changeset, relationship, record_or_records, opts \\ [])


      
       
       View Source
     


  


  

      Specs

      

          remove_from_relationship(
  t(),
  atom(),
  Ash.Resource.record()
  | map()
  | term()
  | [Ash.Resource.record() | map() | term()],
  Keyword.t()
) :: t()


      


Removes a record or a list of records to a relationship.
Alias for:
  manage_relationship(changeset, relationship, record_or_records,
    on_no_match: :error, # If a record is not found in the relationship, we error
    on_match: :unrelate, # If a record is found in the relationship we unrelate it
    on_missing: :ignore, # If a record is not found in the relationship
    authorize?: false
  )

  



    

  
    
      
      Link to this function
    
    replace_relationship(changeset, relationship, record_or_records, opts \\ [])


      
       
       View Source
     


  


  

      Specs

      

          replace_relationship(
  t(),
  atom(),
  Ash.Resource.record()
  | map()
  | term()
  | [Ash.Resource.record() | map() | term()]
  | nil,
  Keyword.t()
) :: t()


      


Alias for:
manage_relationship(
  changeset,
  relationship,
  record_or_records,
  on_lookup: :relate, # If a record is not found in the relationship, but is found in the database, relate it and apply the input as an update
  on_no_match: :error, # If a record is not found in the relationship or the database, we error
  on_match: :ignore, # If a record is found in the relationship we make no changes to it
  on_missing: :unrelate, # If a record is not found in the relationship, we unrelate it
  authorize?: false
)

  



    

  
    
      
      Link to this function
    
    select(changeset, fields, opts \\ [])


      
       
       View Source
     


  


  

Ensure that only the specified attributes are present in the results.
The first call to select/2 will replace the default behavior of selecting
all attributes. Subsequent calls to select/2 will combine the provided
fields unless the replace? option is provided with a value of true.
If a field has been deselected, selecting it again will override that (because a single list of fields is tracked for selection)
Primary key attributes always selected and cannot be deselected.
When attempting to load a relationship (or manage it with Ash.Changeset.manage_relationship/3),
if the source field is not selected on the query/provided data an error will be produced. If loading
a relationship with a query, an error is produced if the query does not select the destination field
of the relationship.
Datalayers currently are not notified of the select for a changeset(unlike queries), and creates/updates select all fields when they are performed.
A select provided on a changeset simply sets the unselected fields to nil before returning the result.
Use ensure_selected/2 if you simply wish to make sure a field has been selected, without deselecting any other fields.

  



  
    
      
      Link to this function
    
    selecting?(changeset, field)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    set_argument(changeset, argument, value)


      
       
       View Source
     


  


  

Add an argument to the changeset, which will be provided to the action

  



  
    
      
      Link to this function
    
    set_arguments(changeset, map)


      
       
       View Source
     


  


  

Merge a map of arguments to the arguments list

  



  
    
      
      Link to this function
    
    set_context(changeset, map)


      
       
       View Source
     


  


  

      Specs

      

          set_context(t(), map() | nil) :: t()


      


Deep merges the provided map into the changeset context that can be used later
Do not use the private key in your custom context, as that is reserved for internal use.

  



  
    
      
      Link to this function
    
    set_tenant(changeset, tenant)


      
       
       View Source
     


  


  

      Specs

      

          set_tenant(t(), String.t()) :: t()


      



  



  
    
      
      Link to this function
    
    with_hooks(changeset, func)


      
       
       View Source
     


  


  

      Specs

      

          with_hooks(
  t(),
  (t() ->
     {:ok, term(), %{notifications: [Ash.Notifier.Notification.t()]}}
     | {:error, term()})
) ::
  {:ok, term(), t(), %{notifications: [Ash.Notifier.Notification.t()]}}
  | {:error, term()}


      


Wraps a function in the before/after action hooks of a changeset.
The function takes a changeset and if it returns
{:ok, result}, the result will be passed through the after
action hooks.

  


        

      



  

    
Ash.Query
    



      
Utilties around constructing/manipulating ash queries.
Ash queries are used for read actions and loads, and ultimately
map to queries to a resource's data layer.
Queries are run by calling read on an API that contains the resource in question
Examples:
MyApp.Post
|> Ash.Query.filter(likes > 10)
|> Ash.Query.sort([:title])
|> MyApp.Api.read!()

MyApp.Author
|> Ash.Query.aggregate(:published_post_count, :posts, filter: [published: true])
|> Ash.Query.sort(published_post_count: :desc)
|> Ash.Query.limit(10)
|> MyApp.Api.read!()

MyApp.Author
|> Ash.Query.load([:post_count, :comment_count])
|> Ash.Query.load(posts: [:comments])
|> MyApp.Api.read!()

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


  
    
      Functions
    


  
    add_error(query, keys \\ [], message)

  





  
    after_action(query, func)

  





  
    aggregate(query, name, type, relationship, agg_query \\ nil)

  


    Adds an aggregation to the query.






  
    before_action(query, func)

  





  
    build(resource, api \\ nil, keyword)

  


    Builds a query from a keyword list.






  
    calculate(query, name, module_and_opts, type, context \\ %{})

  


    Adds a calculation to the query.






  
    data_layer_query(ash_query, opts \\ [])

  


    Return the underlying data layer query for an ash query






  
    delete_argument(query, argument_or_arguments)

  


    Remove an argument from the query






  
    deselect(query, fields)

  


    Ensure the the specified attributes are nil in the query results.






  
    distinct(query, distincts)

  


    Get results distinct on the provided fields.






  
    ensure_selected(query, fields)

  


    Ensures that the given attributes are selected.






  
    expr(binding)

  





  
    fetch_argument(query, argument)

  


    fetches the value of an argument provided to the query or :error






  
    filter(query, filter)

  


    Attach a filter statement to the query.






  
    for_read(query, action_name, args \\ %{}, opts \\ [])

  


    Creates a query for a given read action and prepares it.






  
    for_read_opts()

  





  
    get_argument(query, argument)

  


    Gets the value of an argument provided to the query






  
    limit(query, limit)

  


    Limit the results returned from the query






  
    load(query, fields)

  


    Loads relationships, calculations, or aggregates on the resource.






  
    new(resource, api \\ nil)

  


    Create a new query






  
    offset(query, offset)

  


    Skip the first n records






  
    put_context(query, key, value)

  


    Sets a specific context key to a specific value






  
    select(query, fields, opts \\ [])

  


    Ensure that only the specified attributes are present in the results.






  
    selecting?(query, field)

  





  
    set_api(query, api)

  


    Set the query's api, and any loaded query's api






  
    set_argument(query, argument, value)

  


    Add an argument to the query, which can be used in filter templates on actions






  
    set_arguments(query, map)

  


    Merge a map of arguments to the arguments list






  
    set_context(query, map)

  


    Merge a map of values into the query context






  
    set_tenant(query, tenant)

  





  
    sort(query, sorts)

  


    Sort the results based on attributes or aggregates (calculations are not yet supported)






  
    struct?(arg1)

  





  
    unload(query, fields)

  


    Removes a field from the list of fields to load






  
    unset(query, keys)

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Query{
  __validated_for_action__: term(),
  action: term(),
  action_failed?: term(),
  after_action: term(),
  aggregates: term(),
  api: term(),
  arguments: term(),
  before_action: term(),
  calculations: term(),
  context: term(),
  distinct: term(),
  errors: term(),
  filter: term(),
  limit: term(),
  load: term(),
  offset: term(),
  params: term(),
  resource: term(),
  select: term(),
  sort: term(),
  tenant: term(),
  valid?: term()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

  
    
      
      Link to this function
    
    add_error(query, keys \\ [], message)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    after_action(query, func)


      
       
       View Source
     


  


  

      Specs

      

          after_action(
  t(),
  (t(), [Ash.Resource.record()] ->
     {:ok, [Ash.Resource.record()]}
     | {:ok, [Ash.Resource.record()], [Ash.Notifier.Notification.t()]}
     | {:error, term()})
) :: t()


      



  



    

  
    
      
      Link to this function
    
    aggregate(query, name, type, relationship, agg_query \\ nil)


      
       
       View Source
     


  


  

      Specs

      

          aggregate(
  t() | Ash.Resource.t(),
  atom(),
  Ash.Query.Aggregate.kind(),
  atom() | [atom()],
  Keyword.t() | nil
) :: t()


      


Adds an aggregation to the query.
Aggregations are made available on the aggregates field of the records returned
The filter option accepts either a filter or a keyword list of options to supply to build a limiting query for that aggregate.
See the DSL docs for each aggregate type in Ash.Resource.Dsl for more information.

  



  
    
      
      Link to this function
    
    before_action(query, func)


      
       
       View Source
     


  


  

      Specs

      

          before_action(t(), (t() -> t() | {t(), [Ash.Notifier.Notification.t()]})) :: t()


      



  



    

  
    
      
      Link to this function
    
    build(resource, api \\ nil, keyword)


      
       
       View Source
     


  


  

      Specs

      

          build(Ash.Resource.t(), Ash.Api.t() | nil, Keyword.t()) :: t()


      


Builds a query from a keyword list.
This is used by certain query constructs like aggregates. It can also be used to manipulate a data structure
before passing it to an ash query. It allows for building an entire query struct using only a keyword list.
For example:
Ash.Query.build(MyResource, filter: [name: "fred"], sort: [name: :asc], load: [:foo, :bar], offset: 10)
If you want to use the expression style filters, you can use expr/1. Be sure to require Ash.Query first,
or import it. Consider importing only the expr/1 macro if you do that
For example:
import Ash.Query, only: [expr: 1]

Ash.Query.build(Myresource, filter: expr(name == "marge"))
Supported keys:
	filter - filter keyword/expr or %Ash.Filter{}
	sort - sort keyword
	limit - integer limit
	offset - integer offset
	load - keyword/list of atoms to load
	aggregate - {name, type, relationship}
	aggregate - {name, type, relationship, query_in_build_format}
	calculate - {name, module_and_opts}
	calculate - {name, module_and_opts, context}
	distinct - list of atoms
	context: %{key: value}


  



    

  
    
      
      Link to this function
    
    calculate(query, name, module_and_opts, type, context \\ %{})


      
       
       View Source
     


  


  

Adds a calculation to the query.
Calculations are made available on the calculations field of the records returned
The module_and_opts argument accepts either a module or a {module, opts}. For more information
on what that module should look like, see Ash.Calculation.
More features for calculations, like passing anonymous functions, will be supported in the future.

  



    

  
    
      
      Link to this function
    
    data_layer_query(ash_query, opts \\ [])


      
       
       View Source
     


  


  

Return the underlying data layer query for an ash query

  



  
    
      
      Link to this function
    
    delete_argument(query, argument_or_arguments)


      
       
       View Source
     


  


  

Remove an argument from the query

  



  
    
      
      Link to this function
    
    deselect(query, fields)


      
       
       View Source
     


  


  

Ensure the the specified attributes are nil in the query results.

  



  
    
      
      Link to this function
    
    distinct(query, distincts)


      
       
       View Source
     


  


  

      Specs

      

          distinct(t() | Ash.Resource.t(), Ash.Sort.t()) :: t()


      


Get results distinct on the provided fields.
Takes a list of fields to distinct on. Each call is additive, so to remove the distinct use
unset/2.
Examples:
Ash.Query.distinct(query, [:first_name, :last_name])

Ash.Query.distinct(query, :email)

  



  
    
      
      Link to this function
    
    ensure_selected(query, fields)


      
       
       View Source
     


  


  

Ensures that the given attributes are selected.
The first call to select/2 will limit the fields to only the provided fields.
Use ensure_selected/2 to say "select this field (or these fields) without deselecting anything else".
See select/2 for more.

  



  
    
      
      Link to this macro
    
    expr(binding)


      
       
       View Source
     


      (macro)

  


  


  



  
    
      
      Link to this function
    
    fetch_argument(query, argument)


      
       
       View Source
     


  


  

      Specs

      

          fetch_argument(t(), atom()) :: {:ok, term()} | :error


      


fetches the value of an argument provided to the query or :error

  



  
    
      
      Link to this macro
    
    filter(query, filter)


      
       
       View Source
     


      (macro)

  


  

Attach a filter statement to the query.
The filter is applied as an "and" to any filters currently on the query.
For more information on writing filters, see: Ash.Filter.

  



    

    

  
    
      
      Link to this function
    
    for_read(query, action_name, args \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

Creates a query for a given read action and prepares it.
Multitenancy is not validated until an action is called. This allows you to avoid specifying a tenant until just before calling
the api action.

  
  Arguments


Provide a map or keyword list of arguments for the read action

  
  Opts


	:actor - set the actor, which can be used in any Ash.Resource.Changes configured on the action. (in the context argument)

	:tenant - set the tenant on the query



  



  
    
      
      Link to this function
    
    for_read_opts()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    get_argument(query, argument)


      
       
       View Source
     


  


  

      Specs

      

          get_argument(t(), atom()) :: term()


      


Gets the value of an argument provided to the query

  



  
    
      
      Link to this function
    
    limit(query, limit)


      
       
       View Source
     


  


  

      Specs

      

          limit(t() | Ash.Resource.t(), nil | integer()) :: t()


      


Limit the results returned from the query

  



  
    
      
      Link to this function
    
    load(query, fields)


      
       
       View Source
     


  


  

      Specs

      

          load(t() | Ash.Resource.t(), atom() | [atom()] | Keyword.t()) :: t()


      


Loads relationships, calculations, or aggregates on the resource.
Currently, loading attributes has no effects, as all attributes are returned.
Before long, we will have the default list to load as the attributes, but if you say
load(query, [:attribute1]), that will be the only field filled in. This will let
data layers make more intelligent "select" statements as well.
# Loading nested relationships
Ash.Query.load(query, [comments: [:author, :ratings]])

# Loading relationships with a query
Ash.Query.load(query, [comments: [author: author_query]])

  



    

  
    
      
      Link to this function
    
    new(resource, api \\ nil)


      
       
       View Source
     


  


  

Create a new query

  



  
    
      
      Link to this function
    
    offset(query, offset)


      
       
       View Source
     


  


  

      Specs

      

          offset(t() | Ash.Resource.t(), nil | integer()) :: t()


      


Skip the first n records

  



  
    
      
      Link to this function
    
    put_context(query, key, value)


      
       
       View Source
     


  


  

      Specs

      

          put_context(t() | Ash.Resource.t(), atom(), term()) :: t()


      


Sets a specific context key to a specific value
See set_context/2 for more information.

  



    

  
    
      
      Link to this function
    
    select(query, fields, opts \\ [])


      
       
       View Source
     


  


  

Ensure that only the specified attributes are present in the results.
The first call to select/2 will replace the default behavior of selecting
all attributes. Subsequent calls to select/2 will combine the provided
fields unless the replace? option is provided with a value of true.
If a field has been deselected, selecting it again will override that (because a single list of fields is tracked for selection)
Primary key attributes are always selected and cannot be deselected.
When attempting to load a relationship (or manage it with Ash.Changeset.manage_relationship/3),
if the source field is not selected on the query/provided data an error will be produced. If loading
a relationship with a query, an error is produced if the query does not select the destination field
of the relationship.
Use ensure_selected/2 if you simply wish to make sure a field has been selected, without deselecting any other fields.

  



  
    
      
      Link to this function
    
    selecting?(query, field)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    set_api(query, api)


      
       
       View Source
     


  


  

Set the query's api, and any loaded query's api

  



  
    
      
      Link to this function
    
    set_argument(query, argument, value)


      
       
       View Source
     


  


  

Add an argument to the query, which can be used in filter templates on actions

  



  
    
      
      Link to this function
    
    set_arguments(query, map)


      
       
       View Source
     


  


  

Merge a map of arguments to the arguments list

  



  
    
      
      Link to this function
    
    set_context(query, map)


      
       
       View Source
     


  


  

      Specs

      

          set_context(t() | Ash.Resource.t(), map() | nil) :: t()


      


Merge a map of values into the query context

  



  
    
      
      Link to this function
    
    set_tenant(query, tenant)


      
       
       View Source
     


  


  

      Specs

      

          set_tenant(t() | Ash.Resource.t(), String.t()) :: t()


      



  



  
    
      
      Link to this function
    
    sort(query, sorts)


      
       
       View Source
     


  


  

      Specs

      

          sort(t() | Ash.Resource.t(), Ash.Sort.t()) :: t()


      


Sort the results based on attributes or aggregates (calculations are not yet supported)
Takes a list of fields to sort on, or a keyword list/mixed keyword list of fields and sort directions.
The default sort direction is :asc.
Examples:
Ash.Query.sort(query, [:foo, :bar])

Ash.Query.sort(query, [:foo, bar: :desc])

Ash.Query.sort(query, [foo: :desc, bar: :asc])

  



  
    
      
      Link to this function
    
    struct?(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    unload(query, fields)


      
       
       View Source
     


  


  

      Specs

      

          unload(t(), [atom()]) :: t()


      


Removes a field from the list of fields to load

  



  
    
      
      Link to this function
    
    unset(query, keys)


      
       
       View Source
     


  


  

      Specs

      

          unset(Ash.Resource.t() | t(), atom() | [atom()]) :: t()


      



  


        

      



  

    
Ash.Resource.Dsl
    



      
The built in resource DSL. The core DSL components of a resource are:
Table of Contents
	identities	identity


	attributes	attribute
	create_timestamp
	update_timestamp
	timestamps
	integer_primary_key
	uuid_primary_key


	relationships	has_one
	has_many
	many_to_many
	belongs_to


	actions	create	change
	validate
	argument


	read	argument
	prepare


	update	change
	validate
	argument


	destroy	change
	validate
	argument




	resource
	validations	validate


	aggregates	count
	first
	sum
	list


	calculations	calculate	argument




	multitenancy
	code_interface	define



identities
Unique identifiers for the resource
	identity

Examples:
identities do
  identity :full_name, [:first_name, :last_name]
  identity :email, [:email]
end


identity
Represents a unique constraint on the resource.
Used for indicating that some set of attributes, calculations or aggregates uniquely identify a resource.
This will allow these fields to be passed to Ash.Api.get/3, e.g get(Resource, [some_field: 10]),
if all of the keys are filterable. Otherwise they are purely descriptive at the moment.
The primary key of the resource does not need to be listed as an identity.
Introspection Target:
Ash.Resource.Identity
Examples:
identity :name, [:name]
identity :full_name, [:first_name, :last_name]
	:name - Required. The name of the identity. Used by extensions to target specific identities for fetching single instances of a resource

	:keys - Required. The names of attributes, aggregates or calculations that uniquely identify this resource.

	:description - An optional description for the identity

	:message - An error message to use when the unique identity would be violated


attributes
A section for declaring attributes on the resource.
Attributes are fields on an instance of a resource. The two required
pieces of knowledge are the field name, and the type.
	attribute
	create_timestamp
	update_timestamp
	timestamps
	integer_primary_key
	uuid_primary_key

Examples:
attributes do
  uuid_primary_key :id

  attribute :first_name, :string do
    allow_nil? false
  end

  attribute :last_name, :string do
    allow_nil? false
  end

  attribute :email, :string do
    allow_nil? false

    constraints [
      match: ~r/^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+.[a-zA-Z0-9-.]+$/
    ]
  end

  attribute :type, :atom do
    constraints [
      one_of: [:admin, :teacher, :student]
    ]
  end

  create_timestamp :inserted_at
  update_timestamp :updated_at
end


attribute
Declares an attribute on the resource
Type can be either a built in type (see Ash.Type) for more, or a module
implementing the Ash.Type behaviour.
Strings are trimmed by default. If you want to retain whitespace, use
attribute :foo, :string, constraints: [trim?: false]
Introspection Target:
Ash.Resource.Attribute
Examples:
attribute :first_name, :string do
  primary_key? true
end

	:name - The name of the attribute.

	:type - The type of the attribute.

	:constraints - Constraints to provide to the type when casting the value. See the type's documentation for more information.

	:sensitive? - Whether or not the attribute value contains sensitive information, like PII. If so, it will be redacted while inspecting data. The default value is false.

	:always_select? - Whether or not to always select this attribute when reading from the database.
Useful if fields are used in read action preparations consistently.
A primary key attribute cannot be deselected, so this option will have no effect.
Generally, you should favor selecting the field that you need while running your preparation. For example:  
defmodule MyApp.QueryPreparation.Thing do
use Ash.Resource.Preparation  
def prepare(query, _, _) do
query
|> Ash.Query.select(:attribute_i_need)
|> Ash.Query.after_action(fn query, results ->
  {:ok, Enum.map(results, fn result ->
    do_something_with_attribute_i_need(result)
  end)}
end)
end
end
This will prevent unnecessary fields from being selected. The default value is false.

	:primary_key? - Whether or not the attribute is part of the primary key (one or more fields that uniquely identify a resource). If primary_key? is true, allow_nil? must be false. The default value is false.

	:allow_nil? - Whether or not the attribute can be set to nil. The default value is true.

	:generated? - Whether or not the value may be generated by the data layer. If it is, the data layer will know to read the value back after writing. The default value is false.

	:writable? - Whether or not the value can be written to. The default value is true.

	:private? - Whether or not the attribute will appear in any interfaces created off of this resource, e.g AshJsonApi and AshGraphql. The default value is false.

	:update_default - A zero argument function, an {mod, fun, args} triple or a value. Ash.Changeset.for_update/4 sets the default in the changeset if a value is not provided.

	:default - A zero argument function, an {mod, fun, args} triple or a value. Ash.Changeset.for_create/4 sets the default in the changeset if a value is not provided.

	:description - An optional description for the attribute.


create_timestamp
Declares a non-writable attribute with a create default of &DateTime.utc_now/0
Introspection Target:
Ash.Resource.Attribute
Examples:
create_timestamp :inserted_at
	:name - The name of the attribute.

	:type - The type of the attribute. The default value is Ash.Type.UtcDatetimeUsec.

	:constraints - Constraints to provide to the type when casting the value. See the type's documentation for more information.

	:sensitive? - Whether or not the attribute value contains sensitive information, like PII. If so, it will be redacted while inspecting data. The default value is false.

	:always_select? - Whether or not to always select this attribute when reading from the database.
Useful if fields are used in read action preparations consistently.
A primary key attribute cannot be deselected, so this option will have no effect.
Generally, you should favor selecting the field that you need while running your preparation. For example:  
defmodule MyApp.QueryPreparation.Thing do
use Ash.Resource.Preparation  
def prepare(query, _, _) do
query
|> Ash.Query.select(:attribute_i_need)
|> Ash.Query.after_action(fn query, results ->
  {:ok, Enum.map(results, fn result ->
    do_something_with_attribute_i_need(result)
  end)}
end)
end
end
This will prevent unnecessary fields from being selected. The default value is false.

	:primary_key? - Whether or not the attribute is part of the primary key (one or more fields that uniquely identify a resource). If primary_key? is true, allow_nil? must be false. The default value is false.

	:allow_nil? - Whether or not the attribute can be set to nil. The default value is false.

	:generated? - Whether or not the value may be generated by the data layer. If it is, the data layer will know to read the value back after writing. The default value is false.

	:writable? - Whether or not the value can be written to. The default value is false.

	:private? - Whether or not the attribute will appear in any interfaces created off of this resource, e.g AshJsonApi and AshGraphql. The default value is true.

	:update_default - A zero argument function, an {mod, fun, args} triple or a value. Ash.Changeset.for_update/4 sets the default in the changeset if a value is not provided.

	:default - A zero argument function, an {mod, fun, args} triple or a value. Ash.Changeset.for_create/4 sets the default in the changeset if a value is not provided. The default value is &DateTime.utc_now/0.

	:description - An optional description for the attribute.


update_timestamp
Declares a non-writable attribute with a create and update default of &DateTime.utc_now/0
Introspection Target:
Ash.Resource.Attribute
Examples:
update_timestamp :inserted_at
	:name - The name of the attribute.

	:type - The type of the attribute. The default value is Ash.Type.UtcDatetimeUsec.

	:constraints - Constraints to provide to the type when casting the value. See the type's documentation for more information.

	:sensitive? - Whether or not the attribute value contains sensitive information, like PII. If so, it will be redacted while inspecting data. The default value is false.

	:always_select? - Whether or not to always select this attribute when reading from the database.
Useful if fields are used in read action preparations consistently.
A primary key attribute cannot be deselected, so this option will have no effect.
Generally, you should favor selecting the field that you need while running your preparation. For example:  
defmodule MyApp.QueryPreparation.Thing do
use Ash.Resource.Preparation  
def prepare(query, _, _) do
query
|> Ash.Query.select(:attribute_i_need)
|> Ash.Query.after_action(fn query, results ->
  {:ok, Enum.map(results, fn result ->
    do_something_with_attribute_i_need(result)
  end)}
end)
end
end
This will prevent unnecessary fields from being selected. The default value is false.

	:primary_key? - Whether or not the attribute is part of the primary key (one or more fields that uniquely identify a resource). If primary_key? is true, allow_nil? must be false. The default value is false.

	:allow_nil? - Whether or not the attribute can be set to nil. The default value is false.

	:generated? - Whether or not the value may be generated by the data layer. If it is, the data layer will know to read the value back after writing. The default value is false.

	:writable? - Whether or not the value can be written to. The default value is false.

	:private? - Whether or not the attribute will appear in any interfaces created off of this resource, e.g AshJsonApi and AshGraphql. The default value is true.

	:update_default - A zero argument function, an {mod, fun, args} triple or a value. Ash.Changeset.for_update/4 sets the default in the changeset if a value is not provided. The default value is &DateTime.utc_now/0.

	:default - A zero argument function, an {mod, fun, args} triple or a value. Ash.Changeset.for_create/4 sets the default in the changeset if a value is not provided. The default value is &DateTime.utc_now/0.

	:description - An optional description for the attribute.


timestamps
Declares non-writable inserted_at and updated_at attributes whith create and update defaults of &DateTime.utc_now/0.
Introspection Target:
Ash.Resource.Attribute
Examples:
timestamps()
integer_primary_key
Declares a generated (set by the data layer), non writable, non nil, primary key column of type integer.
Using integer_primary_key, allow_nil? is automatically set to false.
Introspection Target:
Ash.Resource.Attribute
Examples:
integer_primary_key :id
	:name - The name of the attribute.

	:type - The type of the attribute. The default value is Ash.Type.Integer.

	:constraints - Constraints to provide to the type when casting the value. See the type's documentation for more information.

	:sensitive? - Whether or not the attribute value contains sensitive information, like PII. If so, it will be redacted while inspecting data. The default value is false.

	:always_select? - Whether or not to always select this attribute when reading from the database.
Useful if fields are used in read action preparations consistently.
A primary key attribute cannot be deselected, so this option will have no effect.
Generally, you should favor selecting the field that you need while running your preparation. For example:  
defmodule MyApp.QueryPreparation.Thing do
use Ash.Resource.Preparation  
def prepare(query, _, _) do
query
|> Ash.Query.select(:attribute_i_need)
|> Ash.Query.after_action(fn query, results ->
  {:ok, Enum.map(results, fn result ->
    do_something_with_attribute_i_need(result)
  end)}
end)
end
end
This will prevent unnecessary fields from being selected. The default value is false.

	:primary_key? - Whether or not the attribute is part of the primary key (one or more fields that uniquely identify a resource). If primary_key? is true, allow_nil? must be false. The default value is true.

	:generated? - Whether or not the value may be generated by the data layer. If it is, the data layer will know to read the value back after writing. The default value is true.

	:writable? - Whether or not the value can be written to. The default value is false.

	:private? - Whether or not the attribute will appear in any interfaces created off of this resource, e.g AshJsonApi and AshGraphql. The default value is false.

	:update_default - A zero argument function, an {mod, fun, args} triple or a value. Ash.Changeset.for_update/4 sets the default in the changeset if a value is not provided.

	:default - A zero argument function, an {mod, fun, args} triple or a value. Ash.Changeset.for_create/4 sets the default in the changeset if a value is not provided.

	:description - An optional description for the attribute.


uuid_primary_key
Declares a non writable, non nil, primary key column of type uuid, which defaults to Ash.UUID.generate/0.
Using uuid_primary_key, allow_nil? is automatically set to false.
Introspection Target:
Ash.Resource.Attribute
Examples:
uuid_primary_key :id
	:name - The name of the attribute.

	:type - The type of the attribute. The default value is Ash.Type.UUID.

	:constraints - Constraints to provide to the type when casting the value. See the type's documentation for more information.

