

 absinthe_federation

 v0.2.4

 Table of contents

 	Absinthe.Federation

 	Contributing

 	License

 	Code of Conduct

 	Modules

 	Absinthe.Federation

 	Absinthe.Federation.Notation

 	Absinthe.Federation.Schema

 	Absinthe.Federation.Schema.EntityUnion.Resolver

 	Absinthe.Federation.Schema.Phase.AddFederatedTypes

 	Absinthe.Federation.Schema.Phase.Validation.KeyFieldsMustBeValidWhenExtends

 	Absinthe.Federation.Schema.Phase.Validation.KeyFieldsMustExist

 	Absinthe.Federation.Schema.Phase.Validation.Util

 	Mix Tasks

 	mix absinthe.federation.schema.sdl

Absinthe.Federation
[image: Build Status]
[image: Hex pm]
[image: Hex Docs]
[image: License]
Apollo Federation support for Absinthe
Installation
Install from Hex.pm:
def deps do
 [
 {:absinthe_federation, "~> 0.2.4"}
]
end
Install from github:
def deps do
 [
 {:absinthe_federation, github: "DivvyPayHQ/absinthe_federation", branch: "main"}
]
end
Add the following line to your absinthe schema
defmodule MyApp.MySchema do
 use Absinthe.Schema
+ use Absinthe.Federation.Schema

 query do
 ...
 end
end
Usage
Macro based schemas (recommended)
defmodule MyApp.MySchema do
 use Absinthe.Schema
+ use Absinthe.Federation.Schema

 query do
+ extends()

 field :review, :review do
 arg(:id, non_null(:id))
 resolve(&ReviewResolver.get_review_by_id/3)
 end
 ...
 end

 object :product do
+ key_fields("upc")
+ extends()

 field :upc, non_null(:string) do
+ external()
 end

 field(:reviews, list_of(:review)) do
 resolve(&ReviewResolver.get_reviews_for_product/3)
 end

+ field(:_resolve_reference, :product) do
+ resolve(&ProductResolver.get_product_by_upc/3)
+ end
 end
end
SDL based schemas (experimental)
defmodule MyApp.MySchema do
 use Absinthe.Schema
+ use Absinthe.Federation.Schema

 import_sdl """
 extend type Query {
 review(id: ID!): Review
 }

 extend type Product @key(fields: "upc") {
 upc: String! @external
 reviews: [Review]
 }
 """

 def hydrate(_, _) do
 ...
 end
Resolving structs in _entities queries
If you need to resolve your struct to a specific type in your schema you can implement the Absinthe.Federation.Schema.EntityUnion.Resolver protocol like this:
defmodule MySchema do
 @type t :: %__MODULE__{
 id: String.t()
 }

 defstruct id: ""

 defimpl Absinthe.Federation.Schema.EntityUnion.Resolver do
 def resolve_type(_, _), do: :my_schema_object_name
 end
end
More Documentation
See additional documentation, including guides, in the Absinthe.Federation hexdocs.
Contributing
Refer to the Contributing Guide.
License
See LICENSE

Contributing
We want this community to be friendly and respectful to each other. Please follow it in all your interactions with the project.
Development workflow
To get started with the project, run mix deps.get in the root directory to install the required dependencies:
$ mix deps.get

Commit message convention
We follow the conventional commits specification for our commit messages:
	fix: bug fixes, e.g. fix crash due to deprecated method.
	feat: new features, e.g. add new method to the module.
	refactor: code refactor, e.g. migrate from class components to hooks.
	docs: changes into documentation, e.g. add usage example for the module..
	test: adding or updating tests, eg add integration tests using detox.
	chore: tooling changes, e.g. change CI config.

Sending a pull request
Working on your first pull request? You can learn how from this free series: How to Contribute to an Open Source Project on GitHub.

When you're sending a pull request:
	Prefer small pull requests focused on one change.
	Verify that formatter and tests are passing.
	Review the documentation to make sure it looks good.
	Follow the pull request template when opening a pull request.
	For pull requests that change the API or implementation, discuss with maintainers first by opening an issue.

Code of Conduct
Please remember that all interactions in our official spaces follow our Code of Conduct.

License
MIT License
Copyright (c) 2021 DivvyPay, LLC
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Code of Conduct
Our Pledge
We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.
Our Standards
Examples of behavior that contributes to a positive environment for our community include:
	Demonstrating empathy and kindness toward other people
	Being respectful of differing opinions, viewpoints, and experiences
	Giving and gracefully accepting constructive feedback
	Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience
	Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:
	The use of sexualized language or imagery, and sexual attention or
advances of any kind
	Trolling, insulting or derogatory comments, and personal or political attacks
	Public or private harassment
	Publishing others' private information, such as a physical or email
address, without their explicit permission
	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful.
Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate.
Scope
This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event.
Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at [INSERT CONTACT METHOD]. All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the reporter of any incident.
Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct:
1. Correction
Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community.
Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested.
2. Warning
Community Impact: A violation through a single incident or series of actions.
Consequence: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban.
3. Temporary Ban
Community Impact: A serious violation of community standards, including sustained inappropriate behavior.
Consequence: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban.
4. Permanent Ban
Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.
Consequence: A permanent ban from any sort of public interaction within the community.
Attribution
This Code of Conduct is adapted from the Contributor Covenant, version 2.0,
available at https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
Community Impact Guidelines were inspired by Mozilla's code of conduct enforcement ladder.
For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at https://www.contributor-covenant.org/translations.

