

 airbrake_client

 v0.11.0

 Table of contents

 	Airbrake Client

 	Changelog for v0.x

 	Modules

 	Airbrake

 	Airbrake.Channel

 	Airbrake.GenServer

 	Airbrake.Plug

Airbrake Client

Capture exceptions and send them to Airbrake or to
your Errbit installation.
This library was originally forked from the
airbrake Hex package. Development and
support for that library seems to have lapsed, but we (the devs at
CityBase) had changes and updates we wanted to make.
So we decided to publish our own fork of the library.
Installation
Add airbrake_client to your dependencies:
defp deps do
 [
 {:airbrake_client, "~> 0.10"}
]
end
Migrating from airbrake
If you are switching from the original airbrake library:
	Replace the :airbrake dependency with the :airbrake_client dependency
above.	You may want to start with version ~> 0.8.0 for maximum backwards
compatibility.

	Remove the airbrake dependency in your lockfile.	Command: mix deps.unlock --unused
	If the dependency remains in the lockfile, check all of your apps and
all of your dependencies.

	Update your config/*.exs files to configure :airbrake_client instead of
:airbrake.	A search-and-replace-in-project on config :airbrake can work really well.
	When you run your project(even running the tests), you should get a
complaint if you're still configuring :airbrake.

Configuration
config :airbrake_client,
 api_key: System.get_env("AIRBRAKE_API_KEY"),
 project_id: System.get_env("AIRBRAKE_PROJECT_ID"),
 environment: Mix.env(),
 filter_parameters: ["password"],
 filter_headers: ["authorization"],
 host: "https://api.airbrake.io" # or your Errbit host

config :logger,
 backends: [{Airbrake.LoggerBackend, :error}, :console]
Required configuration arguments:
	:api_key - (binary) the token needed to access the Airbrake
API. You can find it in User
Settings.
	:project_id - (integer) the id of your project at Airbrake.

Optional configuration arguments:
	:environment - (binary or function returning binary) the environment that
will be attached to each reported exception.
	:filter_parameters - (list of binaries) allows to filter out sensitive
parameters such as passwords and tokens.
	:filter_headers - (list of binaries) filters HTTP headers.
	:host - (binary) the URL of the HTTP host; defaults to
https://api.airbrake.io.
	:ignore - (MapSet of binary or function returning boolean or :all) allows
to ignore some or all exceptions. See examples below.
	:options - (keyword list or function returning keyword list) values that
are included in all reports to Airbrake.io. See examples below.

Ignoring some exceptions
To ignore some exceptions use the :ignore config key. The value can be a
MapSet:
config :airbrake_client,
 ignore: MapSet.new(["Custom.Error"])
The value can also be a two-argument function:
config :airbrake_client,
 ignore: fn type, message ->
 type == "Custom.Error" && String.contains?(message, "silent error")
 end
Or the value can be the atom :all to ignore all errors (and effectively
turning off all reporting):
config :airbrake_client,
 ignore: :all
Shared options for reporting data to Airbrake
If you have data that should always be reported, they can be included in the
config with the :options key. Its value should be a keyword list with any of
these keys: :context, :params, :session, and :env.
config :airbrake_client,
 options: [env: %{"SOME_ENVIRONMENT_VARIABLE" => "environment variable"}]
Alternatively, you can specify a function (as a tuple) which returns a keyword
list (with the same keys):
config :airbrake_client,
 options: {Web, :airbrake_options, 1}
The function takes a keyword list as its only parameter; the function arity is
always 1.
Usage
Phoenix app
defmodule YourApp.Router do
 use Phoenix.Router
 use Airbrake.Plug # <- put this line to your router.ex

 # ...
end
 def channel do
 quote do
 use Phoenix.Channel
 use Airbrake.Channel # <- put this line to your web.ex
 # ...
Report an exception
try do
 String.upcase(nil)
rescue
 exception -> Airbrake.report(exception)
end
GenServer
Use Airbrake.GenServer instead of GenServer:
defmodule MyServer do
 use Airbrake.GenServer
 # ...
end
Any Elixir process
By pid:
Airbrake.monitor(pid)
By name:
Airbrake.monitor(Registered.Process.Name)
Integration Apps
The Elixir apps defined in integration_test_apps are used for testing
different dependency scenarios. If you make changes to the way jason or
poison is used this library, you should consider adding tests to those apps.

Changelog for v0.x

v0.11.0 (2022-12-05)
	[Airbrake.Plug] Exposes handle_errors/2 as private
	Fixes credo warnings

v0.10.0 (2021-07-14)
	[Airbrake.Payload] Support logging structs in payload.
	[Airbrake.Payload] Filter atom keys from maps in payload.

v0.9.1 (2021-06-08)
Enhancements
	[Airbrake] Updates default URL to https://api.airbrake.io.