	:sensitive? - Whether or not the attribute value contains sensitive information, like PII. If so, it will be redacted while inspecting data. The default value is false.

	:always_select? - Whether or not to always select this attribute when reading from the database.
Useful if fields are used in read action preparations consistently.
A primary key attribute cannot be deselected, so this option will have no effect.
Generally, you should favor selecting the field that you need while running your preparation. For example:  
defmodule MyApp.QueryPreparation.Thing do
use Ash.Resource.Preparation  
def prepare(query, _, _) do
query
|> Ash.Query.select(:attribute_i_need)
|> Ash.Query.after_action(fn query, results ->
  {:ok, Enum.map(results, fn result ->
    do_something_with_attribute_i_need(result)
  end)}
end)
end
end
This will prevent unnecessary fields from being selected. The default value is false.

	:primary_key? - Whether or not the attribute is part of the primary key (one or more fields that uniquely identify a resource). If primary_key? is true, allow_nil? must be false. The default value is true.

	:generated? - Whether or not the value may be generated by the data layer. If it is, the data layer will know to read the value back after writing. The default value is false.

	:writable? - Whether or not the value can be written to. The default value is false.

	:private? - Whether or not the attribute will appear in any interfaces created off of this resource, e.g AshJsonApi and AshGraphql. The default value is false.

	:update_default - A zero argument function, an {mod, fun, args} triple or a value. Ash.Changeset.for_update/4 sets the default in the changeset if a value is not provided.

	:default - A zero argument function, an {mod, fun, args} triple or a value. Ash.Changeset.for_create/4 sets the default in the changeset if a value is not provided. The default value is &Ash.UUID.generate/0.

	:description - An optional description for the attribute.


relationships
A section for declaring relationships on the resource.
Relationships are a core component of resource oriented design. Many components of Ash
will use these relationships. A simple use case is loading relationships (done via the Ash.Query.load/2).
	has_one
	has_many
	many_to_many
	belongs_to

Examples:
relationships do
  belongs_to :post, MyApp.Post do
    primary_key? true
  end

  belongs_to :category, MyApp.Category do
    primary_key? true
  end
end

relationships do
  belongs_to :author, MyApp.Author

  many_to_many :categories, MyApp.Category do
    through MyApp.PostCategory
    destination_field_on_join_table :category_id
    source_field_on_join_table :post_id
  end
end

relationships do
  has_many :posts, MyApp.Post do
    destination_field :author_id
  end

  has_many :composite_key_posts, MyApp.CompositeKeyPost do
    destination_field :author_id
  end
end

Imports:
	Ash.Filter.TemplateHelpers


has_one
Declares a has_one relationship. In a relationsal database, the foreign key would be on the other table.
Generally speaking, a has_one also implies that the destination table is unique on that foreign key.
Introspection Target:
Ash.Resource.Relationships.HasOne
Examples:
# In a resource called `Word`
has_one :dictionary_entry, DictionaryEntry do
  source_field :text
  destination_field :word_text
end

	:required? - Marks the relationship as required. This is not currently validated anywhere, since the
relationship is managed by the destination, but ash_graphql uses it for type information,
and it can be used for expressiveness.

	:name - The name of the relationship

	:destination - The destination resource

	:destination_field - The field on the related resource that should match the source_field on this resource.

	:validate_destination_field? - Whether or not to validate that the destination field exists on the destination resource The default value is true.

	:source_field - The field on this resource that should match the destination_field on the related resource. The default value is :id.

	:writable? - Whether or not the relationship may be edited. The default value is true.

	:description - An optional description for the relationship

	:relationship_context - Context to be set on any queries or changesets generated for this relationship.
This is used by ash_postgres for polymorphic resources.

	:private? - Whether or not the relationship will appear in any interfaces created off of this resource, e.g AshJsonApi and AshGraphql The default value is false.

	:not_found_message - A message to show if there is a conflict with this relationship in the database on update or create.
For example, if a value is added that has no match in the destination (very hard to do with the way Ash relationship changes work).

	:read_action - The read action on the destination resource to use when loading data.
Keep in mind, any filters that exist on the destination action are not honored when filtering on this
relationship. The only time the read action comes into play is when loading the actual relationship, which happens when they are loaded
explicitly and when the relationship is managed.

	:filter - A filter to be applied when reading the relationship.

	:sort - A sort statement to be applied when reading the relationship.

	:violation_message - A message to show if there is a conflict with this relationship in the database on destroy.
For example, if a record is deleted while related records still exist (and aren't configured to cascade deletes)


has_many
Declares a has_many relationship. There can be any number of related entities.
Introspection Target:
Ash.Resource.Relationships.HasMany
Examples:
# In a resource called `Word`
has_many :definitions, DictionaryDefinition do
  source_field :text
  destination_field :word_text
end

	:name - The name of the relationship

	:destination - The destination resource

	:destination_field - The field on the related resource that should match the source_field on this resource.

	:validate_destination_field? - Whether or not to validate that the destination field exists on the destination resource The default value is true.

	:source_field - The field on this resource that should match the destination_field on the related resource. The default value is :id.

	:writable? - Whether or not the relationship may be edited. The default value is true.

	:description - An optional description for the relationship

	:relationship_context - Context to be set on any queries or changesets generated for this relationship.
This is used by ash_postgres for polymorphic resources.

	:private? - Whether or not the relationship will appear in any interfaces created off of this resource, e.g AshJsonApi and AshGraphql The default value is false.

	:not_found_message - A message to show if there is a conflict with this relationship in the database on update or create.
For example, if a value is added that has no match in the destination (very hard to do with the way Ash relationship changes work).

	:read_action - The read action on the destination resource to use when loading data.
Keep in mind, any filters that exist on the destination action are not honored when filtering on this
relationship. The only time the read action comes into play is when loading the actual relationship, which happens when they are loaded
explicitly and when the relationship is managed.

	:filter - A filter to be applied when reading the relationship.

	:sort - A sort statement to be applied when reading the relationship.

	:violation_message - A message to show if there is a conflict with this relationship in the database on destroy.
For example, if a record is deleted while related records still exist (and aren't configured to cascade deletes)


many_to_many
Declares a many_to_many relationship. Many to many relationships require a join table.
A join table is typically a table who's primary key consists of one foreign key to each resource.
Introspection Target:
Ash.Resource.Relationships.ManyToMany
Examples:
# In a resource called `Word`
many_to_many :books, Book do
  through BookWord
  source_field :text
  source_field_on_join_table :word_text
  destination_field :id
  destination_field_on_join_table :book_id
end

# And in `BookWord` (the resource that defines the join table)
belongs_to :book, Book, primary_key?: true, required?: true
belongs_to :word, Word, primary_key?: true, required?: true

	:source_field_on_join_table - Required. The field on the join table that should line up with source_field on this resource.

	:destination_field_on_join_table - Required. The field on the join table that should line up with destination_field on the related resource.

	:through - Required. The resource to use as the join resource.

	:join_relationship - The has_many relationship to the join table. Defaults to <relationship_name>_join_assoc

	:join_attributes - Attributes to expose as editable when modifying the relationship.
Extensions may use this when deciding what fields to render from the join table.
See Ash.Changeset.append_to_relationship/3 and Ash.Changeset.replace_relationship/3 for
how to edit these fields. The default value is [].

	:name - The name of the relationship

	:destination - The destination resource

	:destination_field - The field on the related resource that should match the source_field on this resource. The default value is :id.

	:validate_destination_field? - Whether or not to validate that the destination field exists on the destination resource The default value is true.

	:source_field - The field on this resource that should match the destination_field on the related resource. The default value is :id.

	:writable? - Whether or not the relationship may be edited. The default value is true.

	:description - An optional description for the relationship

	:relationship_context - Context to be set on any queries or changesets generated for this relationship.
This is used by ash_postgres for polymorphic resources.

	:private? - Whether or not the relationship will appear in any interfaces created off of this resource, e.g AshJsonApi and AshGraphql The default value is false.

	:not_found_message - A message to show if there is a conflict with this relationship in the database on update or create.
For example, if a value is added that has no match in the destination (very hard to do with the way Ash relationship changes work).

	:read_action - The read action on the destination resource to use when loading data.
Keep in mind, any filters that exist on the destination action are not honored when filtering on this
relationship. The only time the read action comes into play is when loading the actual relationship, which happens when they are loaded
explicitly and when the relationship is managed.

	:filter - A filter to be applied when reading the relationship.

	:sort - A sort statement to be applied when reading the relationship.

	:violation_message - A message to show if there is a conflict with this relationship in the database on destroy.
For example, if a record is deleted while related records still exist (and aren't configured to cascade deletes)


belongs_to
Declares a belongs_to relationship. In a relational database, the foreign key would be on the source table.
This creates a field on the resource with the corresponding name and type, unless define_field?: false is provided.
Introspection Target:
Ash.Resource.Relationships.BelongsTo
Examples:
# In a resource called `Word`
belongs_to :dictionary_entry, DictionaryEntry do
  source_field :text,
  destination_field :word_text
end

	:primary_key? - Whether this field is, or is part of, the primary key of a resource. The default value is false.

	:required? - Whether this relationship must always be present, e.g: must be included on creation, and never removed (it can still be changed) The default value is false.

	:define_field? - If set to false a field is not created on the resource for this relationship, and one must be manually added in attributes. The default value is true.

	:field_type - The field type of the automatically created field. The default value is :uuid.

	:name - The name of the relationship

	:destination - The destination resource

	:destination_field - The field on the related resource that should match the source_field on this resource. The default value is :id.

	:validate_destination_field? - Whether or not to validate that the destination field exists on the destination resource The default value is true.

	:source_field - The field on this resource that should match the destination_field on the related resource. - Defaults to <name>_id

	:writable? - Whether or not the relationship may be edited. The default value is true.

	:description - An optional description for the relationship

	:relationship_context - Context to be set on any queries or changesets generated for this relationship.
This is used by ash_postgres for polymorphic resources.

	:private? - Whether or not the relationship will appear in any interfaces created off of this resource, e.g AshJsonApi and AshGraphql The default value is false.

	:not_found_message - A message to show if there is a conflict with this relationship in the database on update or create.
For example, if a value is added that has no match in the destination (very hard to do with the way Ash relationship changes work).

	:read_action - The read action on the destination resource to use when loading data.
Keep in mind, any filters that exist on the destination action are not honored when filtering on this
relationship. The only time the read action comes into play is when loading the actual relationship, which happens when they are loaded
explicitly and when the relationship is managed.

	:filter - A filter to be applied when reading the relationship.

	:sort - A sort statement to be applied when reading the relationship.

	:violation_message - A message to show if there is a conflict with this relationship in the database on destroy.
For example, if a record is deleted while related records still exist (and aren't configured to cascade deletes)


actions
A section for declaring resource actions.
All manipulation of data through the underlying data layer happens through actions.
There are four types of action: create, read, update, and destroy. You may
recognize these from the acronym CRUD. You can have multiple actions of the same
type, as long as they have different names. This is the primary mechanism for customizing
your resources to conform to your business logic. It is normal and expected to have
multiple actions of each type in a large application.
Primary actions
If you have multiple actions of the same type, one of them must be designated as the
primary action for that type, via the primary? option. This tells the ash what to do
if an action of that type is requested, but no specific action name is given. This is how
many relationship changes will happen, by utilizing the primary actions. For this reason,
 when defining actions, you usually want to ensure that the primary action takes no required
arguments . Without that, relationship changes to your resources might fail due to missing
arguments. This does, however, allow you to customize exactly how related entities are read/
created.
	create	change
	validate
	argument


	read	argument
	prepare


	update	change
	validate
	argument


	destroy	change
	validate
	argument



Examples:
actions do
  create :signup do
    argument :password, :string
    argument :password_confirmation, :string
    validate confirm(:password, :password_confirmation)
    change {MyApp.HashPassword, []} # A custom implemented Change
  end

  read :me do
    # An action that auto filters to only return the user for the current user
    filter [id: actor(:id)]
  end

  update :update do
    accept [:first_name, :last_name]
  end

  destroy do
    change set_attribute(:deleted_at, &DateTime.utc_now/0)
    # This tells it that even though this is a delete action, it
    # should be treated like an update because `deleted_at` is set.
    # This should be coupled with a `base_filter` on the resource
    # or with the read actions having a `filter` for `is_nil: :deleted_at`
    soft? true
  end
end

Imports:
	Ash.Resource.Change.Builtins
	Ash.Resource.Preparation.Builtins
	Ash.Resource.Validation.Builtins
	Ash.Filter.TemplateHelpers


	:defaults - By default, an action of each type is added to each resource.
If any other actions of that same type are added, the default of that type is not
added. If you wish to skip adding defaults of certain types, specify this option
with the defaults that you do want implemented. The default value is [:create, :read, :update, :destroy].

create
Declares a create action. For calling this action, see the Ash.Api documentation.
	change
	validate
	argument

Introspection Target:
Ash.Resource.Actions.Create
Examples:
create :register do
  primary? true
end

	:allow_nil_input - A list of attributes that would normally be required, but should not be for this action.
This exists because extensions like ash_graphql and ash_json_api will add non-null validations to their input for any attribute
that is accepted by an action that has allow_nil?: false. This tells those extensions that some change on the resource might
set that attribute, and so they should not require it at the API layer.
Ash core doesn't actually use the values in this list, because it does its nil validation after running all resource
changes. If the value is still nil by the time Ash would submit to the data layer, then an error is returned.

	:name - Required. The name of the action

	:primary? - Whether or not this action should be used when no action is specified by the caller. The default value is false.

	:description - An optional description for the action

	:accept - The list of attributes to accept. Defaults to all attributes on the resource

	:reject - A list of attributes not to accept. This is useful if you want to say 'accept all but x'
If this is specified along with accept, then everything in the accept list minus any matches in the
reject list will be accepted.

	:require_attributes - A list of attributes that would normally allow_nil to require for this action.
No need to include attributes that are allow_nil?: false.

	:error_handler - Sets the error handler on the changeset. See Ash.Changeset.handle_errors/2 for more

	:manual? - Instructs Ash to skip the actual update/create/destroy step.
All validation still takes place, but the result in any after_action callbacks
attached to that action will simply be the record that was read from the database initially.
For creates, the result will be nil, and you will be expected to handle the changeset in
an after_action callback and return an instance of the record. This is a good way to prevent
Ash from issuing an unnecessary update to the record, e.g updating the updated_at of the record
when an action actually only involves modifying relating records.
You could then handle the changeset automatically.
For example:  
in the action
action :special_create do
manual? true
change MyApp.DoCreate
end  
# The change
defmodule MyApp.DoCreate do
use Ash.Resource.Change  
def change(changeset, _, _) do
Ash.Changeset.after_action(changeset, fn changeset, _result ->
  # result will be `nil`, because this is a manual action  
  result = do_something_that_creates_the_record(changeset)  
  {:ok, result}
end)
end
end


change
A change to be applied to the changeset after it is generated. They are run in order, from top to bottom.
To implement your own, see Ash.Resource.Change.
To use it, you can simply refer to the module and its options, like so:
change {MyChange, foo: 1}
But for readability, you may want to define a function elsewhere and import it,
so you can say something like:
change my_change(1)
For destroys, changes are not applied unless soft? is set to true.
Introspection Target:
Ash.Resource.Change
Examples:
change relate_actor(:reporter)
change {MyCustomChange, :foo}
	:change - Required. The module and options for a change.

validate
Declares a validation for the current action
Introspection Target:
Ash.Resource.Validation
Examples:
validate changing(:email)
	:validation - Required. The module/opts pair of the validation

	:expensive? - If a validation is expensive, it won't be run on invalid changes. All inexpensive validations are always run, to provide informative errors. The default value is false.

	:message - If provided, overrides any message set by the validation error

	:description - An optional description for the validation

	:before_action? - If set to true, the validation is not run when building changesets using Ash.Changeset.for_*. The validation will only ever be run once the action itself is called. The default value is false.


argument
Declares an argument on the action
The type can be either a built in type (see Ash.Type) for more, or a module implementing
the Ash.Type behaviour.
Introspection Target:
Ash.Resource.Actions.Argument
Examples:
argument :password_confirmation, :string
	:allow_nil? - Whether or not the argument may be ommitted or set to nil The default value is true.

	:type - Required. The type of the argument

	:name - Required. The name of the argument

	:private? - Whether or not the argument should be part of the public API The default value is false.

	:sensitive? - Whether or not the attribute value contains sensitive information, like PII. If so, it will be redacted while inspecting data. The default value is false.

	:default - The default value for the argument to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

	:constraints - Type constraints on the argument The default value is [].

	:description - An optional description for the argument.


read
Declares a read action. For calling this action, see the Ash.Api documentation.
Pagination
	:keyset? - Whether or not keyset based pagination is supported The default value is false.

	:offset? - Whether or not offset based pagination is supported The default value is false.

	:default_limit - The default page size to apply, if one is not supplied

	:countable - Whether not a returned page will have a full count of all records. Use :by_default to do it automatically. The default value is false.

	:max_page_size - The maximum amount of records that can be requested in a single page The default value is 250.

	:required? - Whether or not pagination can be disabled. Only relevant if some pagination configuration is supplied. The default value is true.

	argument

	prepare


Introspection Target:
Ash.Resource.Actions.Read
Examples:
read :read_all do
  primary? true
end

	:filter - A filter template, that may contain actor references. See Ash.Filter for more on templates

	:transaction? - Whether or not this read action should happen in a transaction.
Only relevant if the data layer supports transactions.
This is useful for cases where you have read actions with preparations that create
data in before_action or after_action and you want those operations to happen
in the same transaction as the read. The default value is false.

	:pagination - Options for how the action should support pagination. See the pagination section for more information. The default value is false.

	:name - Required. The name of the action

	:primary? - Whether or not this action should be used when no action is specified by the caller. The default value is false.

	:description - An optional description for the action


argument
Declares an argument on the action
The type can be either a built in type (see Ash.Type) for more, or a module implementing
the Ash.Type behaviour.
Introspection Target:
Ash.Resource.Actions.Argument
Examples:
argument :password_confirmation, :string
	:allow_nil? - Whether or not the argument may be ommitted or set to nil The default value is true.

	:type - Required. The type of the argument

	:name - Required. The name of the argument

	:private? - Whether or not the argument should be part of the public API The default value is false.

	:sensitive? - Whether or not the attribute value contains sensitive information, like PII. If so, it will be redacted while inspecting data. The default value is false.

	:default - The default value for the argument to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

	:constraints - Type constraints on the argument The default value is [].

	:description - An optional description for the argument.


prepare
Declares a preparation, which can be used to prepare a query for a read action.
Introspection Target:
Ash.Resource.Preparation
Examples:
prepare default_sort([:foo, :bar])

	:preparation - Required. The module and options for a preparation.

update
Declares a update action. For calling this action, see the Ash.Api documentation.
	change
	validate
	argument

Introspection Target:
Ash.Resource.Actions.Update
Examples:
update :flag_for_review, primary?: true
	:name - Required. The name of the action

	:primary? - Whether or not this action should be used when no action is specified by the caller. The default value is false.

	:description - An optional description for the action

	:accept - The list of attributes to accept. Defaults to all attributes on the resource

	:reject - A list of attributes not to accept. This is useful if you want to say 'accept all but x'
If this is specified along with accept, then everything in the accept list minus any matches in the
reject list will be accepted.

	:require_attributes - A list of attributes that would normally allow_nil to require for this action.
No need to include attributes that are allow_nil?: false.

	:error_handler - Sets the error handler on the changeset. See Ash.Changeset.handle_errors/2 for more

	:manual? - Instructs Ash to skip the actual update/create/destroy step.
All validation still takes place, but the result in any after_action callbacks
attached to that action will simply be the record that was read from the database initially.
For creates, the result will be nil, and you will be expected to handle the changeset in
an after_action callback and return an instance of the record. This is a good way to prevent
Ash from issuing an unnecessary update to the record, e.g updating the updated_at of the record
when an action actually only involves modifying relating records.
You could then handle the changeset automatically.
For example:  
in the action
action :special_create do
manual? true
change MyApp.DoCreate
end  
# The change
defmodule MyApp.DoCreate do
use Ash.Resource.Change  
def change(changeset, _, _) do
Ash.Changeset.after_action(changeset, fn changeset, _result ->
  # result will be `nil`, because this is a manual action  
  result = do_something_that_creates_the_record(changeset)  
  {:ok, result}
end)
end
end


change
A change to be applied to the changeset after it is generated. They are run in order, from top to bottom.
To implement your own, see Ash.Resource.Change.
To use it, you can simply refer to the module and its options, like so:
change {MyChange, foo: 1}
But for readability, you may want to define a function elsewhere and import it,
so you can say something like:
change my_change(1)
For destroys, changes are not applied unless soft? is set to true.
Introspection Target:
Ash.Resource.Change
Examples:
change relate_actor(:reporter)
change {MyCustomChange, :foo}
	:change - Required. The module and options for a change.

validate
Declares a validation for the current action
Introspection Target:
Ash.Resource.Validation
Examples:
validate changing(:email)
	:validation - Required. The module/opts pair of the validation

	:expensive? - If a validation is expensive, it won't be run on invalid changes. All inexpensive validations are always run, to provide informative errors. The default value is false.

	:message - If provided, overrides any message set by the validation error

	:description - An optional description for the validation

	:before_action? - If set to true, the validation is not run when building changesets using Ash.Changeset.for_*. The validation will only ever be run once the action itself is called. The default value is false.


argument
Declares an argument on the action
The type can be either a built in type (see Ash.Type) for more, or a module implementing
the Ash.Type behaviour.
Introspection Target:
Ash.Resource.Actions.Argument
Examples:
argument :password_confirmation, :string
	:allow_nil? - Whether or not the argument may be ommitted or set to nil The default value is true.

	:type - Required. The type of the argument

	:name - Required. The name of the argument

	:private? - Whether or not the argument should be part of the public API The default value is false.

	:sensitive? - Whether or not the attribute value contains sensitive information, like PII. If so, it will be redacted while inspecting data. The default value is false.

	:default - The default value for the argument to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

	:constraints - Type constraints on the argument The default value is [].

	:description - An optional description for the argument.


destroy
Declares a destroy action. For calling this action, see the Ash.Api documentation.
	change
	validate
	argument

Introspection Target:
Ash.Resource.Actions.Destroy
Examples:
destroy :soft_delete do
  primary? true
end

	:soft? - If specified, the destroy action calls the datalayer's update function with any specified changes.

	:name - Required. The name of the action

	:primary? - Whether or not this action should be used when no action is specified by the caller. The default value is false.

	:description - An optional description for the action

	:accept - The list of attributes to accept. Defaults to all attributes on the resource

	:reject - A list of attributes not to accept. This is useful if you want to say 'accept all but x'
If this is specified along with accept, then everything in the accept list minus any matches in the
reject list will be accepted.

	:require_attributes - A list of attributes that would normally allow_nil to require for this action.
No need to include attributes that are allow_nil?: false.

	:error_handler - Sets the error handler on the changeset. See Ash.Changeset.handle_errors/2 for more

	:manual? - Instructs Ash to skip the actual update/create/destroy step.
All validation still takes place, but the result in any after_action callbacks
attached to that action will simply be the record that was read from the database initially.
For creates, the result will be nil, and you will be expected to handle the changeset in
an after_action callback and return an instance of the record. This is a good way to prevent
Ash from issuing an unnecessary update to the record, e.g updating the updated_at of the record
when an action actually only involves modifying relating records.
You could then handle the changeset automatically.
For example:  
in the action
action :special_create do
manual? true
change MyApp.DoCreate
end  
# The change
defmodule MyApp.DoCreate do
use Ash.Resource.Change  
def change(changeset, _, _) do
Ash.Changeset.after_action(changeset, fn changeset, _result ->
  # result will be `nil`, because this is a manual action  
  result = do_something_that_creates_the_record(changeset)  
  {:ok, result}
end)
end
end


change
A change to be applied to the changeset after it is generated. They are run in order, from top to bottom.
To implement your own, see Ash.Resource.Change.
To use it, you can simply refer to the module and its options, like so:
change {MyChange, foo: 1}
But for readability, you may want to define a function elsewhere and import it,
so you can say something like:
change my_change(1)
For destroys, changes are not applied unless soft? is set to true.
Introspection Target:
Ash.Resource.Change
Examples:
change relate_actor(:reporter)
change {MyCustomChange, :foo}
	:change - Required. The module and options for a change.

validate
Declares a validation for the current action
Introspection Target:
Ash.Resource.Validation
Examples:
validate changing(:email)
	:validation - Required. The module/opts pair of the validation

	:expensive? - If a validation is expensive, it won't be run on invalid changes. All inexpensive validations are always run, to provide informative errors. The default value is false.

	:message - If provided, overrides any message set by the validation error

	:description - An optional description for the validation

	:before_action? - If set to true, the validation is not run when building changesets using Ash.Changeset.for_*. The validation will only ever be run once the action itself is called. The default value is false.


argument
Declares an argument on the action
The type can be either a built in type (see Ash.Type) for more, or a module implementing
the Ash.Type behaviour.
Introspection Target:
Ash.Resource.Actions.Argument
Examples:
argument :password_confirmation, :string
	:allow_nil? - Whether or not the argument may be ommitted or set to nil The default value is true.

	:type - Required. The type of the argument

	:name - Required. The name of the argument

	:private? - Whether or not the argument should be part of the public API The default value is false.

	:sensitive? - Whether or not the attribute value contains sensitive information, like PII. If so, it will be redacted while inspecting data. The default value is false.

	:default - The default value for the argument to take. It can be a zero argument function e.g &MyMod.my_fun/0 or a value

	:constraints - Type constraints on the argument The default value is [].

	:description - An optional description for the argument.


resource
Resource-wide configuration
Examples:
resource do
  description "A description of this resource"
  base_filter [is_nil: :deleted_at]
end

Imports:
	Ash.Filter.TemplateHelpers


	:description - A human readable description of the resource, to be used in generated documentation

	:base_filter - A filter statement to be applied to any queries on the resource

	:default_context - Default context to apply to any queries/changesets generated for this resource.


validations
Declare validations prior to performing actions against the resource
	validate

Examples:
validations do
  validate {Mod, [foo: :bar]}
  validate at_least_one_of_present([:first_name, :last_name])
end

Imports:
	Ash.Resource.Validation.Builtins


validate
Declares a validation for creates and updates.
Introspection Target:
Ash.Resource.Validation
Examples:
validate {Mod, [foo: :bar]}
validate at_least_one_of_present([:first_name, :last_name])
	:validation - Required. The module/opts pair of the validation

	:on - The action types the validation should run on.
Many validations don't make sense in the context of deletion, so by default it is left out of the list. The default value is [:create, :update].

	:expensive? - If a validation is expensive, it won't be run on invalid changes. All inexpensive validations are always run, to provide informative errors. The default value is false.

	:message - If provided, overrides any message set by the validation error

	:description - An optional description for the validation

	:before_action? - If set to true, the validation is not run when building changesets using Ash.Changeset.for_*. The validation will only ever be run once the action itself is called. The default value is false.


aggregates
Declare named aggregates on the resource.
These are aggregates that can be loaded only by name using Ash.Query.load/2.
They are also available as top level fields on the resource.
	count
	first
	sum
	list

Examples:
aggregates do
  count :assigned_ticket_count, :reported_tickets do
    filter [active: true]
  end
end

Imports:
	Ash.Filter.TemplateHelpers


count
Declares a named count aggregate on the resource
Supports filter, but not sort (because that wouldn't affect the count)
Introspection Target:
Ash.Resource.Aggregate
Examples:
count :assigned_ticket_count, :assigned_tickets do
  filter [active: true]
end

	:name - Required. The field to place the aggregate in

	:relationship_path - Required. The relationship or relationship path to use for the aggregate

	:kind - Required. The kind of the aggregate

	:field - false The field to aggregate. Defaults to the first field in the primary key of the resource

	:filter - A filter to apply to the aggregate The default value is [].

	:description - An optional description for the aggregate

	:private? - Whether or not the aggregate will appear in any interfaces created off of this resource, e.g AshJsonApi and AshGraphql The default value is false.


first
Declares a named first aggregate on the resource
First aggregates return the first value of the related record
that matches. Supports both filter and sort.
Introspection Target:
Ash.Resource.Aggregate
Examples:
first :first_assigned_ticket_subject, :assigned_tickets, :subject do
  filter [active: true]
  sort [:subject]
end

	:name - Required. The field to place the aggregate in

	:relationship_path - Required. The relationship or relationship path to use for the aggregate

	:kind - Required. The kind of the aggregate

	:field - false The field to aggregate. Defaults to the first field in the primary key of the resource

	:filter - A filter to apply to the aggregate The default value is [].

