Annex v0.2.1 Annex.Learner behaviour View Source
The Learner module defines the types, callbacks, and helper functions for a Learner.
A Learner is a model that is capable of supervised learning.
Link to this section Summary
Link to this section Types
Link to this type
data()
View Source
data()
View Source
data() :: Annex.Data.data()
data() :: Annex.Data.data()
Link to this type
options()
View Source
options()
View Source
options() :: Keyword.t()
options() :: Keyword.t()
Link to this type
t()
View Source
t()
View Source
t() :: struct()
t() :: struct()
Link to this type
training_output() View Source
Link to this section Functions
Link to this function
has_train?(module) View Source
Link to this function
init_learner(learner, options) View Source
Link to this function
is_learner?(module) View Source
Link to this function
predict(learner, data) View Source
Link to this function
train(learner, dataset, opts \\ [])
View Source
train(learner, dataset, opts \\ [])
View Source
train(t(), Annex.Dataset.t(), Keyword.t()) :: {t(), training_output()}
train(t(), Annex.Dataset.t(), Keyword.t()) :: {t(), training_output()}
Link to this section Callbacks
Link to this callback
init_learner(t, options) View Source (optional)
Link to this callback
predict(t, data) View Source
Link to this callback
train(t, arg2, options)
View Source
(optional)
train(t, arg2, options)
View Source
(optional)
train(t(), Annex.Dataset.t(), options()) :: {t(), training_output()}
train(t(), Annex.Dataset.t(), options()) :: {t(), training_output()}