Absinthe.Federation

Apollo Federation support for Absinthe.
Examples
Schemas should use Absinthe.Federation.Schema
defmodule MyApp.MySchema do
 use Absinthe.Schema
+ use Absinthe.Federation.Schema

 query do
 ...
 end
end
For a type module, use Absinthe.Federation.Notation instead:
defmodule MyApp.MySchema.Types do
 use Absinthe.Schema.Notation
+ use Absinthe.Federation.Notation

end

 Anchor for this section

 Summary

 Functions

 remove_federated_types_pipeline(schema)

 See Absinthe.Federation.Schema.remove_federated_types_pipeline/1.

 to_federated_sdl(schema)

 See Absinthe.Federation.Schema.to_federated_sdl/1.

 Anchor for this section

Functions

 Link to this function

 remove_federated_types_pipeline(schema)

 View Source

 Specs

 remove_federated_types_pipeline(schema :: Absinthe.Schema.t()) ::
 Absinthe.Pipeline.t()

See Absinthe.Federation.Schema.remove_federated_types_pipeline/1.

 Link to this function

 to_federated_sdl(schema)

 View Source

 Specs

 to_federated_sdl(schema :: Absinthe.Schema.t()) :: String.t()

See Absinthe.Federation.Schema.to_federated_sdl/1.

Absinthe.Federation.Notation

Module that includes macros for annotating a schema with federation directives.
Example
defmodule MyApp.MySchema.Types do
 use Absinthe.Schema.Notation
+ use Absinthe.Federation.Notation

end

 Anchor for this section

 Summary

 Functions

 extends()

 Adds the @extends directive to the type to indicate that the type as owned by another service.

 external()

 Adds the @external directive to the field which marks a field as owned by another service.
This allows service A to use fields from service B while also knowing at runtime the types of that field.

 key_fields(fields)

 Adds a @key directive to the type which indicates a combination of fields
that can be used to uniquely identify and fetch an object or interface.
This allows the type to be extended by other services.
A string rather than atom is used here to support composite keys e.g. id organization { id }

 provides_fields(fields)

 Adds the @provides directive which is used to annotate the expected returned fieldset
from a field on a base type that is guaranteed to be selectable by the gateway.

 requires_fields(fields)

 Adds the @requires directive which is used to annotate the required input fieldset from a base type for a resolver.
It is used to develop a query plan where the required fields may not be needed by the client,
but the service may need additional information from other services.

 Anchor for this section

Functions

 Link to this macro

 extends()

 View Source

 (macro)

Adds the @extends directive to the type to indicate that the type as owned by another service.

 Example

object :user do
 extends()
 key_fields("id")
 field :id, non_null(:id)
end

 SDL Output

type User @key(fields: "id") @extends {
 id: ID!
}

 Link to this macro

 external()

 View Source

 (macro)

Adds the @external directive to the field which marks a field as owned by another service.
This allows service A to use fields from service B while also knowing at runtime the types of that field.

 Example

object :user do
 extends()
 key_fields("email")
 field :email, :string do
 external()
 end
 field :reviews, list_of(:review)
end

 SDL Output

extended from the Users service
type User @key(fields: "email") @extends {
 email: String @external
 reviews: [Review]
}
This type extension in the Reviews service extends the User type from the Users service.
It extends it for the purpose of adding a new field called reviews, which returns a list of Reviews.

 Link to this macro

 key_fields(fields)

 View Source

 (macro)

Adds a @key directive to the type which indicates a combination of fields
that can be used to uniquely identify and fetch an object or interface.
This allows the type to be extended by other services.
A string rather than atom is used here to support composite keys e.g. id organization { id }

 Example

object :user do
 key_fields("id")
 field :id, non_null(:id)
end

 SDL Output

type User @key(fields: "id") {
 id: ID!
}

 Link to this macro

 provides_fields(fields)

 View Source

 (macro)

Adds the @provides directive which is used to annotate the expected returned fieldset
from a field on a base type that is guaranteed to be selectable by the gateway.

 Example

object :review do
 key_fields("id")
 field :id, non_null(:id)
 field :product, :product do
 provides_fields("name")
 end
end

object :product do
 extends()
 key_fields("upc")
 field :upc, :string do
 external()
 end
 field :name, :string do
 external()
 end
end

 SDL Output

type Review @key(fields: "id") {
 product: Product @provides(fields: "name")
}

type Product @key(fields: "upc") @extends {
 upc: String @external
 name: String @external
}
When fetching Review.product from the Reviews service,
it is possible to request the name with the expectation that the Reviews service
can provide it when going from review to product. Product.name is an external field
on an external type which is why the local type extension of Product and annotation of name is required.

