

 Archeometer

 v0.1.1

 Table of contents

 	Introduction

 	Overview

 	Installation

 	Basic Usage

 	Code Query Language

 	Queries and Schema

 	Modules

 	Archeometer

 	Archeometer.Explore.Coverage

 	Archeometer.Explore.Credo.SaveStatsTask

 	Archeometer.Explore.Project

 	Archeometer.Explore.Static

 	Archeometer.Explore.XRef

 	Archeometer.Reports.Config

 	Archeometer.Reports.Fragment

 	Archeometer.Reports.Fragment.Definition

 	Archeometer.Reports.Page

 	Archeometer.Reports.Page.Definition

 	Archeometer.Reports.PageDefinition.Application

 	Archeometer.Reports.PageDefinition.Project

 	Archeometer.Reports.Render.Html

 	Archeometer.Reports.Section

 	Archeometer.Reports.Section.Definition

 	Archeometer.Analysis.Apps.Xref

 	Archeometer.Analysis.DSM

 	Archeometer.Analysis.Treemap

 	Archeometer.Analysis.Treemap.Rectangle

 	Archeometer.Analysis.Treemap.Rectangle.Area

 	Archeometer.Analysis.Treemap.SVGRender

 	Archeometer.Analysis.Xref

 	Archeometer.Analysis.DSM.ConsoleRender

 	Archeometer.Analysis.DSM.SVGRender

 	Archeometer.Graphs.Graphviz

 	Archeometer.Graphs.Mermaid

 	Archeometer.Query

 	Archeometer.Query.Term

 	Archeometer.Query.Term.Container

 	Archeometer.Schema

 	Archeometer.Schema.Application

 	Archeometer.Schema.Function

 	Archeometer.Schema.Macro

 	Archeometer.Schema.Module

 	Archeometer.Schema.XRef

 	Archeometer.Repo

 	Archeometer.Repo.Result

 	Archeometer.Util.Code

 	Mix Tasks

 	mix arch.apps.xref

 	mix arch.dsm

 	mix arch.explore

 	mix arch.explore.apps

 	mix arch.explore.coverage

 	mix arch.explore.static

 	mix arch.explore.xrefs

 	mix arch.report.html

 	mix arch.treemap

 	mix arch.xref

Overview

Archeometer is a tool to collect as much information about your project as possible, and make it available for you to discover the hidden structure and patterns of your projects. Information like:
	Number of modules, functions and macros per application
	Local dependencies by type: function calls, macro calls, structure calls
	Test coverage per module and function
	Function and macro visibility, length in code lines, cyclomatic complexity

Among other information. This is made available through a generated report in HTML and through an Elixir API for you to build your own diagnostics.
The goal is to give you an insight into how a project is organized and how it could be improved.
To get started visit
	Installation
	Basic Usage

Installation

This is a Mix package, so you must install it using Mix. For the time being, this package is not in Hex. To use it you can specify the Git repository directly in your project mix.exs:
def deps do
 [
 {:archeometer, git: "https://gitlab.bunsan.io/RD/archeometer", only: [:dev, :test], runtime: false},
]
end
Or alternatively, you can clone this repository and add the dependency as a path: "path/to/the/repo" instead.
And the just run
mix deps.get

Basic Usage

Since this is a tool about project discovery, first we have to collectall the data.
Collect the data
Data collection is divided in several phases, depending on the requirements of each phase. To collect all the data simply run
mix arch.explore

This will run all sorts of different analysis and store all the data in a archeometer_<your_project>.db file.
Collection stages
You can also run each phase individually. They are
	arch.explore.static: analysis the AST of the project code. It requires Credo.
	arch.explore.xrefs: collects information about module dependencies. It forces a compilation.
	arch.explore.apps: get information about the applications in the project. It must compile the project.
	arch.explore.coverage: calculate test coverage per module and function. It must run the test suite.

Depending on your project, you can choose to run only the stage you are interested, or to skip some stage that is specially expensive to run.
Creating reports
There are some predefined tasks to give you a brief overview of the project.
	mix arch.dsm: will create a Design Structure Matrix, and will use it to find the cyclic dependencies in the project.
	mix arch.xref : will create a dependency graph in several possible formats.
	mix arch.report.html : Creates a comprehensive report on the project under review.

Further reading
If you want to have a more in depth exploration of your project, don't forget to read the following guides:
+Queries and Schemas: make queries to the data base using Elixir code

Queries and Schema

Archeometer.Query defines an Ecto-like query language to get information out of the generated data base without going out of Elixir.
For example, to get the top 10 biggest modules, you can use the following
import Archeometer.Query
alias Archeometer.Schema.Module

query = from m in Module,
 select: [m.name, m.num_lines]
 order_by: [desc: m.num_lines]

Archeometer.Repo.all(query)
Let's break it down into simpler parts
Schema
You must query an schema. An schema holds the information about the table. It has fields and references to other schemas. In the previous example we used the Archeometer.Schema.Module schema. It looks like this (with some skipped sections for brevity)
defschema(:modules) do
 field(:id, primary_key: true)
 field(:name)
 field(:num_lines)
 ...
 belongs_to(Application, key: :app_id)
 has(Function, as: :functions)
 ...
end
It has the name and num_lines fields, so you can select them. There are references to other schema. They allow you to select fields in other tables. For example the schema at Archeometer.Schema.Application looks like this
defschema :apps do
 field(:id, primary_key: true)
 field(:name)
 has(Module, as: :modules, key: :app_id)
end
And the schema at Archeometer.Schema.Function also has a name field. So you can do the following
import Archeometer.Query
alias Archeometer.Schema.Module

from m in Module, select: m.name, m.application.name, m.functions.name
And this will select all the function names, with module and application. You can read the Archeometer.Schema documentation for more details about how they work. The available schemas are
	Archeometer.Schema.Module
	Archeometer.Schema.Function
	Archeometer.Schema.Macro
	Archeometer.Schema.XRef
	Archeometer.Schema.Application