	:sort - A sort to be applied to the aggregate

	:description - An optional description for the aggregate

	:private? - Whether or not the aggregate will appear in any interfaces created off of this resource, e.g AshJsonApi and AshGraphql The default value is false.


sum
Declares a named sum aggregate on the resource
Supports filter, but not sort (because that wouldn't affect the sum)
Introspection Target:
Ash.Resource.Aggregate
Examples:
sum :assigned_ticket_price_sum, :assigned_tickets, :price do
  filter [active: true]
end

	:name - Required. The field to place the aggregate in

	:relationship_path - Required. The relationship or relationship path to use for the aggregate

	:kind - Required. The kind of the aggregate

	:field - false The field to aggregate. Defaults to the first field in the primary key of the resource

	:filter - A filter to apply to the aggregate The default value is [].

	:description - An optional description for the aggregate

	:private? - Whether or not the aggregate will appear in any interfaces created off of this resource, e.g AshJsonApi and AshGraphql The default value is false.


list
Declares a named list aggregate on the resource.
A list aggregate simply selects the list of all values for the given field
and relationship combination.
Introspection Target:
Ash.Resource.Aggregate
Examples:
list :assigned_ticket_prices, :assigned_tickets, :price do
  filter [active: true]
end

	:name - Required. The field to place the aggregate in

	:relationship_path - Required. The relationship or relationship path to use for the aggregate

	:kind - Required. The kind of the aggregate

	:field - false The field to aggregate. Defaults to the first field in the primary key of the resource

	:filter - A filter to apply to the aggregate The default value is [].

	:sort - A sort to be applied to the aggregate

	:description - An optional description for the aggregate

	:private? - Whether or not the aggregate will appear in any interfaces created off of this resource, e.g AshJsonApi and AshGraphql The default value is false.


calculations
Declare named calculations on the resource.
These are calculations that can be loaded only by name using Ash.Query.load/2.
They are also available as top level fields on the resource.
	calculate	argument



Examples:
calculations do
  calculate :full_name, :string, MyApp.MyResource.FullName
end

Imports:
	Ash.Resource.Calculation.Builtins
	Ash.Filter.TemplateHelpers


calculate
Declares a named calculation on the resource.
Takes a module that must adopt the Ash.Calculation behaviour. See that module
for more information.
To ensure that the necessary fields are selected:
1.) Specifying the select option on a calculation in the resource.
2.) Define a select/2 callback in the calculation module
3.) Set always_select? on the attribute in question
	argument

Introspection Target:
Ash.Resource.Calculation
Examples:
Ash.Calculation implementation example:
calculate :full_name, :string, {MyApp.FullName, keys: [:first_name, :last_name]}, select: [:first_name, :last_name]
expr/1 example:
calculate :full_name, :string, expr(first_name <> " " <> last_name 
	:name - Required. The field name to use for the calculation value

	:type - Required.

	:constraints - Constraints to provide to the type. The default value is [].

	:calculation - Required. The module or {module, opts} to use for the calculation

	:description - An optional description for the calculation

	:private? - Whether or not the calculation will appear in any interfaces created off of this resource, e.g AshJsonApi and AshGraphql The default value is false.

	:select - A list of fields to ensure selected in the case that the calculation is run. The default value is [].

	:load - A load statement to be applied if the calculation is used. The default value is [].

	:allow_nil? - Whether or not the calculation can return nil. The default value is true.


argument
An argument to be passed into the calculation's arguments map
Introspection Target:
Ash.Resource.Calculation.Argument
Examples:
argument :params, :map do
  default %{}
end

argument :retries, :integer do
  allow_nil? false
end

	:name - Required. The name to use for the argument

	:type - Required. The type of the argument

	:default - false A default value to use for the argument if not provided

	:allow_nil? - Whether or not the argument value may be nil The default value is true.

	:constraints - Constraints to provide to the type when casting the value. See the type's documentation for more information. The default value is [].


multitenancy
Options for configuring the multitenancy behavior of a resource.
To specify a tenant, use Ash.Query.set_tenant/2 or
Ash.Changeset.set_tenant/2 before passing it to an operation.
Examples:
multitenancy do
  strategy :attribute
  attribute :organization_id
  global? true
end


	:strategy - Determine how to perform multitenancy. :attribute will expect that an
attribute matches the given tenant, e.g org_id. context (the default)
implies that the tenant will be passed to the datalayer as context. How a
given data layer handles multitenancy will differ depending on the implementation.
See the datalayer documentation for more. The default value is :context.

	:attribute - If using the attribute strategy, the attribute to use, e.g org_id

	:global? - Whether or not the data also exists outside of each tenant. This allows running queries
and making changes without setting a tenant. This may eventually be extended to support
describing the relationship to global data. For example, perhaps the global data is
shared among all tenants (requiring "union" support in data layers), or perhaps global
data is "merged" using some strategy (also requiring "union" support). The default value is false.

	:parse_attribute - An mfa ({module, function, args}) pointing to a function that takes a tenant and returns the attribute value The default value is {Ash.Resource.Dsl, :identity, []}.


code_interface
Functions that will be defined on the Api module to interact with this resource.
	define

Examples:
code_interface do
  define :create_user, action: :create
  define :get_user_by_id, action: :get_by_id, args: [:id], get?: true
end


define
Defines a function on the Api with the corresponding name and arguments.
If the action is an update or destroy, it will take a record or a changeset as its first argument.
If the action is a read action, it will take a starting query as an opt in the last argument.
All functions will have an optional last argument that accepts options. Those options are:
	:tenant - set the tenant of the query/changeset

	:context - set context on the query/changeset

	:actor - set the actor for authorization

	:authorize? - whether or not to perform authorization.
If an actor option is provided (even if it is nil), defaults to true. If not, defaults to false.

	:verbose? - a flag to toggle verbose output from the internal Ash engine (for debugging)


For reads:
	:query - a query to start the action with, can be used to filter/sort the results of the action.

For creates:
	:changeset - a changeset to start the action with

They will also have an optional second to last argument that is a freeform map to provide action input. It must be a map.
If it is a keyword list, it will be assumed that it is actually options (for convenience).
This allows for the following behaviour:
# Because the 3rd argument is a keyword list, we use it as options
Api.register_user(username, password, [tenant: "organization_22"])
# Because the 3rd argument is a keyword list, we use it as action input
Api.register_user(username, password, %{key: "val"})
# When all are provided it is unambiguous
Api.register_user(username, password, %{key: "val"}, [tenant: "organization_22"])
Introspection Target:
Ash.Resource.Interface
Examples:
define :get_user_by_id, action: :get_by_id, args: [:id], get?: true
	:name - Required. The name of the function that will be defined

	:action - The name of the action that will be called. Defaults to the same name as the function.

	:args - Map specific arguments to named inputs. Can provide any argument/attributes that the action allows.

	:get? - Only relevant for read actions. Expects to only receive a single result from a read action.
For example, get_user_by_email.



      





  

    
Ash.Filter
    



      
The representation of a filter in Ash.
Ash filters are stored as nested Ash.Query.BooleanExpression{} and %Ash.Query.Not{} structs,
terminating in an operator or a function struct. An expression is simply a boolean operator
and the left and right hand side of that operator.
Filter Templates
Filter templates are simplified fielter statements (they only support atom keys), that have substitutions in them.
Currently, the substitutions are {:_actor, :field} and {:_actor, :_primary_key}
You can pass a filter template to build_filter_from_template/2 with an actor, and it will return the new result
Additionally, you can ask if the filter template contains an actor reference via template_references_actor?/1
Writing a filter
Built In Predicates
	is_nil
	==
	!=
	in
	<
	>
	<=
	>=
	has
	<>
	/
	-
	*
	+
	equals (alias for ==)
	not_equals (alias for !=)
	gt (alias for >)
	lt (alias for <)
	gte (alias for >=)
	lte (alias for <=)
	eq (alias for ==)
	not_eq (alias for !=)
	less_than (alias for <)
	greater_than (alias for >)
	less_than_or_equal (alias for <=)
	greater_than_or_equal (alias for >=)
	concat (alias for <>)
	div (alias for /)
	minus (alias for -)
	times (alias for *)
	plus (alias for +)

BooleanExpression syntax
The expression syntax ultimately just builds the keyword list style filter, but with lots of conveniences that
would be very annoying to do manually.
Examples
Ash.Query.filter(resource, name == "Zardoz")
Ash.Query.filter(resource, first_name == "Zar" and last_name == "Doz")
Ash.Query.filter(resource, first_name == "Zar" and last_name in ["Doz", "Daz"] and high_score > 10)
Ash.Query.filter(resource, first_name == "Zar" or last_name == "Doz" or (high_score > 10 and high_score < -10))
Keyword list syntax
A filter is a nested keyword list (with some exceptions, like true for everything and false for nothing).
The key is the "predicate" (A.K.A condition) and the value is the parameter. You can use and and or to create
nested filters. Datalayers can expose custom predicates. Eventually, you will be able to define your own custom
predicates, which will be a mechanism for you to attach complex filters supported by the data layer to your queries.
 Important 
In a given keyword list, all predicates are considered to be "ands". So [or: [first_name: "Tom", last_name: "Bombadil"]] doesn't
mean 'First name == "tom" or last_name == "bombadil"'. To say that, you want to provide a list of filters,
like so: [or: [[first_name: "Tom"], [last_name: "Bombadil"]]]
Some example filters:
Ash.Query.filter(resource, [name: "Zardoz"]))
Ash.Query.filter(resource, [first_name: "Zar", last_name: "Doz"])
Ash.Query.filter(resource, [first_name: "Zar", last_name: [in: ["Doz", "Daz"]], high_score: [greater_than: 10]])
Ash.Query.filter(resource, [or: [
  [first_name: "Zar"],
  [last_name: "Doz"],
  [or: [
    [high_score: [greater_than: 10]]],
    [high_score: [less_than: -10]]
  ]
]])

### Other formats

Maps are also accepted, as are maps with string keys. Technically, a list of `[{"string_key", value}]` would also work.
If you are using a map with string keys, it is likely that you are parsing input. It is important to note that, before
passing a filter supplied from an external source directly to `Ash.Query.filter/2`, you should first call `Ash.Filter.parse_input/2`
(or `Ash.Filter.parse_input/4` if your query has aggregates/calculations in it). This ensures that the filter only uses public attributes,
relationships, aggregates and calculations. You may additionally wish to pass in the query context, in the case that you have calculations
that use the provided context.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


  
    
      Functions
    


  
    add_to_filter(base, addition, op \\ :and, aggregates \\ %{}, calculations \\ %{}, context \\ %{})

  





  
    add_to_filter!(base, addition, op \\ :and, aggregates \\ %{}, calculations \\ %{}, context \\ %{})

  





  
    build_filter_from_template(template, actor \\ nil, args \\ %{}, context \\ %{})

  


    Replace any actor value references in a template with the values from a given actor






  
    builtin_functions()

  





  
    builtin_operators()

  





  
    builtin_predicate_operators()

  





  
    builtins()

  





  
    find(expr, func)

  





  
    get_filter(resource, id)

  


    Returns a filter statement that would find a single record based on the input.






  
    hydrate_refs(ref, context)

  





  
    list_predicates(expression)

  





  
    list_refs(list)

  





  
    parse(resource, statement, aggregates \\ %{}, calculations \\ %{}, context \\ %{})

  


    Parses a filter statement






  
    parse!(resource, statement, aggregates \\ %{}, calculations \\ %{}, context \\ %{})

  


    Parses a filter statement






  
    parse_input(resource, statement, aggregates \\ %{}, calculations \\ %{}, context \\ %{})

  


    Parses a filter statement, accepting only public attributes/relationships






  
    parse_input!(resource, statement, aggregates \\ %{}, calculations \\ %{}, context \\ %{})

  


    Parses a filter statement, accepting only public attributes/relationships, raising on errors.






  
    prefix_refs(expr, path)

  





  
    put_at_path(value, list)

  





  
    read_requests(api, filter)

  





  
    relationship_filter_request_paths(filter)

  





  
    relationship_paths(filter_or_expression, kind \\ :all)

  





  
    run_other_data_layer_filters(api, resource, filter)

  





  
    scope_expression_by_relationship_path(filter, path)

  





  
    strict_subset_of(filter, candidate)

  


    Returns true if the second argument is a strict subset (always returns the same or less data) of the first






  
    strict_subset_of?(filter, candidate)

  





  
    template_references_actor?(filter)

  


    Whether or not a given template contains an actor reference






  
    to_simple_filter(map)

  


    transform an expression based filter to a simple filter, which is just a list of predicates






  
    update_aggregates(filter, mapper)

  





  
    used_aggregates(filter, relationship_path \\ [], return_refs? \\ false)

  





  
    used_calculations(filter, resource, relationship_path \\ [], calculations \\ %{}, aggregates \\ %{})

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Filter{expression: term(), resource: term()}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

    

    

    

  
    
      
      Link to this function
    
    add_to_filter(base, addition, op \\ :and, aggregates \\ %{}, calculations \\ %{}, context \\ %{})


      
       
       View Source
     


  


  


  



    

    

    

    

  
    
      
      Link to this function
    
    add_to_filter!(base, addition, op \\ :and, aggregates \\ %{}, calculations \\ %{}, context \\ %{})


      
       
       View Source
     


  


  


  



    

    

    

  
    
      
      Link to this function
    
    build_filter_from_template(template, actor \\ nil, args \\ %{}, context \\ %{})


      
       
       View Source
     


  


  

Replace any actor value references in a template with the values from a given actor

  



  
    
      
      Link to this function
    
    builtin_functions()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    builtin_operators()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    builtin_predicate_operators()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    builtins()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    find(expr, func)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    get_filter(resource, id)


      
       
       View Source
     


  


  

Returns a filter statement that would find a single record based on the input.
For example:
iex> get_filter(MyApp.Post, 1)
{:ok, %{id: 1}} #using primary key
iex> get_filter(MyApp.Post, id: 1)
{:ok, %{id: 1}} #using primary key
iex> get_filter(MyApp.Post, author_id: 1, publication_id: 2, first_name: "fred")
{:ok, %{author_id: 1, publication_id: 1}} # using a unique identity
iex> get_filter(MyApp.Post, first_name: "fred")
:error # not enough information

  



  
    
      
      Link to this function
    
    hydrate_refs(ref, context)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    list_predicates(expression)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    list_refs(list)


      
       
       View Source
     


  


  


  



    

    

    

  
    
      
      Link to this function
    
    parse(resource, statement, aggregates \\ %{}, calculations \\ %{}, context \\ %{})


      
       
       View Source
     


  


  

Parses a filter statement
See the module documentation for more information on the supported formats for filter
statements.

  
  Important


If you are trying to validate a filter supplied from an external/untrusted source,
be sure to use parse_input/2 instead! The only difference is that it only accepts
filters over public attributes/relationships.

  
  Aggregates and calculations


Since custom aggregates/calculations can be added to a query, and they must be explicitly loaded into
a query, the filter parser does not parse them by default. If you wish to support parsing filters
over aggregates/calculations, provide them as the third argument. The best way to do this is to build a query
with them added/loaded, and then use the aggregates and calculations keys on the query.

  
  NOTE


A change was made recently that will automatically load any aggregates/calculations that are used in a filter, but
if you are using this function you still need to pass them in.
Ash.Filter.parse(MyResource, [id: 1], query.aggregates, query.calculations)

  



    

    

    

  
    
      
      Link to this function
    
    parse!(resource, statement, aggregates \\ %{}, calculations \\ %{}, context \\ %{})


      
       
       View Source
     


  


  

Parses a filter statement
See parse/2 for more

  



    

    

    

  
    
      
      Link to this function
    
    parse_input(resource, statement, aggregates \\ %{}, calculations \\ %{}, context \\ %{})


      
       
       View Source
     


  


  

Parses a filter statement, accepting only public attributes/relationships
See parse/2 for more

  



    

    

    

  
    
      
      Link to this function
    
    parse_input!(resource, statement, aggregates \\ %{}, calculations \\ %{}, context \\ %{})


      
       
       View Source
     


  


  

Parses a filter statement, accepting only public attributes/relationships, raising on errors.
See parse_input/2 for more

  



  
    
      
      Link to this function
    
    prefix_refs(expr, path)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    put_at_path(value, list)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    read_requests(api, filter)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    relationship_filter_request_paths(filter)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    relationship_paths(filter_or_expression, kind \\ :all)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    run_other_data_layer_filters(api, resource, filter)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    scope_expression_by_relationship_path(filter, path)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    strict_subset_of(filter, candidate)


      
       
       View Source
     


  


  

Returns true if the second argument is a strict subset (always returns the same or less data) of the first

  



  
    
      
      Link to this function
    
    strict_subset_of?(filter, candidate)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    template_references_actor?(filter)


      
       
       View Source
     


  


  

Whether or not a given template contains an actor reference

  



  
    
      
      Link to this function
    
    to_simple_filter(map)


      
       
       View Source
     


  


  

transform an expression based filter to a simple filter, which is just a list of predicates

  



  
    
      
      Link to this function
    
    update_aggregates(filter, mapper)


      
       
       View Source
     


  


  


  



    

    

  
    
      
      Link to this function
    
    used_aggregates(filter, relationship_path \\ [], return_refs? \\ false)


      
       
       View Source
     


  


  


  



    

    

    

  
    
      
      Link to this function
    
    used_calculations(filter, resource, relationship_path \\ [], calculations \\ %{}, aggregates \\ %{})


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Sort
    



      
Utilities and types for sorting.
Important
Keyset pagination cannot currently be used in conjunction with aggregate and calculation sorting.
Combining them will result in an error on the query.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    sort_order()

  





  
    t()

  





  


  
    
      Functions
    


  
    parse_input(resource, sort)

  


    A utility for parsing sorts provided from external input. Only allows sorting
on public attributes and aggregates.






  
    parse_sort(resource, field)

  





  
    runtime_sort(results, sort)

  


    A utility for sorting a list of records at runtime.






  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    sort_order()


      
       
       View Source
     


  


  

      Specs

      

          sort_order() ::
  :asc
  | :desc
  | :asc_nils_first
  | :asc_nils_last
  | :desc_nils_first
  | :desc_nils_last


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: [atom() | {atom(), sort_order()}]


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    parse_input(resource, sort)


      
       
       View Source
     


  


  

      Specs

      

          parse_input(
  Ash.Resource.t(),
  String.t()
  | [atom() | String.t() | {atom(), sort_order()} | [String.t()]]
  | nil
) :: t() | nil


      


A utility for parsing sorts provided from external input. Only allows sorting
on public attributes and aggregates.
The supported formats are:

  
  Sort Strings


A comma separated list of fields to sort on, each with an optional prefix.
The prefixes are:
	"+" - Same as no prefix. Sorts :asc.
	"++" - Sorts :asc_nils_first
	"-" - Sorts :desc
	"--" - Sorts :desc_nils_last

For example
"foo,-bar,++baz,--buz"

  
  A list of sort strings


Same prefix rules as above, but provided as a list.
For example:
["foo", "-bar", "++baz", "--buz"]

  
  A standard Ash sort



  



  
    
      
      Link to this function
    
    parse_sort(resource, field)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    runtime_sort(results, sort)


      
       
       View Source
     


  


  

A utility for sorting a list of records at runtime.
For example:
Ash.Sort.runtime_sort([record1, record2, record3], name: :asc, type: :desc_nils_last)
Keep in mind that it is unrealistic to expect this runtime sort to always
be exactly the same as a sort that may have been applied by your data layer.
This is especially true for strings. For example, Postgres strings have a
collation that affects their sorting, making it unpredictable from the perspective
of a tool using the database: https://www.postgresql.org/docs/current/collation.html

  


        

      



  

    
Ash.Resource.Validation behaviour
    



      
Represents a validation in Ash.
See Ash.Resource.Validation.Builtins for a list of builtin validations.
To write your own validation, define a module that implements the init/1 callback
to validate options at compile time, and validate/2 callback to do the validation.
Then, in a resource, you can say:
validations do
  validation {MyValidation, [foo: :bar]}
end
To make it more readable, you can define a function in the module that returns that tuple,
and import it into your resource.
defmodule MyValidation do
  def my_validation(value) do
    {__MODULE__, foo: value}
  end
end
defmodule MyResource do
  ...

  import MyValidation

  validations do
    validate my_validation(:foo)
  end
end

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    path()

  





  
    t()

  





  


  
    
      Functions
    


  
    action_schema()

  





  
    on(list)

  





  
    opt_schema()

  





  
    transform(validation)

  





  
    validation(module)

  





  


  
    
      Callbacks
    


  
    init(arg1)

  





  
    validate(arg1, arg2)

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    path()


      
       
       View Source
     


  


  

      Specs

      

          path() :: [atom() | integer()]


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Resource.Validation{
  before_action?: term(),
  description: String.t() | nil,
  expensive?: boolean(),
  message: term(),
  module: atom(),
  on: [atom()],
  opts: [atom()],
  validation: {atom(), [atom()]}
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    action_schema()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    on(list)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    opt_schema()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    transform(validation)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    validation(module)


      
       
       View Source
     


  


  


  


        

      

      
        
          
            
            Anchor for this section
          
Callbacks
        

        


  
    
      
      Link to this callback
    
    init(arg1)


      
       
       View Source
     


  


  

      Specs

      

          init(Keyword.t()) :: {:ok, Keyword.t()} | {:error, String.t()}


      



  



  
    
      
      Link to this callback
    
    validate(arg1, arg2)


      
       
       View Source
     


  


  

      Specs

      

          validate(Ash.Changeset.t(), Keyword.t()) :: :ok | {:error, term()}


      



  


        

      



  

    
Ash.Resource.Validation.AttributeDoesNotEqual
    



      
A validation that fails unless the attribute does not equal a specific value

      





  

    
Ash.Resource.Validation.AttributeEquals
    



      
A validation that fails unless the attribute equals a specific value

      





  

    
Ash.Resource.Validation.Builtins
    



      
Built in validations that are available to all resources
The functions in this module are imported by default in the validations section.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    absent(attributes, opts \\ [])

  


    Validates the absence of a list of attributes






  
    attribute_does_not_equal(attribute, value)

  


    Validates that an attribute on the original record does not equal a specific value






  
    attribute_equals(attribute, value)

  


    Validates that an attribute on the original record equals a specific value






  
    changing(field)

  


    Validates that an attribute is being changed






  
    compare(attribute, opts \\ [])

  


    Validates that attribute meets the given criteria






  
    confirm(field, confirmation)

  


    Validates that a field or argument matches another field or argument






  
    match(attribute, match, message \\ nil)

  


    Validates that an attribute's value matches a given regex or string, using the provided error, message if not.






  
    one_of(attribute, values)

  


    Validates that an attribute's value is in a given list






  
    present(attributes, opts \\ [])

  


    Validates the presence of a list of attributes






  
    string_length(attribute, opts \\ [])

  


    Validates that an attribute on the original record meets the given length criteria






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


    

  
    
      
      Link to this function
    
    absent(attributes, opts \\ [])


      
       
       View Source
     


  


  

Validates the absence of a list of attributes
If no options are provided, validates that they are all absent.
The docs behave the same as present/2, except they validate absence.

  



  
    
      
      Link to this function
    
    attribute_does_not_equal(attribute, value)


      
       
       View Source
     


  


  

Validates that an attribute on the original record does not equal a specific value

  



  
    
      
      Link to this function
    
    attribute_equals(attribute, value)


      
       
       View Source
     


  


  

Validates that an attribute on the original record equals a specific value

  



  
    
      
      Link to this function
    
    changing(field)


      
       
       View Source
     


  


  

Validates that an attribute is being changed

  



    

  
    
      
      Link to this function
    
    compare(attribute, opts \\ [])


      
       
       View Source
     


  


  

Validates that attribute meets the given criteria

  



  
    
      
      Link to this function
    
    confirm(field, confirmation)


      
       
       View Source
     


  


  

Validates that a field or argument matches another field or argument

  



    

  
    
      
      Link to this function
    
    match(attribute, match, message \\ nil)


      
       
       View Source
     


  


  

Validates that an attribute's value matches a given regex or string, using the provided error, message if not.
String.match?/2 is used to determine if it matches.

  



  
    
      
      Link to this function
    
    one_of(attribute, values)


      
       
       View Source
     


  


  

Validates that an attribute's value is in a given list

  



    

  
    
      
      Link to this function
    
    present(attributes, opts \\ [])


      
       
       View Source
     


  


  

Validates the presence of a list of attributes
If no options are provided, validates that they are all present.
	:at_least - At least this many must be present. Defaults to the number of attributes provided

	:at_most - At most this many must be present. Defaults to the number of attributes provided

	:exactly - Exactly this many must be present



  



    

  
    
      
      Link to this function
    
    string_length(attribute, opts \\ [])


      
       
       View Source
     


  


  

Validates that an attribute on the original record meets the given length criteria

  


        

      



  

    
Ash.Resource.Change behaviour
    



      
The behaviour for an action-specific resource change.
To implement one, simply implement the behaviour. init/1 is defined automatically
by use Ash.Resource.Change, but can be implemented if you want to validate/transform any
options passed to the module.
The main function is change/3. It takes the changeset, any options that were provided
when this change was configured on a resource, and the context, which currently only has
the actor.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    context()

  





  


  
    
      Callbacks
    


  
    change(arg1, arg2, context)

  





  
    init(arg1)

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    context()


      
       
       View Source
     


  


  

      Specs

      

          context() :: %{actor: Ash.Resource.record()} | %{}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Callbacks
        

        


  
    
      
      Link to this callback
    
    change(arg1, arg2, context)


      
       
       View Source
     


  


  

      Specs

      

          change(Ash.Changeset.t(), Keyword.t(), context()) :: Ash.Changeset.t()


      



  



  
    
      
      Link to this callback
    
    init(arg1)


      
       
       View Source
     


  


  

      Specs

      

          init(Keyword.t()) :: {:ok, Keyword.t()} | {:error, term()}


      



  


        

      



  

    
Ash.Resource.Change.Builtins
    



      
Built in changes that are available to all resources
The functions in this module are imported by default in the actions section.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    ensure_selected(value)

  


    Passes the provided value into Ash.Changeset.ensure_selected/2






  
    load(value)

  


    Passes the provided value into changeset.api.load(), after the action has completed.






  
    manage_relationship(argument, relationship_name \\ nil, opts)

  


    Calls Ash.Changeset.manage_relationship/4 with the changeset and relationship provided, using the value provided for the named argument






  
    prevent_change(field)

  


    Clears a change off of the changeset before the action runs.






  
    relate_actor(relationship)

  


    Relates the actor to the data being changed, as the provided relationship.






  
    select(value)

  


    Passes the provided value into Ash.Changeset.select/3






  
    set_attribute(attribute, value)

  


    Sets the attribute to the value provided.






  
    set_context(context)

  


    Merges the given query context. If an MFA is provided, it will be called with the changeset.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    ensure_selected(value)


      
       
       View Source
     


  


  

Passes the provided value into Ash.Changeset.ensure_selected/2

  



  
    
      
      Link to this function
    
    load(value)


      
       
       View Source
     


  


  

Passes the provided value into changeset.api.load(), after the action has completed.

  



    

  
    
      
      Link to this function
    
    manage_relationship(argument, relationship_name \\ nil, opts)


      
       
       View Source
     


  


  

Calls Ash.Changeset.manage_relationship/4 with the changeset and relationship provided, using the value provided for the named argument
For example
change manage_relationship(:add_comments, :comments, on_missing: :ignore, on_match: :no_match, on_no_match: {:create, :add_comment_to_post}

  



  
    
      
      Link to this function
    
    prevent_change(field)


      
       
       View Source
     


  


  

Clears a change off of the changeset before the action runs.
Useful if a change is only used in validations but shouldn't ultimately be written to the data layer

  



  
    
      
      Link to this function
    
    relate_actor(relationship)


      
       
       View Source
     


  


  

Relates the actor to the data being changed, as the provided relationship.

  



  
    
      
      Link to this function
    
    select(value)


      
       
       View Source
     


  


  

Passes the provided value into Ash.Changeset.select/3

  



  
    
      
      Link to this function
    
    set_attribute(attribute, value)


      
       
       View Source
     


  


  

Sets the attribute to the value provided.
If a zero argument function is provided, it is called to determine the value.
If a tuple of {:arg, :argument_name} is provided, the value will be read from the argument if supplied.
If the argument is not supplied then nothing happens.