Bug fixes
	[Airbrake] Add :filter_headers option to filter HTTP headers included in :environment.
	[Airbrake.Payload] Conditionally derive Jason.Encoder if Jason.Encoder is defined (i.e., jason is a dependency).
	[Airbrake.Payload] Add fields context, environment, params, and session to Airbrake.Payload.
	[Airbrake.Worker] Generate a useable stacktrace when one isn't provided in the options.

v0.9.0 (2021-06-04)
Fixes deprecations and improves testing.
Enhancements
	[Airbrake.Worker] Abstract HTTP client for better testing using mox.
	[Airbrake.Worker] Add tests.
	[Airbrake.LoggerBackend] Add tests.
	[Airbrake.LoggerBackend] Use @behaviour :gen_event instead of use GenEvent.
	[mix.exs] Start dependency applications automatically.

Bug fixes
	[Airbrake.Channel] Use __STACKTRACE__ instead of deprecated System.stacktrace().
	[Airbrake.Worker] Use Process.info(self(), :current_stacktrace) instead of deprecated System.stacktrace().
	[Airbrake] Use child spec instead of deprecated Supervisor.Spec.worker/1.

v0.8.2 (2021-06-03)
Renames the app to :airbrake_client.
Bug fixes
	[mix.exs] Renames the app to :airbrake_client so that starting the app for this library is more natural.

v0.8.1 (2021-06-02)
Quick documentation fix.
Bug fixes
	[README.md] Use correct case when linking to readme.html.

v0.8.0 (2021-06-02)
The first official release of airbrake_client (forked and disconnected from airbrake).
Enhancements
	[README.md] Update for new maintainers and better instructions.

Previous versions
The CityBase fork of airbrake had a v0.7.0 release, available only through GitHub.
Versions 0.6.x are available as the original airbrake library.

Airbrake

This module provides functions to report any kind of exception to
Airbrake or Errbit.
Airbrake.report/2 can be used to report directly to Airbrake.io.
Airbrake.Plug and Airbrake.Channel can be used to automatically report
errors from controllers or channels.
See README for configuration and usage instructions.

 Anchor for this section

 Summary

 Functions

 monitor(pid_or_reg_name)

 Monitor exceptions in the target process.

 report(exception, options \\ [])

 Send a report to Airbrake about given exception.

 Anchor for this section

Functions

 Link to this function

 monitor(pid_or_reg_name)

Monitor exceptions in the target process.
If you don't want system-wide monitoring, but would like to monitor one specific process,
then you could use Airbrake.monitor/1
Examples:
With a given PID:
Airbrake.monitor(pid)
With a registered process:
Airbrake.monitor(Registered.Process.Name)
With spawn/1 and its counterparts:
spawn(fn ->
 :timer.sleep(500)
 String.upcase(nil)
end) |> Airbrake.monitor

 Link to this function

 report(exception, options \\ [])

 @spec report(Exception.t() | [type: String.t(), message: String.t()], Keyword.t()) ::
 :ok

Send a report to Airbrake about given exception.
exception could be Exception.t or a keywords list with two keys :type & :message
options is a keywords list with following keys:
	:params - use it to pass request params
	:context - use it to pass detailed information about the exceptional situation
	:session - use it to pass info about user session
	:env - use it to pass environment variables, headers and so on
	:stacktrace - use it when you would like send something different than System.stacktrace

This function will always return :ok right away and perform the reporting of the given exception in the background.

 examples

 Examples

Exceptions can be reported directly:
Airbrake.report(ArgumentError.exception("oops"))
#=> :ok
Often, you'll want to report something you either rescued or caught.
For rescued exceptions:
try do
 raise ArgumentError, "oops"
rescue
 exception ->
 Airbrake.report(exception)
 # You can also reraise the exception here with reraise/2
end
For caught exceptions:
try do
 throw(:oops)
 # or exit(:oops)
catch
 kind, value ->
 Airbrake.report([type: kind, message: inspect(value)])
end
Using custom data:
Airbrake.report(
 [type: "DebugInfo", message: "Something went wrong"],
 context: %{
 moon_phase: "eclipse"
 })

Airbrake.Channel

Reports errors encountered on a channel.
def YourApp.Web do
 # ...
 def channel do
 quote do
 use Phoenix.Channel
 use Airbrake.Channel
 # ...
 end
 end
 # ...
end
See the README for configuration options.

Airbrake.GenServer

This module provides the ability to monitor workers of your gen.servers,
just write use Airbrake.GenServer instead of use GenServer
and any time when GenServer would be terminated for a some reason you will know about it.
Could be used in case when you don't want a system-wide reporting.

 Anchor for this section

 Summary

 Functions

 handle_terminate(reason, context)

 Implements a set of reporting rules based on process termination reason.
Could be overridden if you want to.

 Anchor for this section

Functions

 Link to this function

 handle_terminate(reason, context)

Implements a set of reporting rules based on process termination reason.
Could be overridden if you want to.

Airbrake.Plug

Reports any error encountered in the plug pipeline.
To use this plug, add it to your router:
defmodule YourApp.Router do
 use Phoenix.Router
 use Airbrake.Plug
 # ...
end
See the README for configuration options.

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