Term in query expressions
The expression that are accepted in the queries are a subset of the regular Elixir terms. A subset that is translatable to SQL. For example, in the following query
from m in Module, where: m.num_lines > 50, select: [m.name, m.app.name]
we use an arithmetic comparison, some integer literals. m.name is a field lookup, m.app.name is also a field lookup, but with an implicit join with another table holding the application information.
You can find read more about them in Archoemeter.Query and the whole specification is available in Archeometer.Query.Term.
Building queries
Queries are built using the Archoemeter.Query.from/2 macro. The first parameter must be a module implementing a schema. The rest are keyword arguments. Each keyword corresponds to an SQL keyword. They more or less replicate the Ecto API. For example you can do the following
import Archeometer.Query
alias Archeometer.Schema.Module

from m in Module,
 select: [app: m.application.name, avg_size: avg(m.num_lines)]
 where: m.application == "archeometer"
 order_by: [desc: sum(m.num_lines)],
 group_by: m.application.name
 having: avg_size > 50,
 limit: 10
To then get all the data you must execute the query. For now the only way to do it is with the Archeometer.Repo.all/1 function, as in the initial example. You can see its full documentation at Archeometer.Repo.

 Archeometer

Archeometer
Archeometer is a code analysis tool to help diagnose potential problems and
refactoring points, particularly in large code bases.
It does this by collecting as much information about the code as possible and
storing it in a SQLite database for later processing.
For now, some parts are implemented as a Credo Plugin, though this will change in the
future.
Metrics
For now there are three types of metric:
	Static: Information about the code AST
	Compilation: Project/application classification
	Testing: Code coverage
	Cross references: Internal dependencies between modules

 Archeometer.Explore.Coverage

Module for collecting test coverage statistics, using Erlang cover module.
As it's a tool for Erlang code, instead of using its module and function
capabilities, the line coverage is directly used, and then counted per module,
in the same manner the Mix test.coverage task does.

 Anchor for this section

 Summary

 Functions

 calculate_function_coverage()

 calculate_module_coverage()

 cover_compile()

 prepare_code_server()

 Anchor for this section

Functions

 Link to this function

 calculate_function_coverage()

 Link to this function

 calculate_module_coverage()

 Link to this function

 cover_compile()

 Link to this function

 prepare_code_server()

 Archeometer.Explore.Credo.SaveStatsTask

Credo Task to collect and save metrics from an static analysis of an Elixir project..

 Archeometer.Explore.Project

Utilities for obtaining higher level information about a project, mostly
through Mix and Application.

 Anchor for this section

 Summary

 Functions

 apps()

 Obtain the list of local app in the current project. This is the value of
:app in regular projects and all the children apps in umbrella projects.

 get!()

 Get the (underscored) module name of the current projectmix.exs file. Every
directory with one is considered a project by Mix.

 guess_app_from_path(file_path)

 Given a file path, try to guess its application. If the project is not
umbrella, just return the project app. Else try to parse the path to guess the
application.

 local_modules()

 Get all the locally defined modules.

 local_modules_by_app()

 Obtain all the locally defined modules by application.

 umbrella_apps()

 Obtain all the apps defined as umbrella children.

 Anchor for this section

Functions

 Link to this function

 apps()

Obtain the list of local app in the current project. This is the value of
:app in regular projects and all the children apps in umbrella projects.

 Link to this function

 get!()

Get the (underscored) module name of the current projectmix.exs file. Every
directory with one is considered a project by Mix.

 Link to this function

 guess_app_from_path(file_path)

Given a file path, try to guess its application. If the project is not
umbrella, just return the project app. Else try to parse the path to guess the
application.

 Link to this function

 local_modules()

Get all the locally defined modules.

 Link to this function

 local_modules_by_app()

Obtain all the locally defined modules by application.

 Link to this function

 umbrella_apps()

Obtain all the apps defined as umbrella children.

 Archeometer.Explore.Static

Module for analysing AST and collecting some useful information For now the
schemas are hardcoded. There are
	Modules
	Definitions (functions, macros)

Hopefully in the future a more extendible solution will be in place.

 Anchor for this section

 Summary

 Functions

 def_stats_for(source_files, defs)

 module_stats_for(source_files)

 process_def(full_ast, df)

 process_module(full_ast, mod)

 Anchor for this section

Functions

 Link to this function

 def_stats_for(source_files, defs)

 Link to this function

 module_stats_for(source_files)

 Link to this function

 process_def(full_ast, df)

 Link to this function

 process_module(full_ast, mod)

 Archeometer.Explore.XRef

Module for collecting cross references between modules defined in the same
project.

 Anchor for this section

 Summary

 Functions

 compile_xrefs()

 save_event(arg, env)

 trace(arg1, env)

 Anchor for this section

Functions

 Link to this function

 compile_xrefs()

 Link to this function

 save_event(arg, env)

 Link to this function

 trace(arg1, env)

 Archeometer.Reports.Config

Provides functions to access the configuration of reports.

 Anchor for this section

 Summary

 Functions

 report_path(atom)

 static_report_img_path()

 static_report_path()

 Anchor for this section

Functions

 Link to this function

 report_path(atom)

 Link to this function

 static_report_img_path()

 Link to this function

 static_report_path()

 Archeometer.Reports.Fragment

Represents a fragment, which is part of a section in a page.

 Anchor for this section

 Summary

 Functions

 alt_process(fdef, bindings, db_name \\ default_db_name())

 make_custom_env()

 process(fdef, bindings, db_name \\ default_db_name())

 Anchor for this section

Functions

 Link to this function

 alt_process(fdef, bindings, db_name \\ default_db_name())

 Link to this function

 make_custom_env()

 Link to this function

 process(fdef, bindings, db_name \\ default_db_name())

 Archeometer.Reports.Fragment.Definition

Represents the definition of a Fragment.

 Archeometer.Reports.Page

Represents a Page of the report.
Each page is associated with an application.