  



  
    
      
      Link to this function
    
    set_context(context)


      
       
       View Source
     


  


  

      Specs

      

          set_context(map() | mfa()) :: {atom(), Keyword.t()}


      


Merges the given query context. If an MFA is provided, it will be called with the changeset.
The MFA should return {:ok, context_to_be_merged} or {:error, term}

  


        

      



  

    
Ash.Calculation behaviour
    



      
The behaviour for a calculation module
Use select/2 to apply a select statement when the calculation is loaded.
This does not apply in the case that you are loading on existing resources using
MyApi.load. It also doesn't apply when the calculation is used in a filter or sort,
because it is not necessary to select fields to power filters done in the data layer.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Callbacks
    


  
    calculate(list, arg2, map)

  





  
    describe(arg1)

  





  
    expression(arg1, map)

  





  
    init(arg1)

  





  
    load(arg1, arg2, map)

  





  
    select(arg1, arg2, map)

  





  


      


      
        
          
            
            Anchor for this section
          
Callbacks
        

        


  
    
      
      Link to this callback
    
    calculate(list, arg2, map)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          calculate([Ash.Resource.record()], Keyword.t(), map()) ::
  {:ok, [term()]} | [term()] | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    describe(arg1)


      
       
       View Source
     


  


  

      Specs

      

          describe(Keyword.t()) :: String.t()


      



  



  
    
      
      Link to this callback
    
    expression(arg1, map)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          expression(Keyword.t(), map()) :: any()


      



  



  
    
      
      Link to this callback
    
    init(arg1)


      
       
       View Source
     


  


  

      Specs

      

          init(Keyword.t()) :: {:ok, Keyword.t()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    load(arg1, arg2, map)


      
       
       View Source
     


  


  

      Specs

      

          load(Ash.Query.t(), Keyword.t(), map()) :: Ash.Query.t()


      



  



  
    
      
      Link to this callback
    
    select(arg1, arg2, map)


      
       
       View Source
     


  


  

      Specs

      

          select(Ash.Query.t(), Keyword.t(), map()) :: [atom()]


      



  


        

      



  

    
Ash.Query.Calculation
    



      
Represents a calculated attribute requested on a query

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


  
    
      Functions
    


  
    new(name, module, opts, type, context \\ %{})

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Query.Calculation{
  context: term(),
  load: term(),
  module: term(),
  name: term(),
  opts: term(),
  select: term(),
  sequence: term(),
  type: term()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

  
    
      
      Link to this function
    
    new(name, module, opts, type, context \\ %{})


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Resource.Calculation
    



      
Represents a named calculation on a resource

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


  
    
      Functions
    


  
    calculation(module)

  





  
    schema()

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Resource.Calculation{
  allow_nil?: boolean(),
  arguments: [any()],
  calculation: {:ok, {atom(), any()}} | {:error, String.t()},
  constraints: term(),
  description: String.t() | nil,
  load: term(),
  name: atom(),
  private?: boolean(),
  select: term(),
  type: term()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    calculation(module)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Resource.Calculation.Argument
    



      
An argument to a calculation

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    schema()

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Resource.Calculation.Builtins
    



      
Built in calculations that are automatically imported in the calculations section

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    concat(keys, separator \\ "")

  


    An example concatenation calculation, that accepts the delimeter as an argument






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


    

  
    
      
      Link to this function
    
    concat(keys, separator \\ "")


      
       
       View Source
     


  


  

An example concatenation calculation, that accepts the delimeter as an argument

  


        

      



  

    
Ash.CiString
    



      
Represents a case insensitive string
While some data layers are aware of case insensitive string types, in order for values
of this type to be used in other parts of Ash Framework, it has to be embedded in a module
this allows us to implement the Comparable protocol for it.
For the type implementation, see Ash.Type.CiString

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    compare(left, right)

  





  
    new(value, casing \\ nil)

  





  
    sigil_i(value, mods)

  





  
    to_comparable_string(value)

  


    Returns the downcased value, only downcasing if it hasn't already been down






  
    value(ci_string)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    compare(left, right)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    new(value, casing \\ nil)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    sigil_i(value, mods)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    to_comparable_string(value)


      
       
       View Source
     


  


  

Returns the downcased value, only downcasing if it hasn't already been down

  



  
    
      
      Link to this function
    
    value(ci_string)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Type behaviour
    



      
Describes how to convert data to Ecto.Type and eventually into the database.
This behaviour is a superset of the Ecto.Type behavior, that also contains
API level information, like what kinds of filters are allowed.
Built in types
	:map - Ash.Type.Map
	:term - Ash.Type.Term
	:atom - Ash.Type.Atom
	:string - Ash.Type.String
	:integer - Ash.Type.Integer
	:float - Ash.Type.Float
	:interval - Ash.Type.Interval
	:function - Ash.Type.Function
	:boolean - Ash.Type.Boolean
	:uuid - Ash.Type.UUID
	:binary - Ash.Type.Binary
	:date - Ash.Type.Date
	:decimal - Ash.Type.Decimal
	:ci_string - Ash.Type.CiString
	:utc_datetime - Ash.Type.UtcDatetime
	:utc_datetime_usec - Ash.Type.UtcDatetimeUsec
	:url_encoded_binary - Ash.Type.UrlEncodedBinary

Composite Types
Currently, the only composite type supported is a list type, specified via:
{:array, Type}. The constraints available are:
	:items - Constraints for the elements of the list. See the contained type's docs for more.

	:min_length - A minimum length for the items

	:max_length - A maximum length for the items

	:nil_items? - Whether or not the list can contain nil items The default value is true.


Defining Custom Types
Generally you add use Ash.Type to your module (it is possible to add @behaviour Ash.Type and define everything yourself, but this is more work and error-prone).
Overriding the {:array, type} behavior. By definining the *_array versions
of cast_input, cast_stored, dump_to_native and apply_constraints, you can
override how your type behaves as a collection. This is how the features of embedded
resources are implemented. No need to implement them unless you wish to override the
default behavior.
Simple example of a float custom type
defmodule GenTracker.AshFloat do
  use Ash.Type

  @impl Ash.Type
  def storage_type, do: :float

  @impl Ash.Type
  def cast_input(value, _) do
    Ecto.Type.cast(:float, value)
  end

  @impl Ash.Type
  def cast_stored(value, _) do
    Ecto.Type.load(:float, value)
  end

  @impl Ash.Type
  def dump_to_native(value, _) do
    Ecto.Type.dump(:float, value)
  end
end
All the Ash built-in types are implemented with use Ash.Type so they are good
examples to look at to create your own Ash.Type

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    constraint_error()

  





  
    constraints()

  





  
    t()

  





  


  
    
      Functions
    


  
    apply_constraints(type, term, constraints)

  


    Confirms if a casted value matches the provided constraints.






  
    array_constraints(type)

  





  
    ash_type?(module)

  


    Returns true if the value is a builtin type or adopts the Ash.Type behaviour






  
    ash_type_option(type)

  





  
    builtin?(type)

  





  
    cast_input(type, term, constraints \\ [])

  


    Casts input (e.g. unknown) data to an instance of the type, or errors






  
    cast_stored(type, term, constraints \\ [])

  


    Casts a value from the data store to an instance of the type, or errors






  
    constraints(type)

  





  
    constraints(source, type, constraints)

  





  
    describe(type, constraints)

  





  
    dump_to_embedded(type, term, constraints \\ [])

  


    Casts a value from the Elixir type to a value that can be embedded in another data structure.






  
    dump_to_native(type, term, constraints \\ [])

  


    Casts a value from the Elixir type to a value that the data store can persist






  
    ecto_type(type)

  


    Returns the ecto compatible type for an Ash.Type.






  
    embedded_type?(type)

  





  
    equal?(type, left, right)

  


    Determines if two values of a given type are equal.






  
    get_type(value)

  





  
    handle_change(type, old_value, new_value, constraints)

  


    Process the old casted values alongside the new casted values.






  
    prepare_change(type, old_value, new_value, constraints)

  


    Process the old casted values alongside the new uncasted values.






  
    storage_type(type)

  


    Returns the underlying storage type (the underlying type of the ecto type of the ash type)






  


  
    
      Callbacks
    


  
    apply_constraints(term, constraints)

  





  
    apply_constraints_array(list, constraints)

  





  
    array_constraints()

  





  
    cast_input(term, constraints)

  





  
    cast_input_array(list, constraints)

  





  
    cast_stored(term, constraints)

  





  
    cast_stored_array(list, constraints)

  





  
    constraints()

  





  
    describe(constraints)

  





  
    dump_to_embedded(term, constraints)

  





  
    dump_to_embedded_array(list, constraints)

  





  
    dump_to_native(term, constraints)

  





  
    dump_to_native_array(list, constraints)

  





  
    ecto_type()

  





  
    equal?(term, term)

  





  
    handle_change(old_term, new_term, constraints)

  





  
    handle_change_array(old_term, new_term, constraints)

  





  
    prepare_change(old_term, new_uncasted_term, constraints)

  





  
    prepare_change_array(old_term, new_uncasted_term, constraints)

  





  
    storage_type()

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    constraint_error()


      
       
       View Source
     


  


  

      Specs

      

          constraint_error() :: String.t() | {String.t(), Keyword.t()}


      



  



  
    
      
      Link to this type
    
    constraints()


      
       
       View Source
     


  


  

      Specs

      

          constraints() :: Keyword.t()


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: atom() | {:array, atom()}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    apply_constraints(type, term, constraints)


      
       
       View Source
     


  


  

      Specs

      

          apply_constraints(t(), term(), constraints()) ::
  {:ok, term()} | {:error, String.t()}


      


Confirms if a casted value matches the provided constraints.

  



  
    
      
      Link to this function
    
    array_constraints(type)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    ash_type?(module)


      
       
       View Source
     


  


  

      Specs

      

          ash_type?(term()) :: boolean()


      


Returns true if the value is a builtin type or adopts the Ash.Type behaviour

  



  
    
      
      Link to this function
    
    ash_type_option(type)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    builtin?(type)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    cast_input(type, term, constraints \\ [])


      
       
       View Source
     


  


  

      Specs

      

          cast_input(t(), term(), constraints() | nil) ::
  {:ok, term()} | {:error, Keyword.t()} | :error


      


Casts input (e.g. unknown) data to an instance of the type, or errors
Maps to Ecto.Type.cast/2

  



    

  
    
      
      Link to this function
    
    cast_stored(type, term, constraints \\ [])


      
       
       View Source
     


  


  

      Specs

      

          cast_stored(t(), term(), constraints() | nil) ::
  {:ok, term()} | {:error, keyword()} | :error


      


Casts a value from the data store to an instance of the type, or errors
Maps to Ecto.Type.load/2

  



  
    
      
      Link to this function
    
    constraints(type)


      
       
       View Source
     


  


  

      Specs

      

          constraints(t()) :: constraints()


      



  



  
    
      
      Link to this function
    
    constraints(source, type, constraints)


      
       
       View Source
     


  


  

      Specs

      

          constraints(Ash.Changeset.t() | Ash.Query.t(), t(), Keyword.t()) :: Keyword.t()


      



  



  
    
      
      Link to this function
    
    describe(type, constraints)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    dump_to_embedded(type, term, constraints \\ [])


      
       
       View Source
     


  


  

      Specs

      

          dump_to_embedded(t(), term(), constraints() | nil) ::
  {:ok, term()} | {:error, keyword()} | :error


      


Casts a value from the Elixir type to a value that can be embedded in another data structure.
Embedded resources expect to be stored in JSON, so this allows things like UUIDs to be stored
as strings in embedded resources instead of binary.

  



    

  
    
      
      Link to this function
    
    dump_to_native(type, term, constraints \\ [])


      
       
       View Source
     


  


  

      Specs

      

          dump_to_native(t(), term(), constraints() | nil) ::
  {:ok, term()} | {:error, keyword()} | :error


      


Casts a value from the Elixir type to a value that the data store can persist
Maps to Ecto.Type.dump/2

  



  
    
      
      Link to this function
    
    ecto_type(type)


      
       
       View Source
     


  


  

      Specs

      

          ecto_type(t()) :: Ecto.Type.t()


      


Returns the ecto compatible type for an Ash.Type.
If you use Ash.Type, this is created for you. For builtin types
this may return a corresponding ecto builtin type (atom)

  



  
    
      
      Link to this function
    
    embedded_type?(type)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    equal?(type, left, right)


      
       
       View Source
     


  


  

      Specs

      

          equal?(t(), term(), term()) :: boolean()


      


Determines if two values of a given type are equal.
Maps to Ecto.Type.equal?/3

  



  
    
      
      Link to this function
    
    get_type(value)


      
       
       View Source
     


  


  

      Specs

      

          get_type(atom() | module()) :: atom() | module() | {:array, atom() | module()}


      



  



  
    
      
      Link to this function
    
    handle_change(type, old_value, new_value, constraints)


      
       
       View Source
     


  


  

Process the old casted values alongside the new casted values.
This is leveraged by embedded types to know if something is being updated
or destroyed. This is not called on creates.

  



  
    
      
      Link to this function
    
    prepare_change(type, old_value, new_value, constraints)


      
       
       View Source
     


  


  

Process the old casted values alongside the new uncasted values.
This is leveraged by embedded types to know if something is being updated
or destroyed. This is not called on creates.

  



  
    
      
      Link to this function
    
    storage_type(type)


      
       
       View Source
     


  


  

      Specs

      

          storage_type(t()) :: Ecto.Type.t()


      


Returns the underlying storage type (the underlying type of the ecto type of the ash type)

  


        

      

      
        
          
            
            Anchor for this section
          
Callbacks
        

        


  
    
      
      Link to this callback
    
    apply_constraints(term, constraints)


      
       
       View Source
     


  


  

      Specs

      

          apply_constraints(term(), constraints()) ::
  {:ok, new_value :: term()}
  | :ok
  | {:error, constraint_error() | [constraint_error()]}


      



  



  
    
      
      Link to this callback
    
    apply_constraints_array(list, constraints)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          apply_constraints_array([term()], constraints()) ::
  {:ok, new_values :: [term()]}
  | :ok
  | {:error, constraint_error() | [constraint_error()]}


      



  



  
    
      
      Link to this callback
    
    array_constraints()


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          array_constraints() :: constraints()


      



  



  
    
      
      Link to this callback
    
    cast_input(term, constraints)


      
       
       View Source
     


  


  

      Specs

      

          cast_input(term(), constraints()) ::
  {:ok, term()} | {:error, Keyword.t()} | :error


      



  



  
    
      
      Link to this callback
    
    cast_input_array(list, constraints)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          cast_input_array([term()], constraints()) ::
  {:ok, [term()]} | {:error, Keyword.t()} | :error


      



  



  
    
      
      Link to this callback
    
    cast_stored(term, constraints)


      
       
       View Source
     


  


  

      Specs

      

          cast_stored(term(), constraints()) :: {:ok, term()} | :error


      



  



  
    
      
      Link to this callback
    
    cast_stored_array(list, constraints)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          cast_stored_array([term()], constraints()) :: {:ok, [term()]} | :error


      



  



  
    
      
      Link to this callback
    
    constraints()


      
       
       View Source
     


  


  

      Specs

      

          constraints() :: constraints()


      



  



  
    
      
      Link to this callback
    
    describe(constraints)


      
       
       View Source
     


  


  

      Specs

      

          describe(constraints()) :: String.t() | nil


      



  



  
    
      
      Link to this callback
    
    dump_to_embedded(term, constraints)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          dump_to_embedded(term(), constraints()) :: {:ok, term()} | :error


      



  



  
    
      
      Link to this callback
    
    dump_to_embedded_array(list, constraints)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          dump_to_embedded_array([term()], constraints()) :: {:ok, term()} | :error


      



  



  
    
      
      Link to this callback
    
    dump_to_native(term, constraints)


      
       
       View Source
     


  


  

      Specs

      

          dump_to_native(term(), constraints()) :: {:ok, term()} | :error


      



  



  
    
      
      Link to this callback
    
    dump_to_native_array(list, constraints)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          dump_to_native_array([term()], constraints()) :: {:ok, term()} | :error


      



  



  
    
      
      Link to this callback
    
    ecto_type()


      
       
       View Source
     


  


  

      Specs

      

          ecto_type() :: Ecto.Type.t()


      



  



  
    
      
      Link to this callback
    
    equal?(term, term)


      
       
       View Source
     


  


  

      Specs

      

          equal?(term(), term()) :: boolean()


      



  



  
    
      
      Link to this callback
    
    handle_change(old_term, new_term, constraints)


      
       
       View Source
     


  


  

      Specs

      

          handle_change(old_term :: term(), new_term :: term(), constraints()) ::
  {:ok, term()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    handle_change_array(old_term, new_term, constraints)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          handle_change_array(old_term :: [term()], new_term :: [term()], constraints()) ::
  {:ok, term()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    prepare_change(old_term, new_uncasted_term, constraints)


      
       
       View Source
     


  


  

      Specs

      

          prepare_change(old_term :: term(), new_uncasted_term :: term(), constraints()) ::
  {:ok, term()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    prepare_change_array(old_term, new_uncasted_term, constraints)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          prepare_change_array(
  old_term :: [term()],
  new_uncasted_term :: [term()],
  constraints()
) :: {:ok, term()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    storage_type()


      
       
       View Source
     


  


  

      Specs

      

          storage_type() :: Ecto.Type.t()


      



  


        

      



  

    
Ash.Type.Atom
    



      
Stores an atom as a string in the database
A builtin type that can be referenced via :atom
Constraints
	:one_of - Allows constraining the value of an atom to a pre-defined list


      





  

    
Ash.Type.Binary
    



      
Represents a binary.
A builtin type that can be referenced via :binary

      





  

    
Ash.Type.Boolean
    



      
Represents a boolean.
A builtin type that can be referenced via :boolean

      





  

    
Ash.Type.CiString
    



      
Stores a case insensitive string in the database
See Ash.CiString for more information.
A builtin type that can be referenced via :ci_string
Constraints
	:max_length - Enforces a maximum length on the value

	:min_length - Enforces a minimum length on the value

	:match - Enforces that the string matches a passed in regex

	:trim? - Trims the value. The default value is true.

	:allow_empty? - Sets the value to nil if it's empty. The default value is false.

	:casing - Lowercases or uppercases the value, fully discarding case information.
For example, if you don't set this, a value of FrEd could be saved to the data layer.
FrEd and fReD would still compare as equal, but the original casing information  is retained.
In many cases, this is what you want. In some cases, however, you want to remove all case information.
For example, in an email, you may want to support a user inputting an upper case letter, but discard it
when saved. The default value is nil.



      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    match(regex)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    match(regex)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Type.Date
    



      
Represents a date in the database
A builtin type that can be referenced via :date

      





  

    
Ash.Type.Decimal
    



      
Represents a decimal.
A builtin type that can be referenced via :decimal
Constraints
	:max - Enforces a maximum on the value

	:min - Enforces a minimum on the value



      





  

    
Ash.Type.Enum behaviour
    



      
A type for abstracting enums into a single type.
For example, you might have:
attribute :status, :atom, constraints: [one_of: [:open, :closed]]
But as that starts to spread around your system you may find that you want
to centralize that logic. To do that, use this module to define an Ash type
easily.
defmodule MyApp.TicketStatus do
  use Ash.Type.Enum, values: [:open, :closed]
end
Valid values are:
	The atom itself, e.g :open
	A string that matches the atom, e.g "open"
	A string that matches the atom after being downcased, e.g "OPEN" or "oPeN"
	A string that matches the stringified, downcased atom, after itself being downcased.
This allows for enum values like :Open, :SomeState and :Some_State


      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Callbacks
    


  
    match(term)

  


    finds the valid value that matches a given input term






  
    match?(term)

  


    true if a given term matches a value






  
    values()

  


    The list of valid values (not all input types that match them)






  


      


      
        
          
            
            Anchor for this section
          
Callbacks
        

        


  
    
      
      Link to this callback
    
    match(term)


      
       
       View Source
     


  


  

      Specs

      

          match(term()) :: {:ok, atom()} | :error


      


finds the valid value that matches a given input term

  



  
    
      
      Link to this callback
    
    match?(term)


      
       
       View Source
     


  


  

      Specs

      

          match?(term()) :: boolean()


      


true if a given term matches a value

  



  
    
      
      Link to this callback
    
    values()


      
       
       View Source
     


  


  

      Specs

      

          values() :: [atom()]


      


The list of valid values (not all input types that match them)

  


        

      



  

    
Ash.Type.Float
    



      
Represents a float (floating point number)
A builtin type that be referenced via :float

      





  

    
Ash.Type.Function
    



      
Represents a function.
If the type would be dumped to a native format, :erlang.term_to_binary(term, [:safe]) is used.
Please keep in mind, this is not safe to use with external input. This could easily cause you t
More information available here: https://erlang.org/doc/man/erlang.html#binary_to_term-2

      





  

    
Ash.Type.Integer
    



      
Represents a simple integer
A builtin type that can be referenced via :integer
Constraints
	:max - Enforces a maximum on the value

	:min - Enforces a minimum on the value



      





  

    
Ash.Type.Interval
    



      
An interval of time, primarily meant to be used in expression functions
Valid intervals are (as strings or atoms): [:year, :month, :week, :day, :hour, :minute, :second, :millisecond, :microsecond]

      





  

    
Ash.Type.Map
    



      
Represents a map stored in the database.
In postgres, for example, this represents binary encoded json
A builtin type that can be referenced via :map

      





  

    
Ash.Type.String
    



      
Stores a string in the database.
A built-in type that can be referenced via :string.
By default, values are trimmed and empty values are set to nil.
You can use the allow_empty? and trim? constraints to change these behaviors.
Constraints
	:max_length - Enforces a maximum length on the value

	:min_length - Enforces a minimum length on the value

	:match - Enforces that the string matches a passed in regex

	:trim? - Trims the value. The default value is true.

	:allow_empty? - If false, the value is set to nil if it's empty. The default value is false.



      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    match(regex)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    match(regex)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Type.Term
    



      
Represents a raw elixir term in the database
A builtin type that can be referenced via :string

      





  

    
Ash.Type.UUID
    



      
Represents a UUID.
A builtin type that can be referenced via :uuid

      





  

    
Ash.Type.UrlEncodedBinary
    



      
Represents a binary that attempts to decode input strings as a url encoded base64 string.
A builtin type that can be referenced via :url_encoded_binary

      





  

    
Ash.Type.UtcDatetime
    



      
Represents a utc datetime
A builtin type that can be referenced via :utc_datetime

      





  

    
Ash.Type.UtcDatetimeUsec
    



      
Represents a utc datetime with microsecond precision.
A builtin type that can be referenced via :utc_datetime_usec

      





  

    
Ash.DataLayer behaviour
    



      
The interface for being an ash data layer.
This is a large behaviour, and this capability is not complete, but the idea
is to have a large amount of optional callbacks, and use the can?/2 callback
to ensure that the engine only ever tries to interact with the data layer in ways
that it supports.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    data_layer_query()

  





  
    feature()

  





  
    lateral_join_link()

  





  
    t()

  





  


  
    
      Functions
    


  
    add_aggregate(query, aggregate, resource)

  





  
    add_calculation(query, calculation, expression, resource)

  





  
    can?(feature, resource)

  





  
    create(resource, changeset)

  





  
    data_layer(resource)

  


    The data layer of the resource, or nil if it does not have one






  
    data_layer_can?(resource, feature)

  


    Whether or not the data layer supports a specific feature






  
    data_layer_functions(resource)

  


    Custom functions supported by the data layer of the resource






  
    destroy(resource, changeset)

  





  
    distinct(query, distinct, resource)

  





  
    filter(query, filter, resource)

  





  
    functions(resource)

  





  
    in_transaction?(resource)

  





  
    limit(query, limit, resource)

  





  
    offset(query, offset, resource)

  





  
    resource_to_query(resource, api)

  





  
    rollback(resource, term)

  


    Rolls back the current transaction






  
    run_aggregate_query(query, aggregates, resource)

  





  
    run_aggregate_query_with_lateral_join(query, aggregates, root_data, destination_resource, path)

  





  
    run_query(query, central_resource)

  





  
    run_query_with_lateral_join(query, root_data, destination_resource, path)

  





  
    select(query, select, resource)

  





  
    set_context(resource, query, map)

  





  
    set_tenant(resource, query, term)

  





  
    sort(query, sort, resource)

  





  
    source(resource)

  





  
    transact(resource, func)

  





  
    transaction(resource, func)

  


    Wraps the execution of the function in a transaction with the resource's data_layer






  
    transform_query(query)

  





  
    update(resource, changeset)

  





  
    upsert(resource, changeset, keys)

  





  


  
    
      Callbacks
    


  
    add_aggregate(data_layer_query, arg2, arg3)

  





  
    add_calculation(data_layer_query, arg2, expression, arg4)

  





  
    can?(arg1, feature)

  





  
    create(arg1, arg2)

  





  
    destroy(arg1, arg2)

  





  
    distinct(data_layer_query, list, resource)

  





  
    filter(data_layer_query, arg2, resource)

  





  
    functions(arg1)

  





  
    in_transaction?(arg1)

  





  
    limit(data_layer_query, limit, resource)

  





  
    offset(data_layer_query, offset, resource)

  





  
    operators(arg1)

  





  
    resource_to_query(arg1, arg2)

  





  
    rollback(arg1, term)

  





  
    run_aggregate_query(data_layer_query, list, arg3)

  





  
    run_aggregate_query_with_lateral_join(data_layer_query, list, list, destination_resource, list)

  





  
    run_query(data_layer_query, arg2)

  





  
    run_query_with_lateral_join(data_layer_query, list, source_resource, list)

  





  
    select(data_layer_query, select, resource)

  





  
    set_context(data_layer_query, map)

  





  
    set_context(arg1, data_layer_query, map)

  





  
    set_tenant(arg1, data_layer_query, term)

  





  
    sort(data_layer_query, arg2, resource)

  





  
    source(arg1)

  





  
    transaction(arg1, function)

  





  
    transform_query(arg1)

  





  
    update(arg1, arg2)

  





  
    upsert(arg1, arg2, list)

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    data_layer_query()


      
       
       View Source
     


  


  

      Specs

      

          data_layer_query() :: struct()


      



  



  
    
      
      Link to this type
    
    feature()


      
       
       View Source
     


  


  

      Specs

      

          feature() ::
  :transact
  | :multitenant
  | {:lateral_join, [Ash.Resource.t()]}
  | {:join, Ash.Resource.t()}
  | {:aggregate, Ash.Query.Aggregate.kind()}
  | {:query_aggregate, Ash.Query.Aggregate.kind()}
  | :select
  | :aggregate_filter
  | :aggregate_sort
  | :boolean_filter
  | :async_engine
  | :create
  | :read
  | :update
  | :destroy
  | :limit
  | :offset
  | :transact
  | :filter
  | {:filter_expr, struct()}
  | :sort
  | {:sort, Ash.Type.t()}
  | :upsert
  | :composite_primary_key


      



  



  
    
      
      Link to this type
    
    lateral_join_link()


      
       
       View Source
     


  


  

      Specs

      

          lateral_join_link() ::
  {Ash.Resource.t(), atom(), atom(), Ash.Resource.Relationships.relationship()}


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: module()


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    add_aggregate(query, aggregate, resource)


      
       
       View Source
     


  


  

      Specs

      

          add_aggregate(data_layer_query(), Ash.Query.Aggregate.t(), Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    add_calculation(query, calculation, expression, resource)


      
       
       View Source
     


  


  

      Specs

      

          add_calculation(
  data_layer_query(),
  Ash.Query.Calculation.t(),
  expression :: term(),
  Ash.Resource.t()
) :: {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    can?(feature, resource)


      
       
       View Source
     


  


  

      Specs

      

          can?(feature(), Ash.Resource.t()) :: boolean()


      



  



  
    
      
      Link to this function
    
    create(resource, changeset)


      
       
       View Source
     


  


  

      Specs

      

          create(Ash.Resource.t(), Ash.Changeset.t()) ::
  {:ok, Ash.Resource.record()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    data_layer(resource)


      
       
       View Source
     


  


  

      Specs

      

          data_layer(Ash.Resource.t()) :: t()


      


The data layer of the resource, or nil if it does not have one

  



  
    
      
      Link to this function
    
    data_layer_can?(resource, feature)


      
       
       View Source
     


  


  

      Specs

      

          data_layer_can?(Ash.Resource.t(), feature()) :: boolean()


      


Whether or not the data layer supports a specific feature

  



  
    
      
      Link to this function
    
    data_layer_functions(resource)


      
       
       View Source
     


  


  

      Specs

      

          data_layer_functions(Ash.Resource.t()) :: map()


      


Custom functions supported by the data layer of the resource

  



  
    
      
      Link to this function
    
    destroy(resource, changeset)


      
       
       View Source
     


  


  

      Specs

      

          destroy(Ash.Resource.t(), Ash.Changeset.t()) :: :ok | {:error, term()}


      



  



  
    
      
      Link to this function
    
    distinct(query, distinct, resource)


      
       
       View Source
     


  


  

      Specs

      

          distinct(data_layer_query(), [atom()] | nil, Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    filter(query, filter, resource)


      
       
       View Source
     


  


  

      Specs

      

          filter(data_layer_query(), Ash.Filter.t(), Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    functions(resource)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    in_transaction?(resource)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    limit(query, limit, resource)


      
       
       View Source
     


  


  

      Specs

      

          limit(data_layer_query(), limit :: non_neg_integer(), Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    offset(query, offset, resource)


      
       
       View Source
     


  


  

      Specs

      

          offset(data_layer_query(), offset :: non_neg_integer(), Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    resource_to_query(resource, api)


      
       
       View Source
     


  


  

      Specs

      

          resource_to_query(Ash.Resource.t(), Ash.Api.t()) :: data_layer_query()


      



  



  
    
      
      Link to this function
    
    rollback(resource, term)


      
       
       View Source
     


  


  

      Specs

      

          rollback(Ash.Resource.t(), term()) :: no_return()


      


Rolls back the current transaction

  



  
    
      
      Link to this function
    
    run_aggregate_query(query, aggregates, resource)


      
       
       View Source
     


  


  

      Specs

      

          run_aggregate_query(
  data_layer_query(),
  [Ash.Query.Aggregate.t()],
  Ash.Resource.t()
) :: {:ok, map()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    run_aggregate_query_with_lateral_join(query, aggregates, root_data, destination_resource, path)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    run_query(query, central_resource)


      
       
       View Source
     


  


  

      Specs

      

          run_query(data_layer_query(), central_resource :: Ash.Resource.t()) ::
  {:ok, [Ash.Resource.record()]} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    run_query_with_lateral_join(query, root_data, destination_resource, path)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    select(query, select, resource)


      
       
       View Source
     


  


  

      Specs

      

          select(data_layer_query(), offset :: [atom()], Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    set_context(resource, query, map)


      
       
       View Source
     


  


  

      Specs

      

          set_context(Ash.Resource.t(), data_layer_query(), map()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    set_tenant(resource, query, term)


      
       
       View Source
     


  


  

      Specs

      

          set_tenant(Ash.Resource.t(), data_layer_query(), term()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    sort(query, sort, resource)


      
       
       View Source
     


  


  

      Specs

      

          sort(data_layer_query(), Ash.Sort.t(), Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    source(resource)


      
       
       View Source
     


  


  

      Specs

      

          source(Ash.Resource.t()) :: String.t()


      



  



  
    
      
      Link to this function
    
    transact(resource, func)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    transaction(resource, func)


      
       
       View Source
     


  


  

      Specs

      

          transaction(Ash.Resource.t(), (() -> term())) :: term()


      


Wraps the execution of the function in a transaction with the resource's data_layer

  



  
    
      
      Link to this function
    
    transform_query(query)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    update(resource, changeset)


      
       
       View Source
     


  


  

      Specs

      

          update(Ash.Resource.t(), Ash.Changeset.t()) ::
  {:ok, Ash.Resource.record()} | {:error, term()}


      



  



  
    
      
      Link to this function
    
    upsert(resource, changeset, keys)


      
       
       View Source
     


  


  

      Specs

      

          upsert(Ash.Resource.t(), Ash.Changeset.t(), [atom()]) ::
  {:ok, Ash.Resource.record()} | {:error, term()}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Callbacks
        

        


  
    
      
      Link to this callback
    
    add_aggregate(data_layer_query, arg2, arg3)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          add_aggregate(data_layer_query(), Ash.Query.Aggregate.t(), Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    add_calculation(data_layer_query, arg2, expression, arg4)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          add_calculation(
  data_layer_query(),
  Ash.Query.Calculation.t(),
  expression :: any(),
  Ash.Resource.t()
) :: {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    can?(arg1, feature)


      
       
       View Source
     


  


  

      Specs

      

          can?(Ash.Resource.t(), feature()) :: boolean()


      



  



  
    
      
      Link to this callback
    
    create(arg1, arg2)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          create(Ash.Resource.t(), Ash.Changeset.t()) ::
  {:ok, Ash.Resource.t()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    destroy(arg1, arg2)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          destroy(Ash.Resource.t(), Ash.Changeset.t()) :: :ok | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    distinct(data_layer_query, list, resource)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          distinct(data_layer_query(), [atom()], resource :: Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    filter(data_layer_query, arg2, resource)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          filter(data_layer_query(), Ash.Filter.t(), resource :: Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    functions(arg1)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          functions(Ash.Resource.t()) :: [module()]


      



  



  
    
      
      Link to this callback
    
    in_transaction?(arg1)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          in_transaction?(Ash.Resource.t()) :: boolean()


      



  



  
    
      
      Link to this callback
    
    limit(data_layer_query, limit, resource)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          limit(
  data_layer_query(),
  limit :: non_neg_integer(),
  resource :: Ash.Resource.t()
) :: {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    offset(data_layer_query, offset, resource)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          offset(
  data_layer_query(),
  offset :: non_neg_integer(),
  resource :: Ash.Resource.t()
) :: {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    operators(arg1)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          operators(Ash.Resource.t()) :: [module()]


      



  



  
    
      
      Link to this callback
    
    resource_to_query(arg1, arg2)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          resource_to_query(Ash.Resource.t(), Ash.Api.t()) :: data_layer_query()


      



  



  
    
      
      Link to this callback
    
    rollback(arg1, term)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          rollback(Ash.Resource.t(), term()) :: no_return()


      



  



  
    
      
      Link to this callback
    
    run_aggregate_query(data_layer_query, list, arg3)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          run_aggregate_query(
  data_layer_query(),
  [Ash.Query.Aggregate.t()],
  Ash.Resource.t()
) :: {:ok, map()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    run_aggregate_query_with_lateral_join(data_layer_query, list, list, destination_resource, list)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          run_aggregate_query_with_lateral_join(
  data_layer_query(),
  [Ash.Query.Aggregate.t()],
  [Ash.Resource.record()],
  destination_resource :: Ash.Resource.t(),
  [lateral_join_link()]
) :: {:ok, [Ash.Resource.t()]} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    run_query(data_layer_query, arg2)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          run_query(data_layer_query(), Ash.Resource.t()) ::
  {:ok, [Ash.Resource.t()]} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    run_query_with_lateral_join(data_layer_query, list, source_resource, list)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          run_query_with_lateral_join(
  data_layer_query(),
  [Ash.Resource.record()],
  source_resource :: Ash.Resource.t(),
  [lateral_join_link()]
) :: {:ok, [Ash.Resource.t()]} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    select(data_layer_query, select, resource)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          select(data_layer_query(), select :: [atom()], resource :: Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    set_context(data_layer_query, map)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          set_context(data_layer_query(), map()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    set_context(arg1, data_layer_query, map)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          set_context(Ash.Resource.t(), data_layer_query(), map()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    set_tenant(arg1, data_layer_query, term)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          set_tenant(Ash.Resource.t(), data_layer_query(), term()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    sort(data_layer_query, arg2, resource)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          sort(data_layer_query(), Ash.Sort.t(), resource :: Ash.Resource.t()) ::
  {:ok, data_layer_query()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    source(arg1)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          source(Ash.Resource.t()) :: String.t()


      



  



  
    
      
      Link to this callback
    
    transaction(arg1, function)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          transaction(Ash.Resource.t(), (() -> term())) ::
  {:ok, term()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    transform_query(arg1)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          transform_query(Ash.Query.t()) :: Ash.Query.t()


      



  



  
    
      
      Link to this callback
    
    update(arg1, arg2)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          update(Ash.Resource.t(), Ash.Changeset.t()) ::
  {:ok, Ash.Resource.t()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    upsert(arg1, arg2, list)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          upsert(Ash.Resource.t(), Ash.Changeset.t(), [atom()]) ::
  {:ok, Ash.Resource.t()} | {:error, term()}


      



  


        

      



  

    
Ash.DataLayer.Ets
    



      
An ETS (Erlang Term Storage) backed Ash Datalayer, for testing.
This is used for testing. Do not use this data layer in production

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    private?(resource)

  





  
    stop(resource, tenant \\ nil)

  


    Stops the storage for a given resource/tenant (deleting all of the data)






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    private?(resource)


      
       
       View Source
     


  


  

      Specs

      

          private?(Ash.Resource.t()) :: boolean()


      



  



    

  
    
      
      Link to this function
    
    stop(resource, tenant \\ nil)


      
       
       View Source
     


  


  

Stops the storage for a given resource/tenant (deleting all of the data)

  


        

      



  

    
Ash.DataLayer.Mnesia
    



      
An Mnesia backed Ash Datalayer.
In your application intialization, you will need to call Mnesia.create_schema([node()]).
Additionally, you will want to create your mnesia tables there.
This data layer is extremely unoptimized, fetching all records from a table and filtering them
in place. This is primarily used for testing the behavior of data layers in Ash. If it was improved,
it could be a viable data layer.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    start(api)

  





  
    table(resource)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    start(api)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    table(resource)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.DataLayer.Simple
    



      
A data layer that simply returns structs
This is the data layer that is used under the hood
by embedded resources

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    can?(_, arg2)

  





  
    create(resource, changeset)

  





  
    destroy(resource, changeset)

  





  
    filter(query, filter, resource)

  





  
    resource_to_query(resource, api)

  





  
    run_query(map, resource)

  





  
    set_context(resource, query, context)

  





  
    sort(query, sort, resource)

  





  
    update(resource, changeset)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    can?(_, arg2)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    create(resource, changeset)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    destroy(resource, changeset)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    filter(query, filter, resource)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    resource_to_query(resource, api)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    run_query(map, resource)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    set_context(resource, query, context)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    sort(query, sort, resource)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    update(resource, changeset)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.DataLayer.Simple.Transformers.ValidateDslSections
    



      
Validates that a resource using the simple data layer has no relationships or aggregates

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    after?(_)

  


    Callback implementation for Ash.Dsl.Transformer.after?/1.






  
    before?(_)

  


    Callback implementation for Ash.Dsl.Transformer.before?/1.






  
    transform(resource, dsl_state)

  


    Callback implementation for Ash.Dsl.Transformer.transform/2.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(resource, dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.transform/2.

  


        

      



  

    
Ash.Authorizer behaviour
    



      
The interface for an ash authorizer
These will typically be implemented by an extension, but a custom
one can be implemented by defining a module that adopts this behaviour
and using @authorizers YourAuthorizer to your resource.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    context()

  





  
    state()

  





  


  
    
      Functions
    


  
    check(module, state, context)

  





  
    check_context(module, state)

  





  
    initial_state(module, actor, resource, action, verbose?)

  





  
    strict_check(module, state, context)

  





  
    strict_check_context(module, state)

  





  


  
    
      Callbacks
    


  
    check(state, context)

  





  
    check_context(state)

  





  
    initial_state(arg1, arg2, arg3, boolean)

  





  
    strict_check(state, context)

  





  
    strict_check_context(state)

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    context()


      
       
       View Source
     


  


  

      Specs

      

          context() :: map()


      



  



  
    
      
      Link to this type
    
    state()


      
       
       View Source
     


  


  

      Specs

      

          state() :: map()


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    check(module, state, context)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    check_context(module, state)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    initial_state(module, actor, resource, action, verbose?)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    strict_check(module, state, context)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    strict_check_context(module, state)


      
       
       View Source
     


  


  


  


        

      

      
        
          
            
            Anchor for this section
          
Callbacks
        

        


  
    
      
      Link to this callback
    
    check(state, context)


      
       
       View Source
     


  


  

      Specs

      

          check(state(), context()) ::
  :authorized | {:data, [Ash.Resource.record()]} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    check_context(state)


      
       
       View Source
     


  


  

      Specs

      

          check_context(state()) :: [atom()]


      



  



  
    
      
      Link to this callback
    
    initial_state(arg1, arg2, arg3, boolean)


      
       
       View Source
     


  


  

      Specs

      

          initial_state(
  Ash.Resource.t(),
  Ash.Resource.record(),
  Ash.Resource.Actions.action(),
  boolean()
) :: state()


      



  



  
    
      
      Link to this callback
    
    strict_check(state, context)


      
       
       View Source
     


  


  

      Specs

      

          strict_check(state(), context()) ::
  :authorized
  | {:continue, state()}
  | {:filter, Keyword.t()}
  | {:filter_and_continue, Keyword.t(), state()}
  | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    strict_check_context(state)


      
       
       View Source
     


  


  

      Specs

      

          strict_check_context(state()) :: [atom()]


      



  


        

      



  

    
Ash.Page
    



      
Types for Ash pages

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    page()

  





  
    type()

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    page()


      
       
       View Source
     


  


  

      Specs

      

          page() :: Ash.Page.Keyset.t() | Ash.Page.Offset.t()


      



  



  
    
      
      Link to this type
    
    type()


      
       
       View Source
     


  


  

      Specs

      

          type() :: :offset | :keyset


      



  


        

      



  

    
Ash.Page.Keyset
    



      
A page of results from keyset based pagination.
The results are generated with a keyset metadata,
which can be used to fetch the next/previous pages.
Important
Keyset pagination cannot currently be used in conjunction with aggregate and calculation sorting.
Combining them will result in an error on the query.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


  
    
      Functions
    


  
    data_with_keyset(results, resource, sort)

  





  
    filter(resource, values, sort, after_or_before)

  





  
    new(results, count, sort, original_query, more?, opts)

  





  
    non_executable_binary_to_term(binary, opts)

  


    A restricted version of :erlang.binary_to_term/2 that forbids
executable terms, such as anonymous functions.
The opts are given to the underlying :erlang.binary_to_term/2
call, with an empty list as a default.
By default this function does not restrict atoms, as an atom
interned in one node may not yet have been interned on another
(except for releases, which preload all code).
If you want to avoid atoms from being created, then you can pass
[:safe] as options, as that will also enable the safety mechanisms
from :erlang.binary_to_term/2 itself.
Ripped from https://github.com/elixir-plug/plug_crypto/blob/v1.2.0/lib/plug/crypto.ex






  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Page.Keyset{
  after: term(),
  before: term(),
  count: term(),
  limit: term(),
  more?: term(),
  rerun: term(),
  results: term()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    data_with_keyset(results, resource, sort)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    filter(resource, values, sort, after_or_before)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(results, count, sort, original_query, more?, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    non_executable_binary_to_term(binary, opts)


      
       
       View Source
     


  


  

A restricted version of :erlang.binary_to_term/2 that forbids
executable terms, such as anonymous functions.
The opts are given to the underlying :erlang.binary_to_term/2
call, with an empty list as a default.
By default this function does not restrict atoms, as an atom
interned in one node may not yet have been interned on another
(except for releases, which preload all code).
If you want to avoid atoms from being created, then you can pass
[:safe] as options, as that will also enable the safety mechanisms
from :erlang.binary_to_term/2 itself.
Ripped from https://github.com/elixir-plug/plug_crypto/blob/v1.2.0/lib/plug/crypto.ex

  


        

      



  

    
Ash.Page.Offset
    



      
A page of results from offset based pagination.
If a resource supports keyset pagination as well,
it will also have the keyset metadata.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


  
    
      Functions
    


  
    new(results, count, original_query, more?, opts)

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Page.Offset{
  count: term(),
  limit: term(),
  more?: term(),
  offset: term(),
  rerun: term(),
  results: term()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    new(results, count, original_query, more?, opts)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Notifier behaviour
    



      
A notifier is an extension that receives various events

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    notify(resource_notifications)

  


    Sends any notifications that can be sent, and returns the rest.






  


  
    
      Callbacks
    


  
    notify(arg1)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    notify(resource_notifications)


      
       
       View Source
     


  


  

      Specs

      

          notify([Ash.Notifier.Notification.t()] | Ash.Notifier.Notification.t()) :: [
  Ash.Notifier.Notification.t()
]


      


Sends any notifications that can be sent, and returns the rest.
A notification can only be sent if you are not currently in a transaction
for the resource in question.

  


        

      

      
        
          
            
            Anchor for this section
          
Callbacks
        

        


  
    
      
      Link to this callback
    
    notify(arg1)


      
       
       View Source
     


  


  

      Specs

      

          notify(Ash.Notifier.Notification.t()) :: :ok


      



  


        

      



  

    
Ash.Notifier.Notification
    



      
Represents a notification that will be handled by a resource's notifiers
Set the for key to a notifier or a list of notifiers to route the notification
to them. This allows you to produce notifications inside of a change module
and target specific notifiers with them.
metadata is freeform data to be set however you want. resource, action, data,
changeset and actor are all set by default based on the details of the action, so
they can be ommitted.
When creating a notification, a resource is required to ensure that the notification isn't
sent until the current transaction for that resource is closed. If you don't need this
behavior you can explicitly supply nil for the resource. If you supply nil for the resource,
however, you must manually set the for option, e.g: for: Notifier or for: [Notifier1, Notifier2]

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


  
    
      Functions
    


  
    new(resource, opts)

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Notifier.Notification{
  action: term(),
  actor: term(),
  api: term(),
  changeset: term(),
  data: term(),
  for: term(),
  metadata: term(),
  resource: term()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    new(resource, opts)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Notifier.PubSub
    



      
A pubsub notifier extension
Table of Contents
	pub_sub	publish
	publish_all



pub_sub
A section for configuring how resource actions are published over pubsub
	publish
	publish_all

Examples:
pub_sub do
  module MyEndpoint
  prefix "post"

  publish :destroy, ["foo", :id]
  publish :update, ["bar", :name] event: "name_change"
  publish_all :create, "created"
end


	:module - Required. The module to call broadcast/3 on e.g module.broadcast(topic, event, message).

	:prefix - A prefix for all pubsub messages, e.g users. A message with created would be published as users:created


publish
Configure a given action to publish its results over a given topic.
If you have multiple actions with the same name (only possible if they have different types),
use the type option, to specify which type you are referring to. Otherwise the message will
be broadcast for all actions with that name.
To include attribute values of the resource in the message, pass a list
of strings and attribute names. They will ultimately be joined with :.
For example:
prefix "user"

publish :create, ["created", :user_id]
This might publish a message to "user:created:1"" for example.
For updates, if the field in the template is being changed, a message is sent
to both values. So if you change user 1 to user 2, the same message would
be published to user:updated:1 and user:updated:2. If there are multiple
attributes in the template, and they are all being changed, a message is sent for
every combination of substitutions.
Template parts
Templates may contain lists, in which case all combinations of values in the list will be used. Add
nil to the list if you want to produce a pattern where that entry is ommitted.
The atom :_tenant may be used. If the changeset has a tenant set on it, that
value will be used, otherwise that combination of values is ignored. For example:
The atom :_skip may be used. It only makes sense to use it in the context of a list of alternatives,
and adds a pattern where that part is skipped.
publish :updated, [[:team_id, :_tenant], "updated", [:id, nil]]
Would produce the following messages, given a team_id of 1, a tenant of org_1, and an id of 50:
"1:updated:50"
"1:updated"
"org_1:updated:50"
"org_1:updated"
Introspection Target:
Ash.Notifier.PubSub.Publication
Examples:
publish :create, "created"
publish :assign, "assigned"

	:action - Required. The name of the action that should be published

	:topic - Required. The topic to publish

	:event - The name of the event to publish. Defaults to the action name


publish_all
Works just like publish, except that it takes a type
and publishes all actions of that type
Introspection Target:
Ash.Notifier.PubSub.Publication
Examples:
publish_all :create, "created"
	:type - In the case of multiple actions with the same name, you may need to provide the action type as well.

	:action - The name of the action that should be published

	:topic - Required. The topic to publish

	:event - The name of the event to publish. Defaults to the action name



      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    module(resource)

  





  
    notify(notification)

  





  
    prefix(resource)

  





  
    publications(resource)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    module(resource)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    notify(notification)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    prefix(resource)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    publications(resource)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Notifier.PubSub.Publication
    



      
Represents an individual publication setup

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    publish_all_schema()

  





  
    schema()

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    publish_all_schema()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Dsl.Entity
    



      
Declares a DSL entity.
A dsl entity represents a dsl constructor who's resulting value is a struct.
This lets the user create complex objects with arbitrary(mostly) validation rules.
The lifecycle of creating entities is complex, happening as Elixir is compiling
the modules in question. Some of the patterns around validating/transforming entities
have not yet solidified. If you aren't careful and don't follow the guidelines listed
here, you can have subtle and strange bugs during compilation. Anything not isolated to
simple value validations should be done in transformers. See Ash.Dsl.Transformer.
An entity has a target indicating which struct will ultimately be built. An entity
also has a schema. This schema is used for documentation, and the options are validated
against it before continuing on with the DSL.
To create positional arguments to the builder, use args. The values provided to
args need to be in the provided schema as well. They will be positional arguments
in the same order that they are provided in the args key.
auto_set_fields will set the provided values into the produced struct (they do not need
to be included in the schema).
transform is a function that takes a created struct and can alter it. This happens immediately
after handling the DSL options, and can be useful for setting field values on a struct based on
other values in that struct. If you need things that aren't contained in that struct, use an
Ash.Dsl.Transformer.
entities allows you to specify a keyword list of nested entities. Nested entities are stored
on the struct in the corresponding key, and are used in the same way entities are otherwise.
For a full example, see Ash.Dsl.Extension.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    build(map, opts, nested_entities)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    build(map, opts, nested_entities)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Dsl.Extension behaviour
    



      
An extension to the Ash DSL.
This allows configuring custom DSL components, whose configurations
can then be read back. This guide is still a work in progress, but should
serve as a decent example of what is possible. Open issues on Github if you
have any issues/something is unclear.
The example at the bottom shows how you might build a (not very contextually
relevant) DSL extension that would be used like so:
defmodule MyApp.MyResource do
  use Ash.Resource,
    extensions: [MyApp.CarExtension]

  cars do
    car :mazda, "6", trim: :touring
    car :toyota, "corolla"
  end
end
The extension:
defmodule MyApp.CarExtension do
  @car_schema [
    make: [
      type: :atom,
      required: true,
      doc: "The make of the car"
    ],
    model: [
      type: :atom,
      required: true,
      doc: "The model of the car"
    ],
    type: [
      type: :atom,
      required: true,
      doc: "The type of the car",
      default: :sedan
    ]
  ]

  @car %Ash.Dsl.Entity{
    name: :car,
    describe: "Adds a car",
    examples: [
      "car :mazda, "6""
    ],
    target: MyApp.Car,
    args: [:make, :model],
    schema: @car_schema
  }

  @cars %Ash.Dsl.Section{
    name: :cars, # The DSL constructor will be `cars`
    describe: """
    Configure what cars are available.

    More, deeper explanation. Always have a short one liner explanation,
    an empty line, and then a longer explanation.
    """,
    entities: [
      @car # See `Ash.Dsl.Entity` docs
    ],
    schema: [
      default_manufacturer: [
        type: :atom,
        doc: "The default manufacturer"
      ]
    ]
  }

  use Ash.Dsl.Extension, sections: [@cars]
end
Often, we will need to do complex validation/validate based on the configuration
of other resources. Due to the nature of building compile time DSLs, there are
many restrictions around that process. To support these complex use cases, extensions
can include transformers which can validate/transform the DSL state after all basic
sections/entities have been created. See Ash.Dsl.Transformer for more information.
Transformers are provided as an option to use, like so:
use Ash.Dsl.Extension, sections: [@cars], transformers: [
  MyApp.Transformers.ValidateNoOverlappingMakesAndModels
]
To expose the configuration of your DSL, define functions that use the
helpers like get_entities/2 and get_opt/3. For example:
defmodule MyApp.Cars do
  def cars(resource) do
    Ash.Dsl.Extension.get_entities(resource, [:cars])
  end
end

MyApp.Cars.cars(MyResource)
# [%MyApp.Car{...}, %MyApp.Car{...}]
See the documentation for Ash.Dsl.Section and Ash.Dsl.Entity for more information

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    doc(sections, depth \\ 1)

  


    Generate documentation for a list of sections






  
    doc_index(sections, depth \\ 0)

  


    Generate a table of contents for a list of sections






  
    expand_alias(ast, env)

  





  
    get_entities(resource, path)

  


    Get the entities configured for a given section






  
    get_opt(resource, path, value, default, configurable? \\ false)

  


    Get an option value for a section at a given path.






  
    get_opt_config(resource, path, value)

  





  
    get_persisted(resource, key, default \\ nil)

  


    Get a value that was persisted while transforming or compiling the resource, e.g :primary_key






  
    import_mods(mods)

  





  
    load()

  





  
    run_transformers(mod, transformers, ash_dsl_config)

  





  
    unimport_mods(mods)

  





  


  
    
      Callbacks
    


  
    sections()

  





  
    transformers()

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


    

  
    
      
      Link to this function
    
    doc(sections, depth \\ 1)


      
       
       View Source
     


  


  

Generate documentation for a list of sections

  



    

  
    
      
      Link to this function
    
    doc_index(sections, depth \\ 0)


      
       
       View Source
     


  


  

Generate a table of contents for a list of sections

  



  
    
      
      Link to this function
    
    expand_alias(ast, env)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    get_entities(resource, path)


      
       
       View Source
     


  


  

Get the entities configured for a given section

  



    

  
    
      
      Link to this function
    
    get_opt(resource, path, value, default, configurable? \\ false)


      
       
       View Source
     


  


  

Get an option value for a section at a given path.
Checks to see if it has been overridden via configuration.

  



  
    
      
      Link to this function
    
    get_opt_config(resource, path, value)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    get_persisted(resource, key, default \\ nil)


      
       
       View Source
     


  


  

Get a value that was persisted while transforming or compiling the resource, e.g :primary_key

  



  
    
      
      Link to this macro
    
    import_mods(mods)


      
       
       View Source
     


      (macro)

  


  


  



  
    
      
      Link to this macro
    
    load()


      
       
       View Source
     


      (macro)

  


  


  



  
    
      
      Link to this function
    
    run_transformers(mod, transformers, ash_dsl_config)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this macro
    
    unimport_mods(mods)


      
       
       View Source
     


      (macro)

  


  


  


        

      

      
        
          
            
            Anchor for this section
          
Callbacks
        

        


  
    
      
      Link to this callback
    
    sections()


      
       
       View Source
     


  


  

      Specs

      

          sections() :: [Ash.Dsl.section()]


      



  



  
    
      
      Link to this callback
    
    transformers()


      
       
       View Source
     


  


  

      Specs

      

          transformers() :: [module()]


      



  


        

      



  

    
Ash.Dsl.Section
    



      
Declares a DSL section.
A dsl section allows you to organize related configurations. All extensions
configure sections, they cannot add DSL builders to the top level. This
keeps things organized, and concerns separated.
A section may have nested sections, which will be configured the same as other sections.
Getting the options/entities of a section is done by providing a path, so you would
use the nested path to retrieve that configuration. See Ash.Dsl.Extension.get_entities/2
and Ash.Dsl.Extension.get_opt/4.
A section may have entities, which are constructors that produce instances of structs.
For more on entities, see Ash.Dsl.Entity.
A section may also have a schema, which is a NimbleOptions schema. Ash will produce
builders for those options, so that they may be configured. They are retrived with
Ash.Dsl.Extension.get_opt/4.
For a full example, see Ash.Dsl.Extension.