 Anchor for this section

 Summary

 Functions

 process(pdef, bindings, db_name \\ default_db_name())

 Anchor for this section

Functions

 Link to this function

 process(pdef, bindings, db_name \\ default_db_name())

 Archeometer.Reports.Page.Definition

Represents the definition of a Page.

 Archeometer.Reports.PageDefinition.Application

Defines the structure of the page definition for a single application.

 Anchor for this section

 Summary

 Functions

 definition(app_name)

 Anchor for this section

Functions

 Link to this function

 definition(app_name)

 Archeometer.Reports.PageDefinition.Project

Defines the page structure for a project.

 Anchor for this section

 Summary

 Functions

 definition(name)

 Anchor for this section

Functions

 Link to this function

 definition(name)

 Archeometer.Reports.Render.Html

Renders a page into HTML.

 Anchor for this section

 Summary

 Functions

 render(app_data, page_names)

 Anchor for this section

Functions

 Link to this function

 render(app_data, page_names)

 Archeometer.Reports.Section

Represents a Section, which is part of a Page.

 Anchor for this section

 Summary

 Functions

 process(sdef, bindings, db_name \\ default_db_name())

 Anchor for this section

Functions

 Link to this function

 process(sdef, bindings, db_name \\ default_db_name())

 Archeometer.Reports.Section.Definition

Represents the definition of a Section.

 Archeometer.Analysis.Apps.Xref

Functions for generating a dependency graph from applicatios within an umbrella application.
Accepted output formats are "dot" (graphviz), "png" and "mermaid".

 Anchor for this section

 Summary

 Functions

 gen_graph(format)

 Creates a dependency graph between the applications of the current project.

 Anchor for this section

Functions

 Link to this function

 gen_graph(format)

Creates a dependency graph between the applications of the current project.

 Parameters

	format can be one of "dot" (graphviz), "png", or "mermaid".

 Returns

	The binary representing the graph, if the operation was completed successfully.
	{:error, reason} if not.

 Archeometer.Analysis.DSM

Defines algorithms for Design Structure Matrix (DSM) analysis.
A DSM represents a graph of dependencies between components or processes,
in this case, between Elixir modules.
See DSM Web.
In this implementation, the DSM is represented by the DSM struct,
with the following attributes:
	nodes. A List of of nodes that besides enumerating the nodes, defines at the same
time the order of rows and columns. They have always the same order.
	edges. The edges of the graph, in the form of a map, with a key representing existing
edges within the matrix in the form of {row, col}, and values can be one of :+ or :*.
:+ is used when row and col have the same value, and :* is used whenever the module
represented by col has a dependency on module represented by row.
	groups. Its a map of identified cyclic groups within the graph, every key is just an
identifier for the gruop, and the value is a list of the nodes conforming that gruop. The
value of groups is calculated by the algorithm and not expected to be set by the user.
	n_groups. This is used for internal use of the algorithms only and not expected to be
of any use to final users.

Functions gen_dsm/1 and gen_dsm/4 are used to create a DSM respectively from an
adjacency list or from information in an Archeometer database.
The only analysis algorith currently implemented is called triangularization, and you can
use it with the function triangularize/1. It helps you find groups of nodes that form cycles.

 Anchor for this section

 Summary

 Functions

 find_cycle(mtx)

 gen_dsm(xrefs)

 Creates a DSM from an adjacency list

 gen_dsm(app, namespace, db_name, skip_tests)

 Generates a DSM using module xref information from an Archeometer DB.

 leaves(mtx)

 Finds the leave nodes in a DSM.

 roots(mtx)

 Finds the root nodes in a DSM.

 triangularize(mtx)

 Reorders a DSM to find module cycles.

 Anchor for this section

Functions

 Link to this function

 find_cycle(mtx)

 Link to this function

 gen_dsm(xrefs)

Creates a DSM from an adjacency list

 Examples

iex> adj_list = %{
...> 1 => [2, 3],
...> 2 => [3, 4],
...> 3 => [4],
...> 4 => [3]
...> }
%{1 => [2, 3], 2 => [3, 4], 3 => [4], 4 => [3]}
iex> Archeometer.Analysis.DSM.gen_dsm(adj_list)
%Archeometer.Analysis.DSM{
 edges: %{
 {1, 1} => :+,
 {2, 1} => :*,
 {2, 2} => :+,
 {3, 1} => :*,
 {3, 2} => :*,
 {3, 3} => :+,
 {3, 4} => :*,
 {4, 2} => :*,
 {4, 3} => :*,
 {4, 4} => :+
 },
 groups: %{},
 n_groups: 0,
 nodes: [1, 2, 3, 4]
}

 Link to this function

 gen_dsm(app, namespace, db_name, skip_tests)

Generates a DSM using module xref information from an Archeometer DB.

 Parameters

	app is an application name, in the case of an umbrella project, it's the name of
one of the child applications.
	namespace is a "namespace" to narrow the set of modules considered for createing the
DSM. The term "namespace" is meant very broadly since Elixir doesn't have that concept.
Namespace can be interpreted as a string matching the beginning of the module names to
be considered, such as "Foo" or "Foo.Bar", after which a last part of the name must
be given to create a full module name. For example the "namespace" Foo will include
in the analysis modules such as Foo.Bar and Foo.Baz but not FooBar or Food.
	db_name is the name of the database file to be used.
	skip_tests is a boolean indicating if test related modules should be skipped.

 Examples

Using Archeometer provided test database.
iex> Archeometer.Analysis.DSM.gen_dsm(
...> "jissai",
...> "Jissai.Reports",
...> "./test/resources/db/archeometer_jissai.db",
...> true
...>)
{:ok,
 %Archeometer.Analysis.DSM{
 edges: %{
 {21, 21} => :+,
 {22, 21} => :*,
 {22, 22} => :+,
 {23, 21} => :*,
 {23, 23} => :+,
 {24, 21} => :*,
 {24, 24} => :+
 },
 groups: %{},
 n_groups: 0,
 nodes: [21, 22, 23, 24]
 },
 %{
 21 => "Jissai.Reports",
 22 => "Jissai.Reports.Attendance",
 23 => "Jissai.Reports.ClassDynamic",
 24 => "Jissai.Reports.Participant"
 }}

 Link to this function

 leaves(mtx)

Finds the leave nodes in a DSM.
Leave nodes are the ones that no dependencies upon other nodes.

 Link to this function

 roots(mtx)

Finds the root nodes in a DSM.
Root nodes are the ones that no othe node has dependencies upon.

 Link to this function

 triangularize(mtx)

Reorders a DSM to find module cycles.
The cycles are identified in the groups attribute of the resulting DSM.

 Examples

A DSM with one cycle
iex> dsm = %Archeometer.Analysis.DSM{
...> edges: %{
...> {1, 1} => :+,
...> {2, 1} => :*,
...> {2, 2} => :+,
...> {3, 1} => :*,
...> {3, 2} => :*,
...> {3, 3} => :+,
...> {3, 4} => :*,
...> {4, 2} => :*,
...> {4, 3} => :*,
...> {4, 4} => :+
...> },
...> groups: %{},
...> n_groups: 0,
...> nodes: [1, 2, 3, 4]
...> }
iex> Archeometer.Analysis.DSM.triangularize(dsm)
%Archeometer.Analysis.DSM{
 edges: %{
 {1, 1} => :+,
 {2, 1} => :*,
 {2, 2} => :+,
 {3, 1} => :*,
 {3, 2} => :*,
 {3, 3} => :+,
 {3, 4} => :*,
 {4, 2} => :*,
 {4, 3} => :*,
 {4, 4} => :+
 },
 groups: %{"g1" => [3, 4]},
 n_groups: 1,
 nodes: [1, 2, 3, 4]
}
As you can see, it detected the only existing cycle, formed by nodes [3, 4]. The nodes
of the DSM are reordered such that the only nodes above the diagonal, are the ones
forming part of a cycle.
Now a DSM with two cycles
iex> dsm = %Archeometer.Analysis.DSM{
...> edges: %{
...> {1, 1} => :+,
...> {2, 1} => :*,
...> {2, 2} => :+,
...> {2, 3} => :*,
...> {3, 1} => :*,
...> {3, 2} => :*,
...> {3, 3} => :+,
...> {4, 4} => :+,
...> {4, 5} => :*,
...> {5, 4} => :*,
...> {5, 5} => :+
...> },
...> groups: %{},
...> n_groups: 0,
...> nodes: [1, 2, 3, 4, 5]
...> }
iex> Archeometer.Analysis.DSM.triangularize(dsm)
%Archeometer.Analysis.DSM{
 edges: %{
 {1, 1} => :+,
 {2, 1} => :*,
 {2, 2} => :+,
 {2, 3} => :*,
 {3, 1} => :*,
 {3, 2} => :*,
 {3, 3} => :+,
 {4, 4} => :+,
 {4, 5} => :*,
 {5, 4} => :*,
 {5, 5} => :+
 },
 groups: %{"g1" => [2, 3], "g2" => [4, 5]},
 n_groups: 2,
 nodes: [1, 2, 3, 4, 5]
}
It correctly detects the two cycles: [2, 3] and [4, 5].
Now a DSM with a cycle of 3 nodes
iex> dsm = %Archeometer.Analysis.DSM{
...> edges: %{
...> {1, 1} => :+,
...> {2, 1} => :*,
...> {2, 2} => :+,
...> {2, 4} => :*,
...> {3, 2} => :*,
...> {3, 3} => :+,
...> {4, 3} => :*,
...> {4, 4} => :+
...> },
...> groups: %{},
...> n_groups: 0,
...> nodes: [1, 2, 3, 4]
...> }
iex> Archeometer.Analysis.DSM.triangularize(dsm)
%Archeometer.Analysis.DSM{
 edges: %{
 {1, 1} => :+,
 {2, 1} => :*,
 {2, 2} => :+,
 {2, 4} => :*,
 {3, 2} => :*,
 {3, 3} => :+,
 {4, 3} => :*,
 {4, 4} => :+
 },
 groups: %{"g1" => [2, 3, 4]},
 n_groups: 1,
 nodes: [1, 2, 3, 4]
}
The cycle is correctly detected: [2, 3, 4].

 Archeometer.Analysis.Treemap

Functions for generating different TreeMaps.

 Anchor for this section

 Summary

 Functions

 add_groups(t, list)

 add_modules(t, list)

 parents(module)

 treemap(atom, app, namespace, db_name, skip_tests)

 Anchor for this section

Functions

 Link to this function

 add_groups(t, list)

 Link to this function

 add_modules(t, list)

 Link to this function

 parents(module)

 Link to this function

 treemap(atom, app, namespace, db_name, skip_tests)

 Archeometer.Analysis.Treemap.Rectangle

 This module provides functions to calculate coordinates and size from Archeometer.Analysis.Treemap.Node to be rendered by Archeometer.Analysis.Treemap.SVGrender.

 Anchor for this section

 Summary

 Functions

 create_rectangle(size, coords)

 layout_row(rectangle, row, orientation)

 row_orientation(map)

 shortest_drawable_side(map)

 Anchor for this section

Functions

 Link to this function

 create_rectangle(size, coords)

 Link to this function

 layout_row(rectangle, row, orientation)

 Link to this function

 row_orientation(map)

 Link to this function

 shortest_drawable_side(map)

 Archeometer.Analysis.Treemap.Rectangle.Area

Struct that contains starting coordinates, size and other data for an area that will be rendered by Archeometer.Analysis.Treemap.SVGRender.

 Archeometer.Analysis.Treemap.SVGRender

Functions to render an Archeometer.Analysis.Treemap struct into a
svg image.
Squarified algorithm by Mark Bruls, Kees Huizing, and Jarke J. van Wijk: https://www.win.tue.nl/~vanwijk/stm.pdf

 Anchor for this section

 Summary

 Functions

 render(root_node)

 Renders a Treemap struct into a svg.