      





  

    
Ash.Dsl.Transformer behaviour
    



      
A transformer manipulates and/or validates the entire DSL state of a resource.
It's transform/2 takes a map, which is just the values/configurations at each point
of the DSL. Don't manipulate it directly, if possible, instead use functions like
get_entities/3 and replace_entity/5 to manipulate it.
Use the after?/1 and before?/1 callbacks to ensure that your transformer
runs either before or after some other transformer.
The pattern for requesting information from other modules that use the DSL and are
also currently compiling has not yet been determined. If you have that requirement
you will need extra utilities to ensure that some other DSL based module has either
completed or reached a certain point in its transformers. These utilities have not
yet been written.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    add_entity(dsl_state, path, entity)

  





  
    build_entity(extension, path, name, opts)

  





  
    get_entities(dsl_state, path)

  





  
    get_option(dsl_state, path, option)

  





  
    get_persisted(dsl, key, default \\ nil)

  





  
    persist(dsl, key, value)

  





  
    replace_entity(dsl_state, path, replacement, matcher)

  





  
    sort(transformers)

  





  


  
    
      Callbacks
    


  
    after?(module)

  





  
    before?(module)

  





  
    transform(module, map)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    add_entity(dsl_state, path, entity)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    build_entity(extension, path, name, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    get_entities(dsl_state, path)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    get_option(dsl_state, path, option)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    get_persisted(dsl, key, default \\ nil)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    persist(dsl, key, value)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    replace_entity(dsl_state, path, replacement, matcher)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    sort(transformers)


      
       
       View Source
     


  


  


  


        

      

      
        
          
            
            Anchor for this section
          
Callbacks
        

        


  
    
      
      Link to this callback
    
    after?(module)


      
       
       View Source
     


  


  

      Specs

      

          after?(module()) :: boolean()


      



  



  
    
      
      Link to this callback
    
    before?(module)


      
       
       View Source
     


  


  

      Specs

      

          before?(module()) :: boolean()


      



  



  
    
      
      Link to this callback
    
    transform(module, map)


      
       
       View Source
     


  


  

      Specs

      

          transform(module(), map()) :: {:ok, map()} | {:error, term()} | :halt


      



  


        

      



  

    
Ash.Dsl behaviour
    



      
The primary entry point for adding a DSL to a module.
To add a DSL to a module, add use Ash.Dsl, ...options. The options supported with use Ash.Dsl are:
	:single_extension_kinds - The extension kinds that are allowed to have a single value. For example: [:data_layer] The default value is [].

	:many_extension_kinds - The extension kinds that can have multiple values. e.g [notifiers: [Notifier1, Notifier2]] The default value is [].

	:untyped_extensions? - Whether or not to support an extensions key which contains untyped extensions The default value is true.

	:default_extensions - The extensions that are included by default. e.g [data_layer: Default, notifiers: [Notifier1]]
Default values for single extension kinds are overwritten if specified by the implementor, while many extension
kinds are appended to if specified by the implementor. The default value is [].


See the callbacks defined in this module to augment the behavior/compilation of the module getting a Dsl.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    entity()

  





  
    opts()

  





  
    section()

  





  


  
    
      Functions
    


  
    is?(module, type)

  





  


  
    
      Callbacks
    


  
    handle_before_compile(arg1)

  


    Handle options in the context of the module, after all extensions have been processed. Must return a quote block.






  
    handle_opts(arg1)

  


    Handle options in the context of the module. Must return a quote block.






  
    init(opts)

  


    Validate/add options. Those options will be passed to handle_opts and handle_before_compile






  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    entity()


      
       
       View Source
     


  


  

      Specs

      

          entity() :: %Ash.Dsl.Entity{
  args: term(),
  auto_set_fields: term(),
  describe: term(),
  entities: term(),
  examples: term(),
  hide: term(),
  modules: term(),
  name: term(),
  schema: term(),
  target: term(),
  transform: term()
}


      



  



  
    
      
      Link to this type
    
    opts()


      
       
       View Source
     


  


  

      Specs

      

          opts() :: Keyword.t()


      



  



  
    
      
      Link to this type
    
    section()


      
       
       View Source
     


  


  

      Specs

      

          section() :: %Ash.Dsl.Section{
  describe: term(),
  entities: term(),
  examples: term(),
  imports: term(),
  modules: term(),
  name: term(),
  schema: term(),
  sections: term()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    is?(module, type)


      
       
       View Source
     


  


  


  


        

      

      
        
          
            
            Anchor for this section
          
Callbacks
        

        


  
    
      
      Link to this callback
    
    handle_before_compile(arg1)


      
       
       View Source
     


  


  

      Specs

      

          handle_before_compile(Keyword.t()) :: Macro.t()


      


Handle options in the context of the module, after all extensions have been processed. Must return a quote block.

  



  
    
      
      Link to this callback
    
    handle_opts(arg1)


      
       
       View Source
     


  


  

      Specs

      

          handle_opts(Keyword.t()) :: Macro.t()


      


Handle options in the context of the module. Must return a quote block.
If you want to persist anything in the DSL persistence layer,
use @persist {:key, value}. It can be called multiple times to
persist multiple times.

  



  
    
      
      Link to this callback
    
    init(opts)


      
       
       View Source
     


  


  

      Specs

      

          init(opts()) :: {:ok, opts()} | {:error, String.t() | term()}


      


Validate/add options. Those options will be passed to handle_opts and handle_before_compile

  


        

      



  

    
Ash.Resource.Transformers.BelongsToAttribute
    



      
Creates the attribute for belongs_to relationships that have define_field?: true

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    after?(arg1)

  


    Callback implementation for Ash.Dsl.Transformer.after?/1.






  
    before?(_)

  


    Callback implementation for Ash.Dsl.Transformer.before?/1.






  
    transform(resource, dsl_state)

  


    Callback implementation for Ash.Dsl.Transformer.transform/2.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    after?(arg1)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(resource, dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.transform/2.

  


        

      



  

    
Ash.Resource.Transformers.BelongsToSourceField
    



      
Sets the default source_field for belongs_to attributes

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    after?(_)

  


    Callback implementation for Ash.Dsl.Transformer.after?/1.






  
    before?(_)

  


    Callback implementation for Ash.Dsl.Transformer.before?/1.






  
    transform(resource, dsl_state)

  


    Callback implementation for Ash.Dsl.Transformer.transform/2.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(resource, dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.transform/2.

  


        

      



  

    
Ash.Resource.Transformers.CachePrimaryKey
    



      
Validates and caches the primary key of a resource

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    after?(arg1)

  


    Callback implementation for Ash.Dsl.Transformer.after?/1.






  
    before?(_)

  


    Callback implementation for Ash.Dsl.Transformer.before?/1.






  
    transform(resource, dsl_state)

  


    Callback implementation for Ash.Dsl.Transformer.transform/2.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    after?(arg1)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(resource, dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.transform/2.

  


        

      



  

    
Ash.Resource.Transformers.CountableActions
    



      
Ensures that countable paginated actions do not exist for resources that are not countable

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    after?(_)

  


    Callback implementation for Ash.Dsl.Transformer.after?/1.






  
    before?(_)

  


    Callback implementation for Ash.Dsl.Transformer.before?/1.






  
    transform(resource, dsl_state)

  


    Callback implementation for Ash.Dsl.Transformer.transform/2.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(resource, dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.transform/2.

  


        

      



  

    
Ash.Resource.Transformers.CreateJoinRelationship
    



      
Creates an automatically named has_many relationship for each many_to_many.
This will likely not be around for long, as our logic around many to many relationships
will update soon.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    after?(_)

  


    Callback implementation for Ash.Dsl.Transformer.after?/1.






  
    before?(arg1)

  


    Callback implementation for Ash.Dsl.Transformer.before?/1.






  
    transform(resource, dsl_state)

  


    Callback implementation for Ash.Dsl.Transformer.transform/2.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    before?(arg1)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(resource, dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.transform/2.

  


        

      



  

    
Ash.Resource.Transformers.DefaultAccept
    



      
Sets the default accept for each action

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    after?(arg1)

  


    Callback implementation for Ash.Dsl.Transformer.after?/1.






  
    before?(_)

  


    Callback implementation for Ash.Dsl.Transformer.before?/1.






  
    transform(resource, dsl_state)

  


    Callback implementation for Ash.Dsl.Transformer.transform/2.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    after?(arg1)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(resource, dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.transform/2.

  


        

      



  

    
Ash.Resource.Transformers.DefaultPrimaryKey
    



      
Creates the default primary key if one applies.
Currently, the only resources that get a default primary key are embedded resources.
The reason for this is that resources must have a primary key, and embedded resources
actually make sense without one. But this is simulated with a private uuid primary key.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    after?(arg1)

  


    Callback implementation for Ash.Dsl.Transformer.after?/1.






  
    before?(_)

  


    Callback implementation for Ash.Dsl.Transformer.before?/1.






  
    transform(resource, dsl_state)

  


    Callback implementation for Ash.Dsl.Transformer.transform/2.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    after?(arg1)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(resource, dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.transform/2.

  


        

      



  

    
Ash.Resource.Transformers.HasDestinationField
    



      
Guesses the destination_field for has many and has one relationships unless provided

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    after?(_)

  


    Callback implementation for Ash.Dsl.Transformer.after?/1.






  
    before?(_)

  


    Callback implementation for Ash.Dsl.Transformer.before?/1.






  
    transform(resource, dsl_state)

  


    Callback implementation for Ash.Dsl.Transformer.transform/2.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(resource, dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.transform/2.

  


        

      



  

    
Ash.Resource.Transformers.ReplaceTimestamps
    



      
Replaces a single timestamps() attribute with inserted_at and updated_at timestamps.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    after?(_)

  


    Callback implementation for Ash.Dsl.Transformer.after?/1.






  
    before?(_)

  


    Callback implementation for Ash.Dsl.Transformer.before?/1.






  
    transform(resource, dsl_state)

  


    Callback implementation for Ash.Dsl.Transformer.transform/2.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(resource, dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.transform/2.

  


        

      



  

    
Ash.Resource.Transformers.RequireUniqueActionNames
    



      
Ensures that all actions have unique names.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    after?(_)

  


    Callback implementation for Ash.Dsl.Transformer.after?/1.






  
    before?(_)

  


    Callback implementation for Ash.Dsl.Transformer.before?/1.






  
    transform(resource, dsl_state)

  


    Callback implementation for Ash.Dsl.Transformer.transform/2.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(resource, dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.transform/2.

  


        

      



  

    
Ash.Resource.Transformers.SetPrimaryActions
    



      
Creates/validates the primary action configuration
If only one action of a given type is defined, it is marked
as primary. If multiple exist, and one is not primary,
this results in an error.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    after?(_)

  


    Callback implementation for Ash.Dsl.Transformer.after?/1.






  
    before?(_)

  


    Callback implementation for Ash.Dsl.Transformer.before?/1.






  
    transform(resource, dsl_state)

  


    Callback implementation for Ash.Dsl.Transformer.transform/2.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(resource, dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.transform/2.

  


        

      



  

    
Ash.Resource.Transformers.SetRelationshipSource
    



      
Sets the source key on relationships to be the resource they were defined on

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    after?(_)

  


    Callback implementation for Ash.Dsl.Transformer.after?/1.






  
    before?(_)

  


    Callback implementation for Ash.Dsl.Transformer.before?/1.






  
    transform(resource, dsl_state)

  


    Callback implementation for Ash.Dsl.Transformer.transform/2.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(resource, dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.transform/2.

  


        

      



  

    
Ash.Resource.Transformers.SetTypes
    



      
Sets the source key on relationships to be the resource they were defined on

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    after?(arg1)

  


    Callback implementation for Ash.Dsl.Transformer.after?/1.






  
    before?(_)

  


    Callback implementation for Ash.Dsl.Transformer.before?/1.






  
    transform(resource, dsl_state)

  


    Callback implementation for Ash.Dsl.Transformer.transform/2.






  
    validate_constraints(type, constraints)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    after?(arg1)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(resource, dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.transform/2.

  



  
    
      
      Link to this function
    
    validate_constraints(type, constraints)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Resource.Transformers.ValidateActionTypesSupported
    



      
Confirms that all action types declared on a resource are supported by its data layer

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    after?(_)

  


    Callback implementation for Ash.Dsl.Transformer.after?/1.






  
    before?(_)

  


    Callback implementation for Ash.Dsl.Transformer.before?/1.






  
    transform(resource, dsl_state)

  


    Callback implementation for Ash.Dsl.Transformer.transform/2.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(resource, dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.transform/2.

  


        

      



  

    
Ash.Resource.Transformers.ValidateMultitenancy
    



      
Ensures that the multitenancy configuration is valid for the given resource

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    after?(arg1)

  


    Callback implementation for Ash.Dsl.Transformer.after?/1.






  
    before?(_)

  


    Callback implementation for Ash.Dsl.Transformer.before?/1.






  
    transform(resource, dsl_state)

  


    Callback implementation for Ash.Dsl.Transformer.transform/2.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    after?(arg1)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(resource, dsl_state)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.transform/2.

  


        

      



  

    
Ash.Api.Transformers.EnsureResourcesCompiled
    



      
Ensures that all resources for a given api are compiled.
This is required for later transformers.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    after?(_)

  


    Callback implementation for Ash.Dsl.Transformer.after?/1.






  
    before?(_)

  


    Callback implementation for Ash.Dsl.Transformer.before?/1.






  
    transform(module, dsl, times \\ 3)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.before?/1.

  



    

  
    
      
      Link to this function
    
    transform(module, dsl, times \\ 3)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Api.Transformers.UniqueFunctionNames
    



      
Ensures that all function names added to the API will be unique.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    after?(_)

  


    Callback implementation for Ash.Dsl.Transformer.after?/1.






  
    before?(_)

  


    Callback implementation for Ash.Dsl.Transformer.before?/1.






  
    transform(module, dsl)

  


    Callback implementation for Ash.Dsl.Transformer.transform/2.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    after?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(module, dsl)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.transform/2.

  


        

      



  

    
Ash.Api.Transformers.ValidateManyToManyJoinAttributes
    



      
Validates that join_attributes on many to many relationships exist on the join resource

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    after?(arg1)

  


    Callback implementation for Ash.Dsl.Transformer.after?/1.






  
    before?(_)

  


    Callback implementation for Ash.Dsl.Transformer.before?/1.






  
    transform(api, dsl)

  


    Callback implementation for Ash.Dsl.Transformer.transform/2.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    after?(arg1)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(api, dsl)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.transform/2.

  


        

      



  

    
Ash.Api.Transformers.ValidateRelatedResourceInclusion
    



      
Ensures that all related resources are included in an API.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    before?(_)

  


    Callback implementation for Ash.Dsl.Transformer.before?/1.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.before?/1.

  


        

      



  

    
Ash.Api.Transformers.ValidateRelationshipAttributes
    



      
Validates that all relationships point to valid fields

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    after?(arg1)

  


    Callback implementation for Ash.Dsl.Transformer.after?/1.






  
    before?(_)

  


    Callback implementation for Ash.Dsl.Transformer.before?/1.






  
    transform(api, dsl)

  


    Callback implementation for Ash.Dsl.Transformer.transform/2.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    after?(arg1)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.after?/1.

  



  
    
      
      Link to this function
    
    before?(_)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.before?/1.

  



  
    
      
      Link to this function
    
    transform(api, dsl)


      
       
       View Source
     


  


  

Callback implementation for Ash.Dsl.Transformer.transform/2.

  


        

      



  

    
Ash.Query.Operator behaviour
    



      
An operator is a predicate with a left and a right
For more information on being a predicate, see Ash.Filter.Predicate. Most of the complexities
are there. An operator must meet both behaviours.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    new(mod, left, right)

  


    Create a new operator. Pass the module and the left and right values






  
    operator_symbols()

  





  
    operators()

  





  


  
    
      Callbacks
    


  
    new(term, term)

  


    Create a new predicate. There are various return types possible






  
    to_string(struct, arg2)

  


    The implementation of the inspect protocol.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    new(mod, left, right)


      
       
       View Source
     


  


  

Create a new operator. Pass the module and the left and right values

  



  
    
      
      Link to this function
    
    operator_symbols()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operators()


      
       
       View Source
     


  


  


  


        

      

      
        
          
            
            Anchor for this section
          
Callbacks
        

        


  
    
      
      Link to this callback
    
    new(term, term)


      
       
       View Source
     


  


  

      Specs

      

          new(term(), term()) ::
  {:ok, term(), term()} | {:ok, term()} | {:known, boolean()} | {:error, term()}


      


Create a new predicate. There are various return types possible:
	{:ok, left, right} - Return the left/right values of the operator
	{:ok, operator} - Return the operator itself, this or the one above are acceptable
	{:known, boolean} - If the value is already known, e.g 1 == 1
	{:error, error} - If there was an error creating the operator


  



  
    
      
      Link to this callback
    
    to_string(struct, arg2)


      
       
       View Source
     


  


  

      Specs

      

          to_string(struct(), Inspect.Opts.t()) :: term()


      


The implementation of the inspect protocol.
If not defined, it will be inferred

  


        

      



  

    
Ash.Query.Operator.Basic
    




      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    operator_modules()

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    operator_modules()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.Operator.Basic.Concat
    



      
left <> right

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    evaluate(map)

  





  
    name()

  





  
    new(left, right)

  





  
    operator()

  





  
    predicate?()

  





  
    to_string(map, opts)

  





  
    types()

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    evaluate(map)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operator()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    to_string(map, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    types()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.Operator.Basic.Div
    



      
left / right

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    evaluate(map)

  





  
    name()

  





  
    new(left, right)

  





  
    operator()

  





  
    predicate?()

  





  
    to_string(map, opts)

  





  
    types()

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    evaluate(map)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operator()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    to_string(map, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    types()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.Operator.Basic.Minus
    



      
left - right

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    evaluate(map)

  





  
    name()

  





  
    new(left, right)

  





  
    operator()

  





  
    predicate?()

  





  
    to_string(map, opts)

  





  
    types()

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    evaluate(map)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operator()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    to_string(map, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    types()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.Operator.Basic.Plus
    



      
left + right

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    evaluate(map)

  





  
    name()

  





  
    new(left, right)

  





  
    operator()

  





  
    predicate?()

  





  
    to_string(map, opts)

  





  
    types()

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    evaluate(map)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operator()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    to_string(map, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    types()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.Operator.Basic.Times
    



      
left * right

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    evaluate(map)

  





  
    name()

  





  
    new(left, right)

  





  
    operator()

  





  
    predicate?()

  





  
    to_string(map, opts)

  





  
    types()

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    evaluate(map)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operator()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    to_string(map, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    types()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.Operator.Eq
    



      
left == right
The simplest operator, matches if the left and right are equal.
For comparison, this compares as mutually exclusive with other equality
and is_nil checks that have the same reference on the left side

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    bulk_compare(predicates)

  


    Callback implementation for Ash.Filter.Predicate.bulk_compare/1.






  
    evaluate(map)

  





  
    name()

  





  
    new(left, right)

  





  
    operator()

  





  
    predicate?()

  





  
    to_string(map, opts)

  





  
    types()

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    bulk_compare(predicates)


      
       
       View Source
     


  


  

Callback implementation for Ash.Filter.Predicate.bulk_compare/1.

  



  
    
      
      Link to this function
    
    evaluate(map)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operator()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    to_string(map, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    types()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.Operator.GreaterThan
    



      
left > right
In comparison, simplifies to not(left < right + 1), so it will never need to be compared against.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    evaluate(map)

  





  
    name()

  





  
    new(left, right)

  





  
    operator()

  





  
    predicate?()

  





  
    simplify(arg1)

  


    Callback implementation for Ash.Filter.Predicate.simplify/1.






  
    to_string(map, opts)

  





  
    types()

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    evaluate(map)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operator()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    simplify(arg1)


      
       
       View Source
     


  


  

Callback implementation for Ash.Filter.Predicate.simplify/1.

  



  
    
      
      Link to this function
    
    to_string(map, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    types()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.Operator.GreaterThanOrEqual
    



      
left >= right
In comparison, simplifies to not(left < right), so it will never need to be compared against.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    evaluate(map)

  





  
    name()

  





  
    new(left, right)

  





  
    operator()

  





  
    predicate?()

  





  
    simplify(arg1)

  


    Callback implementation for Ash.Filter.Predicate.simplify/1.






  
    to_string(map, opts)

  





  
    types()

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    evaluate(map)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operator()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    simplify(arg1)


      
       
       View Source
     


  


  

Callback implementation for Ash.Filter.Predicate.simplify/1.

  



  
    
      
      Link to this function
    
    to_string(map, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    types()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.Operator.Has
    



      
left has 1
this predicate matches if the right is in the list on the left
This actually just reverses the inputs and uses in.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    name()

  





  
    new(left, right)

  





  
    operator()

  





  
    predicate?()

  





  
    to_string(map, opts)

  





  
    types()

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operator()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    to_string(map, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    types()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.Operator.In
    



      
left in [1, 2, 3]
this predicate matches if the left is in the list on the right
For comparison, this simplifies to a set of "or equals", e.g
{:or, {:or, {:or, left == 1}, left == 2}, left == 3}

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    compare(arg1, arg2)

  


    Callback implementation for Ash.Filter.Predicate.compare/2.






  
    evaluate(map)

  





  
    name()

  





  
    new(left, right)

  





  
    operator()

  





  
    predicate?()

  





  
    to_string(op, opts)

  





  
    types()

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    compare(arg1, arg2)


      
       
       View Source
     


  


  

Callback implementation for Ash.Filter.Predicate.compare/2.

  



  
    
      
      Link to this function
    
    evaluate(map)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operator()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    to_string(op, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    types()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.Operator.IsNil
    



      
left is_nil true/false
This predicate matches if the left is nil when the right is true or if the
left is not nil when the right is false

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    compare(arg1, arg2)

  


    Callback implementation for Ash.Filter.Predicate.compare/2.






  
    evaluate(map)

  





  
    name()

  





  
    new(left, right)

  





  
    operator()

  





  
    predicate?()

  





  
    to_string(map, opts)

  





  
    types()

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    compare(arg1, arg2)


      
       
       View Source
     


  


  

Callback implementation for Ash.Filter.Predicate.compare/2.

  



  
    
      
      Link to this function
    
    evaluate(map)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operator()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    to_string(map, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    types()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.Operator.LessThan
    



      
left < right
Does not simplify, but is used as the simplification value for
Ash.Query.Operator.LessThanOrEqual, Ash.Query.Operator.GreaterThan and
Ash.Query.Operator.GreaterThanOrEqual.
When comparing predicates, it is mutually exclusive with Ash.Query.Operator.IsNil.
Additionally, it compares as mutually inclusive with any Ash.Query.Operator.Eq and
any Ash.Query.Operator.LessThan who's right sides are less than it, and mutually
exclusive with any Ash.Query.Operator.Eq or Ash.Query.Operator.GreaterThan who's
right side's are greater than or equal to it.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    bulk_compare(all_predicates)

  


    Callback implementation for Ash.Filter.Predicate.bulk_compare/1.






  
    evaluate(map)

  





  
    name()

  





  
    new(left, right)

  





  
    operator()

  





  
    predicate?()

  





  
    to_string(map, opts)

  





  
    types()

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    bulk_compare(all_predicates)


      
       
       View Source
     


  


  

Callback implementation for Ash.Filter.Predicate.bulk_compare/1.

  



  
    
      
      Link to this function
    
    evaluate(map)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operator()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    to_string(map, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    types()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.Operator.LessThanOrEqual
    



      
left <= right
In comparison, simplifies to left < right + 1, so it will never need to be compared against.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    evaluate(map)

  





  
    name()

  





  
    new(left, right)

  





  
    operator()

  





  
    predicate?()

  





  
    simplify(arg1)

  


    Callback implementation for Ash.Filter.Predicate.simplify/1.






  
    to_string(map, opts)

  





  
    types()

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    evaluate(map)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operator()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    simplify(arg1)


      
       
       View Source
     


  


  

Callback implementation for Ash.Filter.Predicate.simplify/1.

  



  
    
      
      Link to this function
    
    to_string(map, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    types()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.Operator.NotEq
    



      
left != right
In comparison, simplifies to not(left == right)

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    evaluate(map)

  





  
    name()

  





  
    new(left, right)

  





  
    operator()

  





  
    predicate?()

  





  
    simplify(not_eq)

  


    Callback implementation for Ash.Filter.Predicate.simplify/1.






  
    to_string(map, opts)

  





  
    types()

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    evaluate(map)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    operator()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    predicate?()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    simplify(not_eq)


      
       
       View Source
     


  


  

Callback implementation for Ash.Filter.Predicate.simplify/1.

  



  
    
      
      Link to this function
    
    to_string(map, opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    types()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.Function behaviour
    



      
A function is a predicate with an arguments list.
For more information on being a predicate, see Ash.Filter.Predicate. Most of the complexities
are there. A function must meet both behaviours.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    arg()

  





  


  
    
      Functions
    


  
    new(mod, args)

  





  
    ordinal(num)

  


    Attaches the appropiate suffix to refer to an ordinal number, e.g 1 -> "1st"






  


  
    
      Callbacks
    


  
    args()

  


    The number and types of arguments supported.






  
    evaluate(func)

  





  
    new(list)

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    arg()


      
       
       View Source
     


  


  

      Specs

      

          arg() :: any()


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    new(mod, args)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    ordinal(num)


      
       
       View Source
     


  


  

Attaches the appropiate suffix to refer to an ordinal number, e.g 1 -> "1st"

  


        

      

      
        
          
            
            Anchor for this section
          
Callbacks
        

        


  
    
      
      Link to this callback
    
    args()


      
       
       View Source
     


  


  

      Specs

      

          args() :: [arg()]


      


The number and types of arguments supported.

  



  
    
      
      Link to this callback
    
    evaluate(func)


      
       
       View Source
     


  


  

      Specs

      

          evaluate(func :: map()) :: :unknown | {:known, term()}


      



  



  
    
      
      Link to this callback
    
    new(list)


      
       
       View Source
     


  


  

      Specs

      

          new([term()]) :: {:ok, term()}


      



  


        

      



  

    
Ash.Query.Function.Ago
    



      
Subtracts the given interval from the current time in UTC.
For example:
   deleted_at > ago(7, :days)
Documentation + available intervals inspired by the corresponding ecto interval implementation

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    args()

  





  
    evaluate(arg1)

  





  
    name()

  





  
    new(args)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    args()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    evaluate(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(args)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.Function.Contains
    



      
Returns true if the first string contains the second.
Case insensitive strings are accounted for on either side.
   contains("foo", "fo")
   true
   contains(%Ash.CiString{:string "foo"}, "FoO")
   true
   contains("foo", %Ash.CiString{:string "FOO"})
   true

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    args()

  





  
    evaluate(arg1)

  





  
    name()

  





  
    new(args)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    args()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    evaluate(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(args)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.Function.If
    



      
If predicate is truthy, then the second argument is returned, otherwise the third.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    args()

  





  
    evaluate(arg1)

  





  
    name()

  





  
    new(args)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    args()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    evaluate(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(args)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.Function.IsNil
    



      
true if the provided field is nil

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    args()

  





  
    evaluate(arg1)

  





  
    name()

  





  
    new(args)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    args()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    evaluate(arg1)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    name()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(args)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.BooleanExpression
    



      
Represents a boolean expression

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    new(op, left, right)

  





  
    optimized_new(op, left, right, current_op \\ :and)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    new(op, left, right)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    optimized_new(op, left, right, current_op \\ :and)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.Call
    



      
Represents a function call/AST node in an Ash query expression

      





  

    
Ash.Query.Not
    



      
Represents the negation of the contained expression

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    new(expression)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    new(expression)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.Ref
    



      
Represents a relation/attribute reference

      





  

    
Ash.Filter.Predicate behaviour
    



      
Represents a predicate which can be simplified and/or compared with other predicates
Simplification and comparison will need more documentation, but ultimately it
is the logic that allows us to have a flexible and powerful authorization
system.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    comparison()

  





  
    predicate()

  





  


  
    
      Functions
    


  
    compare(same, same)

  


    Checks with each predicate module to see if it has a comparison
with






  


  
    
      Callbacks
    


  
    bulk_compare(list)

  


    As long as at least one predicate of the type defined in your module,
(and this callback is implemented), it will be called with all of the
other predicates present in a filter. The return value is relatively
complex, but it should be a list of boolean statements. E.g.
{op, left, right} and {:not, predicate} (nested as deep as necessary).






  
    compare(predicate, predicate)

  


    Compare two predicates. If possible, use bulk_compare/1 instead






  
    simplify(predicate)

  


    Simplify to a more primitive statement.