 Anchor for this section

Functions

 Link to this function

 render(root_node)

Renders a Treemap struct into a svg.
Returns the string representing the generated svg image.
The resulting svg can be written to a file or directly embedded into an HTML.

 Parameters

	root_node. The Treemap struct with pct: 100 value to be rendered.

 Archeometer.Analysis.Xref

Functions for generating a dependency graph from a list of given modules.
Accepted output formats are "dot" (graphviz), "png" and "mermaid".

 Anchor for this section

 Summary

 Functions

 gen_graph(modules, format, db_name \\ default_db_name())

 Creates a dependency graph between the modules given as parameters

 Anchor for this section

Functions

 Link to this function

 gen_graph(modules, format, db_name \\ default_db_name())

Creates a dependency graph between the modules given as parameters

 Parameters

	modules is a list of module names, e.g. [Foo.Bar, Foo.Rex, Foo.Zorg]
	format can be one of "dot" (graphviz), "png", or "mermaid".
	db_name is the filename of the DB to be used. If not given uses default DB.

 Returns

	The binary representing the graph, if the operation was completed successfully.
	{:error, reason} if not.

 Archeometer.Analysis.DSM.ConsoleRender

Functions to render an Archeometer.Analysis.DSM struct into plain text.

 Anchor for this section

 Summary

 Functions

 cycles_str(groups, mod_names)

 ln_sep()

 mtx_header(dsm, padding)

 mtx_rows(dsm, padding)

 mtx_str(mtx)

 padding(nodes)

 render(mtx, mod_names)

 Renders a DSM struct into a plain text, suitable for printing in a console.

 Anchor for this section

Functions

 Link to this function

 cycles_str(groups, mod_names)

 Link to this function

 ln_sep()

 Link to this function

 mtx_header(dsm, padding)

 Link to this function

 mtx_rows(dsm, padding)

 Link to this function

 mtx_str(mtx)

 Link to this function

 padding(nodes)

 Link to this function

 render(mtx, mod_names)

Renders a DSM struct into a plain text, suitable for printing in a console.
Returns the string representing the DSM in human readable format.

 Parameters

	dsm. The DSM to be rendered.
	mod_names. A map from module ids to their corresponding names.

 Archeometer.Analysis.DSM.SVGRender

Functions to render an Archeometer.Analysis.DSM struct into a
svg image.

 Anchor for this section

 Summary

 Functions

 render(dsm, mod_names)

 Renders a DSM struct into a svg.

 Anchor for this section

Functions

 Link to this function

 render(dsm, mod_names)

Renders a DSM struct into a svg.
Returns the string representing the generated svg image.
The resulting svg can be written to a file or directly embedded into an HTML.

 Parameters

	dsm. The DSM to be rendered.
	mod_names. A map from module ids to their corresponding names.

 Archeometer.Graphs.Graphviz

 Functions for working with Graphviz graphs

 Anchor for this section

 Summary

 Functions

 render_dot(xrefs)

 Renders an graph represented by an adjacency list into .dot format.

 render_png(xrefs)

 Renders an graph represented by an adjacency list into .png format.

 Anchor for this section

Functions

 Link to this function

 render_dot(xrefs)

Renders an graph represented by an adjacency list into .dot format.
Returns a string containing de rendered graph.

 Examples

iex(2)> graph = %{
...(2)> :a => [:b, :c],
...(2)> :b => [:c, :d],
...(2)> :d => [:a]
...(2)> }
%{a: [:b, :c], b: [:c, :d], d: [:a]}
iex(3)> dot_str = Graphviz.render_dot(graph)
iex(3)> assert is_binary(dot_str)

 Link to this function

 render_png(xrefs)

Renders an graph represented by an adjacency list into .png format.
Returns a binary containing the rendered graph.

 Archeometer.Graphs.Mermaid

 Functions for working with mermaid-JS graphs

 Anchor for this section

 Summary

 Functions

 render(xrefs)

 Renders an graph represented by an adjacency list into .dot format.

 Anchor for this section

Functions

 Link to this function

 render(xrefs)

Renders an graph represented by an adjacency list into .dot format.
Returns a string containing de rendered graph.

 Examples

iex(2)> graph = %{
...(2)> :a => [:b, :c],
...(2)> :b => [:c, :d],
...(2)> :d => [:a]
...(2)> }
%{a: [:b, :c], b: [:c, :d], d: [:a]}
iex(3)> str = Mermaid.render(graph)
iex(3)> assert is_binary(str)

 Archeometer.Query

This module exposes a from/2 macro to creates queries for the Archeometer
database. The recommended way to use it is to import the whole module. Let's
see a simple example!
import Archeometer.Query
alias Archeometer.Schema.Module

then you can use it to make queries!
Archeometer.Repo.all(
 from m in Module,
 select: m.name,
 where: m.num_lines > 50
)
The first argument must be an expression in the form of m in Module, where
m will be the prefix used for all the fields in the query, and Module is
a module implementing Archeometer.Schema.
The available schemas are
	Archeometer.Schema.Module
	Archeometer.Schema.Function
	Archeometer.Schema.Macro
	Archeometer.Schema.XRef
	Archeometer.Schema.Application

Each schema specifies its fields and how it is related to the other schemas,
like in an SQL Database!
Query keywords
The rest of the arguments specify how to construct the query. Each option is
mapped to an SQL keyword. They are
	:select
	:where
	:order_by
	:group_by
	:having
	:limit