  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    comparison()


      
       
       View Source
     


  


  

      Specs

      

          comparison() ::
  :unknown
  | :right_includes_left
  | :left_includes_right
  | :mutually_inclusive
  | :mutually_exclusive


      



  



  
    
      
      Link to this type
    
    predicate()


      
       
       View Source
     


  


  

      Specs

      

          predicate() :: struct()


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    compare(same, same)


      
       
       View Source
     


  


  

Checks with each predicate module to see if it has a comparison
with

  


        

      

      
        
          
            
            Anchor for this section
          
Callbacks
        

        


  
    
      
      Link to this callback
    
    bulk_compare(list)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          bulk_compare([predicate()]) :: term()


      


As long as at least one predicate of the type defined in your module,
(and this callback is implemented), it will be called with all of the
other predicates present in a filter. The return value is relatively
complex, but it should be a list of boolean statements. E.g.
{op, left, right} and {:not, predicate} (nested as deep as necessary).
The best way to do it is to find lists of predicates that are mutually
exclusive or mutually inclusive, and pass those lists into
Ash.SatSolver.mutually_exclusive/1 and Ash.SatSolver.mutually_inclusive/1

  



  
    
      
      Link to this callback
    
    compare(predicate, predicate)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          compare(predicate(), predicate()) :: comparison()


      


Compare two predicates. If possible, use bulk_compare/1 instead

  



  
    
      
      Link to this callback
    
    simplify(predicate)


      
       
       View Source
     


      (optional)

  


  

      Specs

      

          simplify(predicate()) :: term()


      


Simplify to a more primitive statement.
For example, x in [1, 2] simplifies to x == 1 or x == 2.
Simplifying to filter expressions that already have comparisons
lets you avoid writing that logic for a given predicate.

  


        

      



  

    
Ash.Filter.Runtime
    



      
Checks a record to see if it matches a filter statement.
We can't always tell if a record matches a filter statement, and as such this
function may return :unknown. Additionally, some expressions wouldn't ever
make sense outside of the context of the data layer, and will always be an
error. For example, if you used the trigram search features in
ash_postgres. That logic would need to be handwritten in Elixir and would
need to be a perfect copy of the postgres implementation. That isn't a
realistic goal. This generally should not affect anyone using the standard
framework features, but if you were to attempt to use this module with a data
layer like ash_postgres, certain expressions will behave unpredictably.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    do_match(record, expression)

  





  
    filter_matches(api, records, filter, loaded? \\ false)

  


    Removes any records that don't match the filter. Automatically loads
if necessary. If there are any ambigious terms in the filter (e.g things
that could only be determined by data layer), it is assumed that they
are not matches.






  
    matches(record, expression)

  





  
    matches?(api, record, filter)

  


    Checks if a record matches a filter, loading any necessary relationships"






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    do_match(record, expression)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    filter_matches(api, records, filter, loaded? \\ false)


      
       
       View Source
     


  


  

Removes any records that don't match the filter. Automatically loads
if necessary. If there are any ambigious terms in the filter (e.g things
that could only be determined by data layer), it is assumed that they
are not matches.

  



  
    
      
      Link to this function
    
    matches(record, expression)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    matches?(api, record, filter)


      
       
       View Source
     


  


  

Checks if a record matches a filter, loading any necessary relationships"
If it can't tell, this returns false.

  


        

      



  

    
Ash.Filter.Simple
    



      
Represents a simplified filter, with a simple list of predicates

      





  

    
Ash.Filter.Simple.Not
    



      
A negated predicate

      





  

    
Ash.Filter.TemplateHelpers
    



      
Helpers for building filter templates

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    actor(value)

  


    A helper for using actor values in filter templates






  
    arg(name)

  


    A helper for using action arguments in filter templates






  
    context(name)

  


    A helper for using query context in filter templates






  
    expr(expr)

  


    A helper for building an expression style filter






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    actor(value)


      
       
       View Source
     


  


  

A helper for using actor values in filter templates

  



  
    
      
      Link to this function
    
    arg(name)


      
       
       View Source
     


  


  

A helper for using action arguments in filter templates

  



  
    
      
      Link to this function
    
    context(name)


      
       
       View Source
     


  


  

A helper for using query context in filter templates
An atom will just get the key, and a list will be accessed via get_in.

  



  
    
      
      Link to this macro
    
    expr(expr)


      
       
       View Source
     


      (macro)

  


  

A helper for building an expression style filter

  


        

      



  

    
Ash.Resource
    



      
A resource is a static definition of an entity in your system.
Resource DSL documentation: Ash.Resource.Dsl

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    record()

  





  
    t()

  





  


  
    
      Functions
    


  
    handle_before_compile(opts)

  





  
    handle_opts(opts)

  





  
    init(opts)

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    record()


      
       
       View Source
     


  


  

      Specs

      

          record() :: struct()


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: module()


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    handle_before_compile(opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    handle_opts(opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    init(opts)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Resource.Actions
    



      
Types for Ash actions

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    action()

  





  
    action_type()

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    action()


      
       
       View Source
     


  


  

      Specs

      

          action() ::
  Ash.Resource.Actions.Create.t()
  | Ash.Resource.Actions.Read.t()
  | Ash.Resource.Actions.Update.t()
  | Ash.Resource.Actions.Destroy.t()


      



  



  
    
      
      Link to this type
    
    action_type()


      
       
       View Source
     


  


  

      Specs

      

          action_type() :: :read | :create | :update | :destroy


      



  


        

      



  

    
Ash.Resource.Actions.Argument
    



      
Represents an argument to an action

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


  
    
      Functions
    


  
    schema()

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Resource.Actions.Argument{
  allow_nil?: term(),
  constraints: term(),
  default: term(),
  description: term(),
  name: term(),
  private?: term(),
  sensitive?: term(),
  type: term()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Resource.Actions.Create
    



      
Represents a create action on a resource.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Resource.Actions.Create{
  accept: [atom()],
  allow_nil_input: [atom()],
  arguments: [Ash.Resource.Actions.Argument.t()],
  changes: term(),
  description: String.t(),
  error_handler: term(),
  manual?: term(),
  name: atom(),
  primary?: boolean(),
  reject: term(),
  require_attributes: term(),
  type: :create
}


      



  


        

      



  

    
Ash.Resource.Actions.Destroy
    



      
Represents a destroy action on a resource.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Resource.Actions.Destroy{
  accept: term(),
  arguments: [Ash.Resource.Actions.Argument.t()],
  changes: term(),
  description: String.t(),
  error_handler: term(),
  manual?: term(),
  name: atom(),
  primary?: boolean(),
  reject: term(),
  require_attributes: term(),
  soft?: term(),
  type: :destroy
}


      



  


        

      



  

    
Ash.Resource.Actions.Read
    



      
Represents a read action on a resource.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


  
    
      Functions
    


  
    pagination(opts)

  





  
    pagination_schema()

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Resource.Actions.Read{
  arguments: term(),
  description: String.t(),
  filter: term(),
  name: atom(),
  pagination: term(),
  preparations: term(),
  primary?: boolean(),
  transaction?: term(),
  type: :read
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    pagination(opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    pagination_schema()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Resource.Actions.Read.Pagination
    



      
Represents the pagination configuration of a read action

      





  

    
Ash.Resource.Actions.Update
    



      
Represents a update action on a resource.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Resource.Actions.Update{
  accept: [atom()],
  arguments: [Ash.Resource.Actions.Argument.t()],
  changes: term(),
  description: String.t(),
  error_handler: term(),
  manual?: term(),
  name: atom(),
  primary?: boolean(),
  reject: term(),
  require_attributes: term(),
  type: :update
}


      



  


        

      



  

    
Ash.Resource.Aggregate
    



      
Represents a named aggregate on the resource that can be loaded

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


  
    
      Functions
    


  
    relationship_path(value)

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Resource.Aggregate{
  description: String.t() | nil,
  field: atom(),
  filter: Keyword.t(),
  kind: :count | :first | :sum | :list,
  name: atom(),
  private?: boolean(),
  relationship_path: [atom()],
  sort: term()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    relationship_path(value)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Resource.Attribute
    



      
Represents an attribute on a resource

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


  
    
      Functions
    


  
    create_timestamp_schema()

  





  
    integer_primary_key_schema()

  





  
    update_timestamp_schema()

  





  
    uuid_primary_key_schema()

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Resource.Attribute{
  allow_nil?: term(),
  always_select?: term(),
  constraints: Keyword.t(),
  default: (() -> term()),
  description: term(),
  generated?: term(),
  name: atom(),
  primary_key?: boolean(),
  private?: boolean(),
  sensitive?: boolean(),
  type: Ash.Type.t(),
  update_default: (() -> term()) | (Ash.Resource.record() -> term()),
  writable?: boolean()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    create_timestamp_schema()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    integer_primary_key_schema()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    update_timestamp_schema()


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    uuid_primary_key_schema()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Resource.Identity
    



      
Represents a unique constraint on a resource

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


  
    
      Functions
    


  
    keys(keys)

  





  
    schema()

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Resource.Identity{
  description: String.t() | nil,
  keys: [atom()],
  message: term(),
  name: atom()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    keys(keys)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Resource.Info
    



      
Introspection for resources

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    action(resource, name, type \\ nil)

  


    Returns the action with the matching name and type on the resource






  
    actions(resource)

  


    Returns all actions of a resource






  
    aggregate(resource, name)

  


    Get an aggregate by name






  
    aggregates(resource)

  


    Returns all aggregates of a resource






  
    attribute(resource, name)

  


    Get an attribute name from the resource






  
    attributes(resource)

  


    Returns all attributes of a resource






  
    authorizers(resource)

  


    A list of authorizers to be used when accessing






  
    base_filter(resource)

  





  
    calculation(resource, name)

  


    Get a calculation by name






  
    calculations(resource)

  


    Returns all calculations of a resource






  
    default_actions(resource)

  


    Returns the configured default actions






  
    default_context(resource)

  





  
    description(resource)

  





  
    embedded?(resource)

  





  
    extensions(resource)

  





  
    field(resource, name)

  


    Get a field from a resource by name






  
    get_metadata(record, key_or_path)

  





  
    identities(resource)

  


    A list of identities for the resource






  
    interfaces(resource)

  





  
    multitenancy_attribute(resource)

  





  
    multitenancy_global?(resource)

  





  
    multitenancy_parse_attribute(resource)

  





  
    multitenancy_source(resource)

  





  
    multitenancy_strategy(resource)

  


    Get the multitenancy strategy for a resource






  
    multitenancy_template(resource)

  





  
    notifiers(resource)

  


    A list of notifiers to be used when accessing






  
    primary_action(resource, type)

  


    Returns the primary action of a given type






  
    primary_action!(resource, type)

  


    Returns the primary action of the given type






  
    primary_key(resource)

  


    A list of field names corresponding to the primary key






  
    public_aggregate(resource, name)

  


    Get an aggregate by name






  
    public_aggregates(resource)

  


    Returns all public aggregates of a resource






  
    public_attribute(resource, name)

  


    Get a public attribute name from the resource






  
    public_attributes(resource)

  


    Returns all public attributes of a resource






  
    public_calculation(resource, name)

  


    Get a public calculation by name






  
    public_calculations(resource)

  


    Returns all public calculations of a resource






  
    public_field(resource, name)

  


    Get a public field from a resource by name






  
    public_relationship(resource, relationship_name)

  


    Get a public relationship by name or path






  
    public_relationships(resource)

  


    Returns all public relationships of a resource






  
    put_metadata(record, key, term)

  





  
    related(resource, relationship)

  





  
    relationship(resource, relationship_name)

  


    Get a relationship by name or path






  
    relationships(resource)

  


    Returns all relationships of a resource






  
    resource?(module)

  


    Whether or not a given module is a resource module






  
    reverse_relationship(resource, path, acc \\ [])

  





  
    selected?(record, field)

  





  
    set_metadata(record, map)

  





  
    sortable?(resource, name, opts \\ [])

  


    Determine if a field is sortable by name






  
    validations(resource)

  


    A list of all validations for the resource






  
    validations(resource, type)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


    

  
    
      
      Link to this function
    
    action(resource, name, type \\ nil)


      
       
       View Source
     


  


  

      Specs

      

          action(Ash.Resource.t(), atom(), Ash.Resource.Actions.action_type() | nil) ::
  Ash.Resource.Actions.action() | nil


      


Returns the action with the matching name and type on the resource

  



  
    
      
      Link to this function
    
    actions(resource)


      
       
       View Source
     


  


  

      Specs

      

          actions(Ash.Resource.t()) :: [Ash.Resource.Actions.action()]


      


Returns all actions of a resource

  



  
    
      
      Link to this function
    
    aggregate(resource, name)


      
       
       View Source
     


  


  

      Specs

      

          aggregate(Ash.Resource.t(), atom() | String.t()) ::
  Ash.Resource.Aggregate.t() | nil


      


Get an aggregate by name

  



  
    
      
      Link to this function
    
    aggregates(resource)


      
       
       View Source
     


  


  

      Specs

      

          aggregates(Ash.Resource.t()) :: [Ash.Resource.Aggregate.t()]


      


Returns all aggregates of a resource

  



  
    
      
      Link to this function
    
    attribute(resource, name)


      
       
       View Source
     


  


  

      Specs

      

          attribute(Ash.Resource.t(), String.t() | atom()) ::
  Ash.Resource.Attribute.t() | nil


      


Get an attribute name from the resource

  



  
    
      
      Link to this function
    
    attributes(resource)


      
       
       View Source
     


  


  

      Specs

      

          attributes(Ash.Resource.t()) :: [Ash.Resource.Attribute.t()]


      


Returns all attributes of a resource

  



  
    
      
      Link to this function
    
    authorizers(resource)


      
       
       View Source
     


  


  

      Specs

      

          authorizers(Ash.Resource.t()) :: [module()]


      


A list of authorizers to be used when accessing

  



  
    
      
      Link to this function
    
    base_filter(resource)


      
       
       View Source
     


  


  

      Specs

      

          base_filter(Ash.Resource.t()) :: term()


      



  



  
    
      
      Link to this function
    
    calculation(resource, name)


      
       
       View Source
     


  


  

      Specs

      

          calculation(Ash.Resource.t(), atom() | String.t()) ::
  Ash.Resource.Calculation.t() | nil


      


Get a calculation by name

  



  
    
      
      Link to this function
    
    calculations(resource)


      
       
       View Source
     


  


  

      Specs

      

          calculations(Ash.Resource.t()) :: [Ash.Resource.Calculation.t()]


      


Returns all calculations of a resource

  



  
    
      
      Link to this function
    
    default_actions(resource)


      
       
       View Source
     


  


  

      Specs

      

          default_actions(Ash.Resource.t()) :: [:create | :read | :update | :destroy]


      


Returns the configured default actions

  



  
    
      
      Link to this function
    
    default_context(resource)


      
       
       View Source
     


  


  

      Specs

      

          default_context(Ash.Resource.t()) :: term()


      



  



  
    
      
      Link to this function
    
    description(resource)


      
       
       View Source
     


  


  

      Specs

      

          description(Ash.Resource.t()) :: String.t() | nil


      



  



  
    
      
      Link to this function
    
    embedded?(resource)


      
       
       View Source
     


  


  

      Specs

      

          embedded?(Ash.Resource.t()) :: boolean()


      



  



  
    
      
      Link to this function
    
    extensions(resource)


      
       
       View Source
     


  


  

      Specs

      

          extensions(Ash.Resource.t()) :: [module()]


      



  



  
    
      
      Link to this function
    
    field(resource, name)


      
       
       View Source
     


  


  

      Specs

      

          field(Ash.Resource.t(), String.t() | atom()) ::
  Ash.Resource.Attribute.t()
  | Ash.Resource.Aggregate.t()
  | Ash.Resource.Calculation.t()
  | Ash.Resource.Relationships.relationship()
  | nil


      


Get a field from a resource by name

  



  
    
      
      Link to this function
    
    get_metadata(record, key_or_path)


      
       
       View Source
     


  


  

      Specs

      

          get_metadata(Ash.Resource.record(), atom() | [atom()]) :: term()


      



  



  
    
      
      Link to this function
    
    identities(resource)


      
       
       View Source
     


  


  

      Specs

      

          identities(Ash.Resource.t()) :: [Ash.Resource.Identity.t()]


      


A list of identities for the resource

  



  
    
      
      Link to this function
    
    interfaces(resource)


      
       
       View Source
     


  


  

      Specs

      

          interfaces(Ash.Resource.t()) :: [Ash.Resource.Interface.t()]


      



  



  
    
      
      Link to this function
    
    multitenancy_attribute(resource)


      
       
       View Source
     


  


  

      Specs

      

          multitenancy_attribute(Ash.Resource.t()) :: atom() | nil


      



  



  
    
      
      Link to this function
    
    multitenancy_global?(resource)


      
       
       View Source
     


  


  

      Specs

      

          multitenancy_global?(Ash.Resource.t()) :: atom() | nil


      



  



  
    
      
      Link to this function
    
    multitenancy_parse_attribute(resource)


      
       
       View Source
     


  


  

      Specs

      

          multitenancy_parse_attribute(Ash.Resource.t()) :: {atom(), atom(), [any()]}


      



  



  
    
      
      Link to this function
    
    multitenancy_source(resource)


      
       
       View Source
     


  


  

      Specs

      

          multitenancy_source(Ash.Resource.t()) :: atom() | nil


      



  



  
    
      
      Link to this function
    
    multitenancy_strategy(resource)


      
       
       View Source
     


  


  

      Specs

      

          multitenancy_strategy(Ash.Resource.t()) :: :context | :attribute | nil


      


Get the multitenancy strategy for a resource

  



  
    
      
      Link to this function
    
    multitenancy_template(resource)


      
       
       View Source
     


  


  

      Specs

      

          multitenancy_template(Ash.Resource.t()) :: atom() | nil


      



  



  
    
      
      Link to this function
    
    notifiers(resource)


      
       
       View Source
     


  


  

      Specs

      

          notifiers(Ash.Resource.t()) :: [module()]


      


A list of notifiers to be used when accessing

  



  
    
      
      Link to this function
    
    primary_action(resource, type)


      
       
       View Source
     


  


  

      Specs

      

          primary_action(Ash.Resource.t(), Ash.Resource.Actions.action_type()) ::
  Ash.Resource.Actions.action() | nil


      


Returns the primary action of a given type

  



  
    
      
      Link to this function
    
    primary_action!(resource, type)


      
       
       View Source
     


  


  

      Specs

      

          primary_action!(Ash.Resource.t(), Ash.Resource.Actions.action_type()) ::
  Ash.Resource.Actions.action() | no_return()


      


Returns the primary action of the given type

  



  
    
      
      Link to this function
    
    primary_key(resource)


      
       
       View Source
     


  


  

      Specs

      

          primary_key(Ash.Resource.t()) :: [atom()]


      


A list of field names corresponding to the primary key

  



  
    
      
      Link to this function
    
    public_aggregate(resource, name)


      
       
       View Source
     


  


  

      Specs

      

          public_aggregate(Ash.Resource.t(), atom() | String.t()) ::
  Ash.Resource.Aggregate.t() | nil


      


Get an aggregate by name

  



  
    
      
      Link to this function
    
    public_aggregates(resource)


      
       
       View Source
     


  


  

      Specs

      

          public_aggregates(Ash.Resource.t()) :: [Ash.Resource.Aggregate.t()]


      


Returns all public aggregates of a resource

  



  
    
      
      Link to this function
    
    public_attribute(resource, name)


      
       
       View Source
     


  


  

      Specs

      

          public_attribute(Ash.Resource.t(), String.t() | atom()) ::
  Ash.Resource.Attribute.t() | nil


      


Get a public attribute name from the resource

  



  
    
      
      Link to this function
    
    public_attributes(resource)


      
       
       View Source
     


  


  

      Specs

      

          public_attributes(Ash.Resource.t()) :: [Ash.Resource.Attribute.t()]


      


Returns all public attributes of a resource

  



  
    
      
      Link to this function
    
    public_calculation(resource, name)


      
       
       View Source
     


  


  

      Specs

      

          public_calculation(Ash.Resource.t(), atom() | String.t()) ::
  Ash.Resource.Calculation.t() | nil


      


Get a public calculation by name

  



  
    
      
      Link to this function
    
    public_calculations(resource)


      
       
       View Source
     


  


  

      Specs

      

          public_calculations(Ash.Resource.t()) :: [Ash.Resource.Calculation.t()]


      


Returns all public calculations of a resource

  



  
    
      
      Link to this function
    
    public_field(resource, name)


      
       
       View Source
     


  


  

      Specs

      

          public_field(Ash.Resource.t(), String.t() | atom()) ::
  Ash.Resource.Attribute.t()
  | Ash.Resource.Aggregate.t()
  | Ash.Resource.Calculation.t()
  | Ash.Resource.Relationships.relationship()
  | nil


      


Get a public field from a resource by name

  



  
    
      
      Link to this function
    
    public_relationship(resource, relationship_name)


      
       
       View Source
     


  


  

Get a public relationship by name or path

  



  
    
      
      Link to this function
    
    public_relationships(resource)


      
       
       View Source
     


  


  

      Specs

      

          public_relationships(Ash.Resource.t()) :: [
  Ash.Resource.Relationships.relationship()
]


      


Returns all public relationships of a resource

  



  
    
      
      Link to this function
    
    put_metadata(record, key, term)


      
       
       View Source
     


  


  

      Specs

      

          put_metadata(Ash.Resource.record(), atom(), term()) :: Ash.Resource.record()


      



  



  
    
      
      Link to this function
    
    related(resource, relationship)


      
       
       View Source
     


  


  

      Specs

      

          related(Ash.Resource.t(), atom() | String.t() | [atom() | String.t()]) ::
  Ash.Resource.t() | nil


      



  



  
    
      
      Link to this function
    
    relationship(resource, relationship_name)


      
       
       View Source
     


  


  

      Specs

      

          relationship(Ash.Resource.t(), atom() | String.t() | [atom() | String.t()]) ::
  Ash.Resource.Relationships.relationship() | nil


      


Get a relationship by name or path

  



  
    
      
      Link to this function
    
    relationships(resource)


      
       
       View Source
     


  


  

      Specs

      

          relationships(Ash.Resource.t()) :: [Ash.Resource.Relationships.relationship()]


      


Returns all relationships of a resource

  



  
    
      
      Link to this function
    
    resource?(module)


      
       
       View Source
     


  


  

      Specs

      

          resource?(module()) :: boolean()


      


Whether or not a given module is a resource module

  



    

  
    
      
      Link to this function
    
    reverse_relationship(resource, path, acc \\ [])


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    selected?(record, field)


      
       
       View Source
     


  


  

      Specs

      

          selected?(Ash.Resource.record(), atom()) :: boolean()


      



  



  
    
      
      Link to this function
    
    set_metadata(record, map)


      
       
       View Source
     


  


  

      Specs

      

          set_metadata(Ash.Resource.record(), map()) :: Ash.Resource.record()


      



  



    

  
    
      
      Link to this function
    
    sortable?(resource, name, opts \\ [])


      
       
       View Source
     


  


  

      Specs

      

          sortable?(Ash.Resource.t(), String.t() | atom(),
  pagination_type: Ash.Page.type(),
  include_private?: boolean()
) :: boolean()


      


Determine if a field is sortable by name

  



  
    
      
      Link to this function
    
    validations(resource)


      
       
       View Source
     


  


  

      Specs

      

          validations(Ash.Resource.t()) :: [Ash.Resource.Validation.t()]


      


A list of all validations for the resource

  



  
    
      
      Link to this function
    
    validations(resource, type)


      
       
       View Source
     


  


  

      Specs

      

          validations(Ash.Resource.t(), :create | :update | :destroy) :: [
  Ash.Resource.Validation.t()
]


      



  


        

      



  

    
Ash.Resource.Interface
    



      
Represents a function in a resource's code interface

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


  
    
      Functions
    


  
    interface_options(action_type)

  





  
    schema()

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Resource.Interface{
  action: term(),
  args: term(),
  get?: term(),
  name: term()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    interface_options(action_type)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    schema()


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Resource.Preparation behaviour
    



      
The behaviour for an action-specific query preparation.
To implement one, simply implement the behaviour. init/1 is defined automatically
by use Ash.Resource.Preparation, but can be implemented if you want to validate/transform any
options passed to the module.
The main function is prepare/3. It takes the changeset, any options that were provided
when this change was configured on a resource, and the context, which currently only has
the actor.
To access any query arguments from within a preparation, make sure you are using Ash.Query.get_argument/2
as the argument keys may be strings or atoms.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    context()

  





  


  
    
      Callbacks
    


  
    init(arg1)

  





  
    prepare(query, arg2, context)

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    context()


      
       
       View Source
     


  


  

      Specs

      

          context() :: %{actor: Ash.Resource.record()} | %{}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Callbacks
        

        


  
    
      
      Link to this callback
    
    init(arg1)


      
       
       View Source
     


  


  

      Specs

      

          init(Keyword.t()) :: {:ok, Keyword.t()} | {:error, term()}


      



  



  
    
      
      Link to this callback
    
    prepare(query, arg2, context)


      
       
       View Source
     


  


  

      Specs

      

          prepare(query, Keyword.t(), context()) :: query when query: struct()


      



  


        

      



  

    
Ash.Resource.Preparation.Builtins
    



      
Builtin query preparations

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    build(options)

  


    Passes the given keyword list to Ash.Query.build/2 with the query being prepared.






  
    set_context(context)

  


    Merges the given query context. If an MFA is provided, it will be called with the query.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    build(options)


      
       
       View Source
     


  


  

      Specs

      

          build(Keyword.t()) :: {atom(), Keyword.t()}


      


Passes the given keyword list to Ash.Query.build/2 with the query being prepared.
This allows declaring simple query modifications in-line. For more complicated query modifications,
use a custom preparation.
For example:
read :top_ten_songs do
  prepare build(sort: [song_rank: :desc], limit: 10)
end

  



  
    
      
      Link to this function
    
    set_context(context)


      
       
       View Source
     


  


  

      Specs

      

          set_context(map() | (Ash.Query.t() -> mfa())) :: {atom(), Keyword.t()}


      


Merges the given query context. If an MFA is provided, it will be called with the query.
The MFA should return {:ok, context_to_be_merged} or {:error, term}

  


        

      



  

    
Ash.Resource.Relationships
    



      
Types Ash relationships

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    cardinality()

  





  
    relationship()

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    cardinality()


      
       
       View Source
     


  


  

      Specs

      

          cardinality() :: :many | :one


      



  



  
    
      
      Link to this type
    
    relationship()


      
       
       View Source
     


  


  

      Specs

      

          relationship() ::
  Ash.Resource.Relationships.HasOne.t()
  | Ash.Resource.Relationships.BelongsTo.t()
  | Ash.Resource.Relationships.HasMany.t()
  | Ash.Resource.Relationships.ManyToMany.t()


      



  


        

      



  

    
Ash.Resource.Relationships.BelongsTo
    



      
Represents a belongs_to relationship on a resource

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Resource.Relationships.BelongsTo{
  cardinality: :one,
  context: term(),
  define_field?: boolean(),
  description: String.t(),
  destination: Ash.Resource.t(),
  destination_field: atom(),
  field_type: term(),
  filter: Ash.Filter.t(),
  name: atom(),
  not_found_message: term(),
  primary_key?: boolean(),
  private?: boolean(),
  read_action: atom(),
  required?: boolean(),
  sort: term(),
  source: Ash.Resource.t(),
  source_field: atom() | nil,
  type: :belongs_to,
  validate_destination_field?: term(),
  violation_message: term(),
  writable?: boolean()
}


      



  


        

      



  

    
Ash.Resource.Relationships.HasMany
    



      
Represents a has_many relationship on a resource

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Resource.Relationships.HasMany{
  cardinality: :many,
  context: term(),
  description: String.t(),
  destination: Ash.Resource.t(),
  destination_field: atom(),
  filter: Ash.Filter.t(),
  name: atom(),
  not_found_message: term(),
  private?: boolean(),
  read_action: atom(),
  sort: term(),
  source: Ash.Resource.t(),
  source_field: atom(),
  type: :has_many,
  validate_destination_field?: term(),
  violation_message: term(),
  writable?: boolean()
}


      



  


        

      



  

    
Ash.Resource.Relationships.HasOne
    



      
Represents a has_one relationship on a resource

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Resource.Relationships.HasOne{
  allow_orphans?: boolean(),
  cardinality: :one,
  context: term(),
  description: String.t(),
  destination: Ash.Resource.t(),
  destination_field: atom(),
  filter: Ash.Filter.t(),
  name: atom(),
  not_found_message: term(),
  private?: boolean(),
  read_action: atom(),
  required?: term(),
  sort: term(),
  source: Ash.Resource.t(),
  source_field: atom(),
  type: :has_one,
  validate_destination_field?: term(),
  violation_message: term(),
  writable?: boolean()
}


      



  


        

      



  

    
Ash.Resource.Relationships.ManyToMany
    



      
Represents a many_to_many relationship on a resource

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


  
    
      Functions
    


  
    transform(relationship)

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Resource.Relationships.ManyToMany{
  cardinality: :many,
  context: term(),
  description: String.t(),
  destination: Ash.Resource.t(),
  destination_field: atom(),
  destination_field_on_join_table: atom(),
  filter: Ash.Filter.t(),
  join_attributes: [atom()],
  join_relationship: atom(),
  name: atom(),
  not_found_message: term(),
  private?: boolean(),
  read_action: atom(),
  sort: term(),
  source: Ash.Resource.t(),
  source_field: atom(),
  source_field_on_join_table: atom(),
  through: Ash.Resource.t(),
  type: :many_to_many,
  validate_destination_field?: term(),
  violation_message: term(),
  writable?: boolean()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    transform(relationship)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Api.ResourceReference
    



      
Represents a resource in an API

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Api.ResourceReference{
  as: term(),
  resource: term(),
  warn_on_compile_failure?: term()
}


      



  


        

      



  

    
Ash.Engine
    



      
The Ash engine handles the parallelization/running of requests to Ash.
Much of the complexity of this doesn't come into play for simple requests.
The way it works is that it accepts a list of Ash.Engine.Request structs.
Some of values on those structs will be instances of Ash.Engine.Request.UnresolvedField.
These unresolved fields can express a dependence on the field values from other requests.
This allows the engine to wait on executing some code until it has its required inputs,
or if all of its dependencies are met, it can execute it immediately. The engine's job is
to resolve its unresolved fields in the proper order, potentially in parallel.
It also has knowledge baked in about certain special fields, like data which is the
field we are ultimately trying to resolve, and query which is the field that drives authorization
for read requests. Authorization is done on a per engine request basis.
As the complexity of a system grows, it becomes very difficult to write code that
is both imperative and performant. This is especially true of a framework that is
designed to be configurable. What exactly is done, as well as the order it is done in,
and wether or not is can be parallelized, varies wildly based on factors like how
the resources are configured and what capabilities the datalayer has. By implementing
a generic "parallel engine", we can let the engine solve for the optimization. We simply
have to express the various operations that must happen, and what other pieces of data
they need in order to happen, and the engine handles the rest.
Eventually, this module may (potentially) be used more explicitly, as a way to construct
"sagas" or "multis" which represent a series of resource actions with linked up inputs.
If each of those resource actions can be broken into its component requests, and the full
set of requests can be processed, we can compose large series' of resource actions without
having to figure out the most optimal way to do it. They will be done as fast as possible.
But we have a long way to go before we get there.
Check out the docs for Ash.Engine.Request for some more information. This is a private
interface at the moment, though, so this documentation is just here to explain how it works
it is not intended to give you enough information to use the engine directly.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    child_spec(init_arg)

  


    Returns a specification to start this module under a supervisor.






  
    fetch_nested_value(state, key)

  





  
    handle_continue(atom, state)

  


    Callback implementation for GenServer.handle_continue/2.






  
    init(opts)

  


    Callback implementation for GenServer.init/1.






  
    put_nested_key(state, key, value)

  





  
    run(request, api, opts \\ [])

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    child_spec(init_arg)


      
       
       View Source
     


  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
      Link to this function
    
    fetch_nested_value(state, key)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    handle_continue(atom, state)


      
       
       View Source
     


  


  

Callback implementation for GenServer.handle_continue/2.

  



  
    
      
      Link to this function
    
    init(opts)


      
       
       View Source
     


  


  

Callback implementation for GenServer.init/1.

  



  
    
      
      Link to this function
    
    put_nested_key(state, key, value)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    run(request, api, opts \\ [])


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Engine.Request
    



      
Represents an individual request to be processed by the engine.
See new/1 for more information

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


  
    
      Functions
    


  
    add_initial_authorizer_state(request)

  





  
    do_next(request)

  





  
    new(opts)

  


    Creates a new request.






  
    next(request)

  





  
    put_dependency_data(request, dep, value)

  





  
    receive_field(request, path, field, value)

  





  
    resolve(dependencies \\ [], func)

  


    Create an unresolved field.






  
    resource_notification(request)

  





  
    send_field(request, receiver_path, field)

  





  
    store_dependency(request, receiver_path, field, internal? \\ false)

  





  
    validate_requests!(requests)

  





  
    wont_receive(request, path, field)

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Engine.Request{
  action: term(),
  action_type: term(),
  actor: term(),
  api: term(),
  async?: term(),
  authorization_filter: term(),
  authorize?: term(),
  authorized?: term(),
  authorizer_state: term(),
  changeset: term(),
  data: term(),
  data_layer_query: term(),
  dependencies_requested: term(),
  dependencies_to_send: term(),
  dependency_data: term(),
  engine_pid: term(),
  error?: term(),
  id: term(),
  manage_changeset?: term(),
  name: term(),
  notify?: term(),
  path: term(),
  query: term(),
  resource: term(),
  state: term(),
  strict_check_only?: term(),
  verbose?: term(),
  write_to_data?: term()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    add_initial_authorizer_state(request)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    do_next(request)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  

Creates a new request.
The field values may be explicit values, or they may be
instances of UnresolvedField.
When other requests depend on a value from this request, they will
not be sent unless this request has completed its authorization (or this
request has been configured not to do authorization). This allows requests
to depend on eachother without those requests happening just before a request
fails with a forbidden error. These fields are data, query, changeset
and authorized?.
A field may not be resolved  if the data of a request has been resolved and
no other requests depend on that field.
Options:
	query - The query to be used to fetch data. Used to authorize reads.
	data - The ultimate goal of a request is to compute the data
	resource - The primary resource of the request. Used for openeing transactions on creates/updates/destroys
	changeset - Any changes to be made to the resource. Used to authorize writes.
	path - The path of the request. This serves as a unique id, and is the way that other requests can refer to this one
	action_type - The action_type of the request
	action - The action being performed on the data
	async? - Whether or not the request can be asynchronous, defaults to true.
	api - The api module being called
	name - A human readable name for the request, used when logging/in errors
	strict_check_only? - If true, authorization will not be allowed to proceed to a runtime check (so it cannot run db queries unless authorization is assured)
	actor - The actor performing the action, used for authorization
	authorize? - Wether or not to perform authorization (defaults to true)
	verbose? - print informational logs (warning, this will be a whole lot of logs)
	write_to_data? - If set to false, this value is not returned from the initial call to the engine


  



  
    
      
      Link to this function
    
    next(request)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    put_dependency_data(request, dep, value)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    receive_field(request, path, field, value)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    resolve(dependencies \\ [], func)


      
       
       View Source
     


  


  

Create an unresolved field.
Can have dependencies, which is a list of atoms. All elements
before the last comprise the path of a request that is also
being processed, like [:data], and the last element is the
key of that request that is required. Make sure to pass a
list of lists of atoms. The second argument is a map, which
contains all the values you requested, at the same path
that they were requested.
For example:
resolve([[:data, :query], [:data, :data]], fn %{data: %{query: query, data: data}} ->
  data # This is the data field of the [:data] request
  query # This is the query field of the [:data] request

  {:ok, result}
  # or
  {:error, error}
  # or
  result
end)

  



  
    
      
      Link to this function
    
    resource_notification(request)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    send_field(request, receiver_path, field)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    store_dependency(request, receiver_path, field, internal? \\ false)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    validate_requests!(requests)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    wont_receive(request, path, field)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Engine.Request.UnresolvedField
    



      
Represents an unresolved field to be resolved by the engine

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


  
    
      Functions
    


  
    new(dependencies, func)

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Engine.Request.UnresolvedField{
  data?: term(),
  deps: term(),
  resolver: term()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    new(dependencies, func)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Error
    



      
Tools and utilities used by Ash to manage and conform errors

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    error_class()

  





  
    t()

  





  


  
    
      Functions
    


  
    ash_error?(value)

  





  
    choose_error(errors, changeset_or_query \\ nil)

  





  
    clear_stacktraces(error)

  





  
    error_descriptions(errors)

  





  
    error_messages(errors, custom_message, stacktraces?)

  





  
    flatten_preserving_keywords(list)

  


    A utility to flatten a list, but preserve keyword list elements






  
    to_ash_error(list, stacktrace \\ nil)

  





  
    to_error_class(values, opts \\ [])

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    error_class()


      
       
       View Source
     


  


  

      Specs

      

          error_class() :: :invalid | :authorization | :framework | :unknown


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: struct()


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    ash_error?(value)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    choose_error(errors, changeset_or_query \\ nil)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    clear_stacktraces(error)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    error_descriptions(errors)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    error_messages(errors, custom_message, stacktraces?)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    flatten_preserving_keywords(list)


      
       
       View Source
     


  


  

A utility to flatten a list, but preserve keyword list elements

  



    

  
    
      
      Link to this function
    
    to_ash_error(list, stacktrace \\ nil)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    to_error_class(values, opts \\ [])


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Error.Exception
    



      
Tooling for creating an Ash exception

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    def_ash_error(fields, opts \\ [])

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


    

  
    
      
      Link to this macro
    
    def_ash_error(fields, opts \\ [])


      
       
       View Source
     


      (macro)

  


  


  


        

      



  

    
Ash.Error.Stacktrace
    



      
A placeholder for a stacktrace so that we can avoid printing it everywhere

      





  

    
Ash.Changeset.ManagedRelationshipHelpers
    



      
Tools for introspecting managed relationships.
Extensions can use this to look at an argument that will be passed
to a manage_relationship change and determine what their behavior
should be. For example, AshAdmin uses these to find out what kind of
nested form it should offer for each argument that manages a relationship.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    could_create?(opts)

  





  
    could_handle_missing?(opts)

  





  
    could_lookup?(opts)

  





  
    could_update?(opts)

  





  
    must_load?(opts)

  





  
    on_lookup_read_action(opts, relationship)

  





  
    on_lookup_update_action(opts, relationship)

  





  
    on_match_destination_actions(opts, relationship)

  





  
    on_missing_destination_actions(opts, relationship)

  





  
    on_no_match_destination_actions(opts, relationship)

  





  
    sanitize_opts(relationship, opts)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    could_create?(opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    could_handle_missing?(opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    could_lookup?(opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    could_update?(opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    must_load?(opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    on_lookup_read_action(opts, relationship)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    on_lookup_update_action(opts, relationship)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    on_match_destination_actions(opts, relationship)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    on_missing_destination_actions(opts, relationship)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    on_no_match_destination_actions(opts, relationship)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    sanitize_opts(relationship, opts)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.NotLoaded
    



      
Used when an aggregate or relationship hasn't been loaded.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.NotLoaded{
  field: atom(),
  type: :relationship | :calculation | :aggregate
}


      



  


        

      



  

    
Ash.OptionsHelpers
    



      
Helpers for working with nimble options

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    schema()

  





  


  
    
      Functions
    


  
    append_doc!(options, field, to_append)

  





  
    default(value)

  





  
    docs(schema)

  





  
    list_of_atoms(value)

  





  
    make_optional!(options, field)

  





  
    make_required!(options, field)

  





  
    map(value)

  





  
    merge_schemas(left, right, section \\ nil)

  





  
    module_and_opts(module)

  





  
    set_default!(options, field, value)

  





  
    set_type!(options, field, type)

  





  
    validate(opts, schema)

  





  
    validate!(opts, schema)

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    schema()


      
       
       View Source
     


  


  

      Specs

      

          schema() :: NimbleOptions.schema()


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    append_doc!(options, field, to_append)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    default(value)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    docs(schema)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    list_of_atoms(value)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    make_optional!(options, field)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    make_required!(options, field)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    map(value)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    merge_schemas(left, right, section \\ nil)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    module_and_opts(module)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    set_default!(options, field, value)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    set_type!(options, field, type)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    validate(opts, schema)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    validate!(opts, schema)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.Aggregate
    



      
Represents an aggregated association value

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    kind()

  





  
    t()

  





  


  
    
      Functions
    


  
    default_value(atom)

  





  
    new(resource, name, kind, relationship, query, field)

  





  
    requests(initial_query, can_be_in_query?, authorizing?, calculations_in_query)

  





  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    kind()


      
       
       View Source
     


  


  

      Specs

      

          kind() :: :list | :sum | :first | :count


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Ash.Query.Aggregate{
  authorization_filter: term(),
  default_value: term(),
  field: term(),
  kind: term(),
  load: term(),
  name: term(),
  query: term(),
  relationship_path: term(),
  resource: term(),
  type: term()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    default_value(atom)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    new(resource, name, kind, relationship, query, field)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    requests(initial_query, can_be_in_query?, authorizing?, calculations_in_query)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.Query.Type
    



      
Type casting logic to be used with operator/function inputs

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    try_cast(list, type)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    try_cast(list, type)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.SatSolver
    



      
Tools for working with the satsolver that drives filter subset checking (for authorization)

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    b(statement)

  





  
    balance(other)

  





  
    find_non_equal_overlap(expression)

  





  
    fully_simplify(expression)

  





  
    left_excludes_right(left, right)

  





  
    left_implies_right(left, right)

  





  
    lift_equals_out_of_in(expression)

  





  
    mutually_exclusive(predicates, acc \\ [])

  





  
    mutually_inclusive(predicates, acc \\ [])

  





  
    overlap?(arg1, arg2)

  





  
    right_excludes_left(left, right)

  





  
    right_implies_left(left, right)

  





  
    solve_expression(expression)

  





  
    split_in_expressions(sub_expr, non_equal_overlap)

  





  
    strict_filter_subset(filter, candidate)

  





  
    synonymous_relationship_paths?(left_resource, candidate, search, right_resource \\ nil)

  





  
    transform_and_solve(resource, expression)

  





  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this macro
    
    b(statement)


      
       
       View Source
     


      (macro)

  


  


  



  
    
      
      Link to this function
    
    balance(other)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    find_non_equal_overlap(expression)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    fully_simplify(expression)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    left_excludes_right(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    left_implies_right(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    lift_equals_out_of_in(expression)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    mutually_exclusive(predicates, acc \\ [])


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    mutually_inclusive(predicates, acc \\ [])


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    overlap?(arg1, arg2)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    right_excludes_left(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    right_implies_left(left, right)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    solve_expression(expression)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    split_in_expressions(sub_expr, non_equal_overlap)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    strict_filter_subset(filter, candidate)


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    synonymous_relationship_paths?(left_resource, candidate, search, right_resource \\ nil)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    transform_and_solve(resource, expression)


      
       
       View Source
     


  


  


  


        

      



  

    
Ash.UUID
    



      
Helpers for working with UUIDs

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    generate()

  


    Generates a new uuid






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    generate()


      
       
       View Source
     


  


  

Generates a new uuid

  


        

      



  

    
Comparable.Type.Ash.CiString.To.Ash.CiString
    







  

    
Comparable.Type.Ash.CiString.To.BitString
    







  

    
Comparable.Type.BitString.To.Ash.CiString
    







  

    
Ash.Error.Changes.InvalidArgument exception
    



      
Used when an invalid value is provided for an action argument

      





  

    
Ash.Error.Changes.InvalidAttribute exception
    



      
Used when an invalid value is provided for an attribute change

      





  

    
Ash.Error.Changes.InvalidChanges exception
    



      
Used when a change is provided that covers multiple attributes/relationships

      





  

    
Ash.Error.Changes.InvalidRelationship exception
    



      
Used when an invalid value is provided for a relationship change

      





  

    
Ash.Error.Changes.NoSuchAttribute exception
    



      
Used when a change is provided for an attribute that does not exist

      





  

    
Ash.Error.Changes.NoSuchRelationship exception
    



      
Used when a change is provided for an relationship that does not exist

      





  

    
Ash.Error.Changes.Required exception
    



      
Used when an attrbute or relationship is required

      





  

    
Ash.Error.Changes.UnknownError exception
    



      
Used when a change fails for an unknown reason

      





  

    
Ash.Error.Dsl.DslError exception
    



      
Used when a DSL is incorrectly configured.

      





  

    
Ash.Error.Forbidden exception
    



      
Used when authorization for an action fails

      





  

    
Ash.Error.Forbidden.MustPassStrictCheck exception
    



      
Used when unreachable code/conditions are reached in the framework

      





  

    
Ash.Error.Framework exception
    



      
Used when an unknown/generic framework error occurs

      





  

    
Ash.Error.Framework.AssumptionFailed exception
    



      
Used when unreachable code/conditions are reached in the framework

      





  

    
Ash.Error.Framework.SynchronousEngineStuck exception
    



      
Used when the sycnrhonous engine cannot proceed

      





  

    
Ash.Error.Invalid exception
    



      
The top level invalid error

      





  

    
Ash.Error.Invalid.DuplicatedPath exception
    



      
Used when multiple requests with the same path are passed to the internal engine

      





  

    
Ash.Error.Invalid.ImpossiblePath exception
    



      
Used when a request expresses a dependency on another request that doesn't exist

      





  

    
Ash.Error.Invalid.InvalidPrimaryKey exception
    



      
Used when an invalid primary key is given to an Api's get

      





  

    
Ash.Error.Invalid.LimitRequired exception
    



      
Used when no limit is provided, pagination is required, and no default page size is configured

      





  

    
Ash.Error.Invalid.MultipleResults exception
    



      
Used when multiple requests with the same path are passed to the internal engine

      





  

    
Ash.Error.Invalid.NoPrimaryAction exception
    



      
Used when an action name is provided that doesn't exist

      





  

    
Ash.Error.Invalid.NoSuchAction exception
    



      
Used when an action name is provided that doesn't exist

      





  

    
Ash.Error.Invalid.NoSuchResource exception
    



      
Used when a resource or alias is provided that doesn't exist

      





  

    
Ash.Error.Invalid.PaginationRequired exception
    



      
Used when page: false is provided but pagination is required

      





  

    
Ash.Error.Load.InvalidQuery exception
    



      
Used when an invalid query is provided in a load

      





  

    
Ash.Error.Load.NoSuchRelationship exception
    



      
Used when attempting to load a relationship that does not exist

      





  

    
Ash.Error.Query.AggregatesNotSupported exception
    



      
Used when the data_layer does not support aggregates, or filtering/sorting them

      





  

    
Ash.Error.Query.CalculationsNotSupported exception
    



      
Used when the data_layer does not support calculations, or filtering/sorting them

      





  

    
Ash.Error.Query.InvalidArgument exception
    



      
Used when an invalid value is provided for an action argument

      





  

    
Ash.Error.Query.InvalidExpression exception
    



      
Used when an invalid expression is used in a filter

      





  

    
Ash.Error.Query.InvalidFilterValue exception
    



      
Used when an invalid value is provided for a filter

      





  

    
Ash.Error.Query.InvalidLimit exception
    



      
Used when an invalid limit is provided

      





  

    
Ash.Error.Query.InvalidLoad exception
    



      
Used when an invalid load is provided

      





  

    
Ash.Error.Query.InvalidOffset exception
    



      
Used when an invalid offset is provided

      





  

    
Ash.Error.Query.InvalidQuery exception
    



      
A generic error that can be used to add an error to a query for a specific field

      





  

    
Ash.Error.Query.InvalidSortOrder exception
    



      
Used when an invalid sort order is provided

      





  

    
Ash.Error.Query.NoComplexSortsWithKeysetPagination exception
    



      
Due to the filter-based implementation of keyset pagination, it cannot be used with sorts on calculations.
We could solve this problem by making the keyset only be the primary key of the record,
and then fetching that value loading the calculations/aggregates that we need. If we do this
we should either: 1.) make it a new pagination mode or 2.) add an option like mode: :strict | :fetch
to pagination options.
Let me know if you're reading this and want to help implment it.

      





  

    
Ash.Error.Query.NoReadAction exception
    



      
Used when a resource would be read but has no read action

      





  

    
Ash.Error.Query.NoSuchAttribute exception
    



      
Used when an attribute that doesn't exist is used in a query

      





  

    
Ash.Error.Query.NoSuchAttributeOrRelationship exception
    



      
Used when a key in a filter contains something that is neither an attribute or a relationship

      





  

    
Ash.Error.Query.NoSuchFilterPredicate exception
    



      
Used when a filter predicate that does not exist is referenced

      





  

    
Ash.Error.Query.NoSuchFunction exception
    



      
Used when an function that doesn't exist is used in a query

      





  

    
Ash.Error.Query.NoSuchOperator exception
    



      
Used when an operator that doesn't exist is used in a query

      





  

    
Ash.Error.Query.NoSuchRelationship exception
    



      
Used when an relationship that doesn't exist is used in a query

      





  

    
Ash.Error.Query.NotFound exception
    



      
Used when an entity that not exist is referenced

      





  

    
Ash.Error.Query.ReadActionRequired exception
    



      
Used when a relationship is filtered and the destination does not have a default read action

      





  

    
Ash.Error.Query.ReadActionRequiresActor exception
    



      
Used when an actor is referenced in a filter template, but no actor exists

      





  

    
Ash.Error.Query.Required exception
    



      
Used when a filter or argument is required in a query

      





  

    
Ash.Error.Query.UnsortableAttribute exception
    



      
Used when attempting to sort on a field that cannot be used for sorting

      





  

    
Ash.Error.Query.UnsupportedPredicate exception
    



      
Used when the data_layer does not support a provided predicate

      





  

    
Ash.Error.Unknown exception
    



      
The top level unknown error container

      





  

    
Ash.Error.Changes.InvalidArgument exception
    



      
Used when an invalid value is provided for an action argument

      





  

    
Ash.Error.Changes.InvalidAttribute exception
    



      
Used when an invalid value is provided for an attribute change

      





  

    
Ash.Error.Changes.InvalidChanges exception
    



      
Used when a change is provided that covers multiple attributes/relationships

      





  

    
Ash.Error.Changes.InvalidRelationship exception
    



      
Used when an invalid value is provided for a relationship change

      





  

    
Ash.Error.Changes.NoSuchAttribute exception
    



      
Used when a change is provided for an attribute that does not exist

      





  

    
Ash.Error.Changes.NoSuchRelationship exception
    



      
Used when a change is provided for an relationship that does not exist

      





  

    
Ash.Error.Changes.Required exception
    



      
Used when an attrbute or relationship is required

      





  

    
Ash.Error.Changes.UnknownError exception
    



      
Used when a change fails for an unknown reason

      





  

    
Ash.Error.Dsl.DslError exception
    



      
Used when a DSL is incorrectly configured.

      





  

    
Ash.Error.Forbidden exception
    



      
Used when authorization for an action fails

      





  

    
Ash.Error.Forbidden.MustPassStrictCheck exception
    



      
Used when unreachable code/conditions are reached in the framework

      





  

    
Ash.Error.Framework exception
    



      
Used when an unknown/generic framework error occurs

      





  

    
Ash.Error.Framework.AssumptionFailed exception
    



      
Used when unreachable code/conditions are reached in the framework

      





  

    
Ash.Error.Framework.SynchronousEngineStuck exception
    



      
Used when the sycnrhonous engine cannot proceed

      





  

    
Ash.Error.Invalid exception
    



      
The top level invalid error

      





  

    
Ash.Error.Invalid.DuplicatedPath exception
    



      
Used when multiple requests with the same path are passed to the internal engine

      





  

    
Ash.Error.Invalid.ImpossiblePath exception
    



      
Used when a request expresses a dependency on another request that doesn't exist

      





  

    
Ash.Error.Invalid.InvalidPrimaryKey exception
    



      
Used when an invalid primary key is given to an Api's get

      





  

    
Ash.Error.Invalid.LimitRequired exception
    



      
Used when no limit is provided, pagination is required, and no default page size is configured

      





  

    
Ash.Error.Invalid.MultipleResults exception
    



      
Used when multiple requests with the same path are passed to the internal engine

      





  

    
Ash.Error.Invalid.NoPrimaryAction exception
    



      
Used when an action name is provided that doesn't exist

      





  

    
Ash.Error.Invalid.NoSuchAction exception
    



      
Used when an action name is provided that doesn't exist

      





  

    
Ash.Error.Invalid.NoSuchResource exception
    



      
Used when a resource or alias is provided that doesn't exist

      





  

    
Ash.Error.Invalid.PaginationRequired exception
    



      
Used when page: false is provided but pagination is required

      





  

    
Ash.Error.Load.InvalidQuery exception
    



      
Used when an invalid query is provided in a load

      





  

    
Ash.Error.Load.NoSuchRelationship exception
    



      
Used when attempting to load a relationship that does not exist

      





  

    
Ash.Error.Query.AggregatesNotSupported exception
    



      
Used when the data_layer does not support aggregates, or filtering/sorting them

      





  

    
Ash.Error.Query.CalculationsNotSupported exception
    



      
Used when the data_layer does not support calculations, or filtering/sorting them

      





  

    
Ash.Error.Query.InvalidArgument exception
    



      
Used when an invalid value is provided for an action argument

      





  

    
Ash.Error.Query.InvalidExpression exception
    



      
Used when an invalid expression is used in a filter

      





  

    
Ash.Error.Query.InvalidFilterValue exception
    



      
Used when an invalid value is provided for a filter

      





  

    
Ash.Error.Query.InvalidLimit exception
    



      
Used when an invalid limit is provided

      





  

    
Ash.Error.Query.InvalidLoad exception
    



      
Used when an invalid load is provided

      





  

    
Ash.Error.Query.InvalidOffset exception
    



      
Used when an invalid offset is provided

      





  

    
Ash.Error.Query.InvalidQuery exception
    



      
A generic error that can be used to add an error to a query for a specific field

      





  

    
Ash.Error.Query.InvalidSortOrder exception
    



      
Used when an invalid sort order is provided

      





  

    
Ash.Error.Query.NoComplexSortsWithKeysetPagination exception
    



      
Due to the filter-based implementation of keyset pagination, it cannot be used with sorts on calculations.
We could solve this problem by making the keyset only be the primary key of the record,
and then fetching that value loading the calculations/aggregates that we need. If we do this
we should either: 1.) make it a new pagination mode or 2.) add an option like mode: :strict | :fetch
to pagination options.
Let me know if you're reading this and want to help implment it.

      





  

    
Ash.Error.Query.NoReadAction exception
    



      
Used when a resource would be read but has no read action

      





  

    
Ash.Error.Query.NoSuchAttribute exception
    



      
Used when an attribute that doesn't exist is used in a query

      





  

    
Ash.Error.Query.NoSuchAttributeOrRelationship exception
    



      
Used when a key in a filter contains something that is neither an attribute or a relationship

      





  

    
Ash.Error.Query.NoSuchFilterPredicate exception
    



      
Used when a filter predicate that does not exist is referenced

      





  

    
Ash.Error.Query.NoSuchFunction exception
    



      
Used when an function that doesn't exist is used in a query

      





  

    
Ash.Error.Query.NoSuchOperator exception
    



      
Used when an operator that doesn't exist is used in a query

      





  

    
Ash.Error.Query.NoSuchRelationship exception
    



      
Used when an relationship that doesn't exist is used in a query

      





  

    
Ash.Error.Query.NotFound exception
    



      
Used when an entity that not exist is referenced

      





  

    
Ash.Error.Query.ReadActionRequired exception
    



      
Used when a relationship is filtered and the destination does not have a default read action

      





  

    
Ash.Error.Query.ReadActionRequiresActor exception
    



      
Used when an actor is referenced in a filter template, but no actor exists

      





  

    
Ash.Error.Query.Required exception
    



      
Used when a filter or argument is required in a query

      





  

    
Ash.Error.Query.UnsortableAttribute exception
    



      
Used when attempting to sort on a field that cannot be used for sorting

      





  

    
Ash.Error.Query.UnsupportedPredicate exception
    



      
Used when the data_layer does not support a provided predicate

      





  

    
Ash.Error.Unknown exception
    



      
The top level unknown error container

      





  

    
mix ash.formatter
    



      
Generates a .formatter.exs from a list of extensions, and writes it.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    run(opts)

  


    Callback implementation for Mix.Task.run/1.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    run(opts)


      
       
       View Source
     


  


  

      Specs

      

          run(term()) :: no_return()


      


Callback implementation for Mix.Task.run/1.

  


        

      



  !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&amp;").replace(/</g,"&lt;").replace(/>/g,"&gt;").replace(/"/g,"&quot;")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});