Each option accepts either an Archeometer.Query.Term expression or an
Archeometer.Query.Term.Container container (tuples, lists or maps).
For keyword lists and maps, the keys can be used as aliases in the rest of
the query.
In the case of the order_by, they keys are used to determine the order.
import Archeometer.Query
alias Archeometer.Schema.Module

from m in Module,
 select: [app: m.application.name, avg_cc: avg(m.cc)]
 where: m.application == "archeometer"
 order_by: [desc: sum(m.num_lines)],
 group_by: m.application.name
 having: avg_cc > 5,
 limit: 10
Fields and tables
Only fields can be selected. Trying to select reference to other tables will
return an error. For example
import Archeometer.Query
alias Archeometer.Schema.Module

this will fail because `functions` is a table
from m in Module, select: m.functions

this works because `name` is a field
from m in Module, select: m.functions.name
More Examples
	like operator with named columns
 iex> from f in Archeometer.Schema.Function,
 ...> select: [name: f.name, arity: f.num_args],
 ...> where: arity > 3,
 ...> where: like(name, "Kamaji.Web.%")

	Boolean operators
 iex> from m in Archeometer.Schema.Module,
 ...> where: like(m.name, "%") > 5 and sum(m.functions.cc) > 5 or not m.num_lines < 500,
 ...> select: [m.name, m.application.name]

	Grouping with nested aggregation
 iex> from m in Archeometer.Schema.Module,
 ...> group_by: m.id,
 ...> having: max_cc > 5,
 ...> select: [module: m.name, max_cc: max(m.functions.cc)]

 iex> from m in Archeometer.Schema.Module,
 ...> group_by: name,
 ...> select: [name: m.name, num_deps: count(m.out_refs.callee.name)]

 iex> from m in Archeometer.Schema.Module,
 ...> group_by: name,
 ...> select: [name: m.name, num_usages: count(m.in_refs.caller.name)]

	not and is_nil
 iex> from f in Archeometer.Schema.Function,
 ...> where: not is_nil(f.coverage),
 ...> select: [f.module.name, f.name, f.num_args]

	A more complex query
 iex> from m in Archeometer.Schema.Module,
 ...> select: [name: m.name, acc_cc: sum(m.functions.cc)],
 ...> group_by: name,
 ...> where: m.num_lines > 100 and m.coverage < 0.9,
 ...> order_by: [desc: acc_cc],
 ...> limit: 10

 Anchor for this section

 Summary

 Functions

 from(arg, opts)

 initial_query_for(module, list)

 intersection(result1, result2)

 root_prefix(query)

 Anchor for this section

Functions

 Link to this macro

 from(arg, opts)

 (macro)

 Link to this function

 initial_query_for(module, list)

 Link to this function

 intersection(result1, result2)

 Link to this function

 root_prefix(query)

 Archeometer.Query.Term

Restrict and adapt Elixir terms to a subset that is translatable to SQLite
expressions. See the language reference
The following literals are allowed
	Integers
	Floating point numbers
	Bitstrings
	Booleans

Plus some operators and functions
	Boolean operators: and, or, not
	Comparaison operators: ==, !=, <, >, <=, >=
	Arithmetic operators: +, -, *, /
	Arithmetic functions: round
	Search functions: like
	Null checking: is_nil, not is_nil
	Aggregation functions: avg, count, max, min, sum

And any kind of dot operator: m.some.key.or.attribute to represent table
lookup. For example
max(m.num_lines, 10 * m.num_args)

m.cc > 10

like(m.name, "Archeometer.%") and m.name != "Archeometer.Query.Term"
Containers are also allowed, but only as a top level construct.
{m.name, m.num_lines, avg(m.functions.cc)} # this is valid
[name, num_lines * 10] # this as well

{m.name, {m.functions.name, m.functions.num_lines}} # this is not
[m.name, {m.num_lines}] # neither is this

 Anchor for this section

 Summary

 Functions

 flatten_lookups(ast)

 Takes a validated AST and replaces the symbol.lookups with a
{:symb, meta, atoms} AST, where all the atoms in the lookup have been
flattened into the atoms list.

 to_ast(validated_ast)

 Takes a validated AST and tries to transformed into its original state.

 to_iodata(ast)

 Takes a validated AST and tries to transformed into an SQL-compatible io_data.
The goal would be to obtain valid SQL just by calling IO.iodata_to_binary/1.

 validate(ast)

 Takes an AST and returns a validated AST.For the most part it is identical to
the original, except with anotated symbols.lookups instead of dot operators.

 Anchor for this section

Functions

 Link to this function

 flatten_lookups(ast)

Takes a validated AST and replaces the symbol.lookups with a
{:symb, meta, atoms} AST, where all the atoms in the lookup have been
flattened into the atoms list.
This is required for the aliases replacement procedure during the
serialization.

 Link to this function

 to_ast(validated_ast)

Takes a validated AST and tries to transformed into its original state.
Most of the metadata is long gone by this point, but at least the original
structure is preserved.

 Link to this function

 to_iodata(ast)

Takes a validated AST and tries to transformed into an SQL-compatible io_data.
The goal would be to obtain valid SQL just by calling IO.iodata_to_binary/1.

 Link to this function

 validate(ast)

Takes an AST and returns a validated AST.For the most part it is identical to
the original, except with anotated symbols.lookups instead of dot operators.

 Archeometer.Query.Term.Container

Utility functions for dealing with "container" AST. That is, tuples, list,
keyword list and maps.
Some examples of valid containers
["regular", "lists"]

[keyword: "lists"]

{"simple", "tuples"}

%{map: "values"}
The only restriction for containers is that they can't be nested.

 Anchor for this section

 Summary

 Functions

 reduce(ast, init_value, fun)

 Wrapper to work with the AST of container terms (i.e. tuples, maps and lists).

 Anchor for this section

Functions

 Link to this function

 reduce(ast, init_value, fun)

Wrapper to work with the AST of container terms (i.e. tuples, maps and lists).

 Archeometer.Schema

Specify data base table information in Elixir modules. The information must
be specified inside a defschema/1 macro.
An schema has field properties. Foreign keys are specied with a belongs_to
property. And the opposite is spcified with a has property.
Example
defmodule ModuleA do
 use Archeometer.Schema

 defschema do
 field :first_module, primary_key: true
 belongs_to ModuleB
 has ModuleB, as: :other_b, key: :recurse_id
 end
end

 Anchor for this section

 Summary

 Functions

 belongs_to(module, opts \\ [])

 This property marks a foreign key. This is usually to specify the many
entity in a many-to-one relation.

 defschema(name, list)

 Starts the definition of a new schema. This definition maps database columns
into Elixir data. The field, has and belongs_to macros are available to
specify how to map the data base table to Elixir terms.

 field(name, opts \\ [])

 Specify that the current schema has fields. The first argument is the name of
the field, and as an optional argument you can specify if the current field is
a primary key.

 has(module, opts \\ [])

 This property denotes that there is a foreign key in other table that makes
reference to the current table. This is usually to specify the one entity
in a many-to-one relation.

 Anchor for this section

Functions

 Link to this macro

 belongs_to(module, opts \\ [])

 (macro)

This property marks a foreign key. This is usually to specify the many
entity in a many-to-one relation.
Using the name of the reference table, a field will be generated. This
generated name will be a queryable field in the schema. The name can be
specified with the as: name optional parameter.
The name of the foreign key will be inferred from the name of the referenced
table. This can be overriden with the key: key_name optional paramenter.
For example
defmodule B do
 use Archeometer.Schema

 defschema :b do
 field :id, primary_key: true
 belongs_to A # with inferred name `:a` and key `:a_id`
 belongs_to A, as: :other_a, key: :other_a_id
 end
end
Where A is defined as follows
defmodule A do
 use Archeometer.Schema

 defschema :schema do
 field :id, primary_key: true
 has B # with infererd name `:b` and foreign key `:a_id`
 has B, as: :other_b, key: other_a
 end
end

 Link to this macro

 defschema(name, list)

 (macro)

Starts the definition of a new schema. This definition maps database columns
into Elixir data. The field, has and belongs_to macros are available to
specify how to map the data base table to Elixir terms.
See their individual documentation of each for the list of properties they
can specify.

 Link to this macro

 field(name, opts \\ [])

 (macro)

Specify that the current schema has fields. The first argument is the name of
the field, and as an optional argument you can specify if the current field is
a primary key.
For example
defmodule A do
 use Archeometer.Schema

 defschema :a do
 field :id, primary_key: true
 field :name
 end
end

 Link to this macro

 has(module, opts \\ [])

 (macro)

This property denotes that there is a foreign key in other table that makes
reference to the current table. This is usually to specify the one entity
in a many-to-one relation.
Using the name of the reference table, a field will be generated. This
generated name will be a queryable field in the schema. The name can be
specified with the as: name optional parameter.
The name of the foreign key in the other table will be inferred from the name
of the current table. This can be overriden with the key: key_name optional
paramenter.
For example
defmodule A do
 use Archeometer.Schema

 defschema :schema do
 field :id, primary_key: true
 has B # with infererd name `:b` and foreign key `:a_id`
 has B, as: :other_b, key: other_a
 end
end
Where B is defined as follows
defmodule B do
 use Archeometer.Schema

 defschema :b do
 field :id, primary_key: true
 belongs_to A # with inferred name `:a` and key `:a_id`
 belongs_to A, as: :other_a, key: :other_a_id
 end
end

 Archeometer.Schema.Application

This modules represents a OTP application. It holds the relevant schema data
that will be used in the project analysis.
This schema has the following fields:
	name is the name of the OTP application
	modules is a reference to Archeometer.Schema.Modules. All the modules
belonging to the application.

 Archeometer.Schema.Function

Represents an Elixir function. Holds the relevant schema data that will be
used in the project analysis.
This schema has the following fields:
	name is the name of the function
	cc represents the cyclomatic complexity.
	num_lines is the number of lines in the function definition.
	num_args is the number of arguments the function receives.
	arg_names is a comma separated list with the name of the parameters the
function receives.
	type can be either def or defp depending on the function declaration.
	coverage is a number between 0 and 1 representing the percentage of tested
lines of code. It is pulled directly from Erlang's code module, so it might
not be very accurate.
	module is a referece to Archeometer.Schema.Module. It is the module
where the function was declared.

 Archeometer.Schema.Macro

Represents an Elixir macro. Holds the relevant schema data that will be
used in the project analysis.
This schema has the following fields:
	name if the name of the macro.
	cc if the cyclomatic complexity of the macro declaration.
	num_lines is the length of macro declaration.
	num_args is the number of arguments the macro receives.
	arg_names is a comma separated string with the name of the parameters the
macro receives.
	type can be either defmacro or defmacrop, depending on the
declaration.
	coverage is a number between 0 and 1 representing the test coverage of the
macro. The results are pulled from Erlang code module so they might not be
very accurate.
	module is a reference to Archeometer.Schema.Module. The module where the
macro was declared.

 Archeometer.Schema.Module

Represents an Elixir module. Holds the relevant schema data that will be
used in the project analysis.
This schema has the following fields:
	name is the name of the module.
	num_lines is the length of the module delcaration body.
	coverage is a number between 0 and 1 representing the module testing
coverage percentage.
	path is the file path where the module was declared.
	app is a reference to Archeometer.Schema.Application. It is the module's
corresponding OTP application
	in_refs stands for "incoming references". That is, all references of the
current module in other modules. Or in other words all the usages of the
current module.
	out_refs stands for "outgoing reference". That is, all references from other
modules in the current one. Or said on other words, the current module
dependencies.
	functions is a reference to Archeometer.Schema.Function. All the
functions defined in the module.
	macros is a reference to Archeometer.Schema.Macro. All the macros
defined in the module.

 Archeometer.Schema.XRef

Represents an cross reference between modules. It contains the relevant schema
data that will be used in the project analysis.
The schema has the following fields:
	type is the corresponding to the cross reference. The full list of events
is documented on the Code module.
	line is the line number in the file where the reference was detected.
	caller is a reference to Archeometer.Schema.Module. The module were the
referece took place.
	callee is a reference to Archeometer.Schema.Module. The module being
referenced.

 Archeometer.Repo

Common utilities for interacting with the database.

 Anchor for this section

 Summary

 Functions

 all(query, bindings \\ [], db_name \\ default_db_name())

 Execute the given query and returns a Archeometer.Result structure with all
rows.

 db_ready?(db_name \\ default_db_name())

 default_db_name()

 execute_raw(conn, query, bindings)

 execute_raw_query(conn, query, bindings)

 Anchor for this section

Functions

 Link to this function

 all(query, bindings \\ [], db_name \\ default_db_name())

Execute the given query and returns a Archeometer.Result structure with all
rows.
The query can be a raw string to be executed directly with the given bindings.
In that case the resulting structure won't have header information.
The query can also be a tuple {:ok, %Archeometer.Query{}}. Consecuentyl the
result of Archeoemter.Query.from can be piped directly. In this case the
bindings field will be ignored, as the bindings are stored on the Query
structure.

 Link to this function

 db_ready?(db_name \\ default_db_name())

 Link to this function

 default_db_name()

 Link to this function

 execute_raw(conn, query, bindings)

 Link to this function

 execute_raw_query(conn, query, bindings)

 Archeometer.Repo.Result

A query result with a nicer API to manipulate the data.

 Archeometer.Util.Code

This module provides several helpers functions to deal with Elixir ASTs.
The functions have specific uses in other modules, but are general enough to
be useful in other contexts.

 Anchor for this section

 Summary

 Functions

 atom_concat(atom0, atom1)

 Create a new atom by concatenaing two other existing ones.

 collect_node(ast, atom)

 Walks the given AST and stores all the ocurrences of the given atom as an
operator.

 collect_nodes(ast, atoms)

 Apply collect_node2 to every atom and combine the result into a sigle list.

 get_decl(arg1)

 Get declaration information from the AST of a def-like macro. That is
usually the name and arguments, but it dependes on the exact construct.

 get_meta(arg1, atom)

 Get the metadata of the given AST.

 num_lines(ast)

 Get the maximum line number present in the metadata of an AST.

 resolve_mod_name(full_ast, ast)

 Determine the name of the module of some subset of the AST.

 snakefy(module)

 Given a module name, it will return the underscored version of the last
part of the module name.

 Anchor for this section

Functions

 Link to this function

 atom_concat(atom0, atom1)

Create a new atom by concatenaing two other existing ones.

 Link to this function

 collect_node(ast, atom)

Walks the given AST and stores all the ocurrences of the given atom as an
operator.

 Link to this function

 collect_nodes(ast, atoms)

Apply collect_node2 to every atom and combine the result into a sigle list.

 Link to this function

 get_decl(arg1)

Get declaration information from the AST of a def-like macro. That is
usually the name and arguments, but it dependes on the exact construct.
Current ones are def, defp, defmacro, defmacrop, defmodule.

 Link to this function

 get_meta(arg1, atom)

Get the metadata of the given AST.

 Link to this function

 num_lines(ast)

Get the maximum line number present in the metadata of an AST.

 Link to this function

 resolve_mod_name(full_ast, ast)

Determine the name of the module of some subset of the AST.

 Link to this function

 snakefy(module)

Given a module name, it will return the underscored version of the last
part of the module name.

 mix arch.apps.xref

Mix Task to generate a dependency graph for the applications within an umbrella.
Usage:
mix arch.apps.xref [options]
The following options are accepted:
	--format - Can be one of dot or png
	--out - Output filename

 mix arch.dsm

Mix Task to perform a Design Structure Matrix (DSM) analysis.
Usage:
mix arch.dsm [options]
The following options are accepted:
	--app - Application name
	--ns - Namespace of the modules considered
	--db - Database filename
	--format - Can be one of txt (default) or svg
	--out - Output filename. Defaults to console
	--skip-tests - Skips test related modules (default)
	--no-skip-tests - Avoids skipping test related modules

Both options --app or --ns can be used at the same time in order to have
fine grained control of the set of modules considered in the analysis.
If none of --app or --ns options are given,
all modules in the project are considered.
Namespace is interpreted very broadly since Elixir doesn't have that concept.
Namespace can be interpreted as a string matching the beginning of the module names to
be considered, such as "Foo" or "Foo.Bar", after which a last part of the name must
be given to create a full module name.
For example the "namespace" Foo will include in the analysis modules such as
Foo.Bar, Foo.Baz and Foo.Bar.Buzz, but not FooBar or Food.

 mix arch.explore

Mix task to gather information about the project and store it into the database.
It currently gathers information about:
	Inventory of applications, modules, functions and macros.
	Metrics related to them such as: size and complexity.
	Information about test coverage.
	Internal dependencies between modules.

 mix arch.explore.apps

Mix Task to collect application names and modules application id and store
them into a Archeometer database.

 mix arch.explore.coverage

Mix Task to collect and store test coverage information into a Archeometer database.

 mix arch.explore.static

Mix Task to run code AST exploration of modules, functions and macros
and store its findings into a Archeometer database.

 mix arch.explore.xrefs

Mix Task to analyze internal dependencies between modules and store them into a Archeometer database.

 mix arch.report.html

Mix Task to generate a static HTML report.
Usage:
mix arch.report.html
Report is generated at reports/dev/static/html.

 mix arch.treemap

Mix Task to generate a treemap for an application or a set of modules.
Usage:
mix arch.treemap [options]
The following options are accepted:
	--metric - Temporarily there is just one metric: size (default) *--namespace - Namespace of the modules considered
	--app - Application name
	--db - Database filename
	--out - Output filename
	--skip-tests - Skips test related modules (default)

 mix arch.xref

Mix Task to generate a dependency graph given some module names.
Usage:
mix arch.xref [options] mod1 mod2 .. modN
The following options are accepted:
	--db - Database filename
	--format - Can be one of dot or png
	--out - Output filename

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