 Link to this macro

 requires_fields(fields)

 View Source

 (macro)

Adds the @requires directive which is used to annotate the required input fieldset from a base type for a resolver.
It is used to develop a query plan where the required fields may not be needed by the client,
but the service may need additional information from other services.

 Example

object :user do
 extends()
 key_fields("id")
 field :id, non_null(:id) do
 external()
 end
 field :email, :string do
 external()
 end
 field :reviews, list_of(:review) do
 requires_fields("email")
 end
end

 SDL Output

extended from the Users service
type User @key(fields: "id") @extends {
 id: ID! @external
 email: String @external
 reviews: [Review] @requires(fields: "email")
}
In this case, the Reviews service adds new capabilities to the User type by providing
a list of reviews related to a User. In order to fetch these reviews, the Reviews service needs
to know the email of the User from the Users service in order to look up the reviews.
This means the reviews field / resolver requires the email field from the base User type.

Absinthe.Federation.Schema

Module for injecting custom Absinthe.Phases for adding federated types and directives.
Example
defmodule MyApp.MySchema do
 use Absinthe.Schema
+ use Absinthe.Federation.Schema

 query do
 ...
 end
end

 Anchor for this section

 Summary

 Functions

 pipeline(pipeline)

 Injects custom compile-time Absinthe.Phase

 remove_federated_types_pipeline(schema)

 to_federated_sdl(schema)

 Anchor for this section

Functions

 Link to this function

 pipeline(pipeline)

 View Source

Injects custom compile-time Absinthe.Phase

 Link to this function

 remove_federated_types_pipeline(schema)

 View Source

 Specs

 remove_federated_types_pipeline(schema :: Absinthe.Schema.t()) ::
 Absinthe.Pipeline.t()

 Link to this function

 to_federated_sdl(schema)

 View Source

 Specs

 to_federated_sdl(schema :: Absinthe.Schema.t()) :: String.t()

Absinthe.Federation.Schema.EntityUnion.Resolver protocol

 Anchor for this section

 Summary

 Types

 t()

 Functions

 resolve_type(map, resolution)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: term()

 Anchor for this section

Functions

 Link to this function

 resolve_type(map, resolution)

 View Source

Absinthe.Federation.Schema.Phase.AddFederatedTypes

https://www.apollographql.com/docs/federation/federation-spec/#query_service
The federation schema modifications (i.e. new types and directive definitions) should not be included in this SDL.

 Anchor for this section

 Summary

 Functions

 flag_invalid(node)

 flag_invalid(node, flag)

 inherit_invalid(node, children, add_flag)

 put_flag(node, flag)

 run(blueprint, _)

 Callback implementation for Absinthe.Phase.run/2.

 Anchor for this section

Functions

 Link to this function

 flag_invalid(node)

 View Source

 Specs

 flag_invalid(Absinthe.Blueprint.node_t()) :: Absinthe.Blueprint.node_t()

 Link to this function

 flag_invalid(node, flag)

 View Source

 Specs

 flag_invalid(Absinthe.Blueprint.node_t(), atom()) :: Absinthe.Blueprint.node_t()

 Link to this function

 inherit_invalid(node, children, add_flag)

 View Source

 Link to this function

 put_flag(node, flag)

 View Source

 Link to this function

 run(blueprint, _)

 View Source

Callback implementation for Absinthe.Phase.run/2.

Absinthe.Federation.Schema.Phase.Validation.KeyFieldsMustBeValidWhenExtends

 Anchor for this section

 Summary

 Functions

 explanation(key, object)

 explanation(field, object, key_fields)

 flag_invalid(node)

 flag_invalid(node, flag)

 inherit_invalid(node, children, add_flag)

 put_flag(node, flag)

 run(bp, _)

 Run validate

 Anchor for this section

Functions

 Link to this function

 explanation(key, object)

 View Source

 Link to this function

 explanation(field, object, key_fields)

 View Source

 Link to this function

 flag_invalid(node)

 View Source

 Specs

 flag_invalid(Absinthe.Blueprint.node_t()) :: Absinthe.Blueprint.node_t()

 Link to this function

 flag_invalid(node, flag)

 View Source

 Specs

 flag_invalid(Absinthe.Blueprint.node_t(), atom()) :: Absinthe.Blueprint.node_t()

 Link to this function

 inherit_invalid(node, children, add_flag)

 View Source

 Link to this function

 put_flag(node, flag)

 View Source

 Link to this function

 run(bp, _)

 View Source

Run validate

Absinthe.Federation.Schema.Phase.Validation.KeyFieldsMustExist

 Anchor for this section

 Summary

 Functions

 explanation(key, object)

 explanation(field, object, key_fields)

 flag_invalid(node)

 flag_invalid(node, flag)

 inherit_invalid(node, children, add_flag)

 put_flag(node, flag)

 run(bp, _)

 Run validate

 Anchor for this section

Functions

 Link to this function

 explanation(key, object)

 View Source

 Link to this function

 explanation(field, object, key_fields)

 View Source

 Link to this function

 flag_invalid(node)

 View Source

 Specs

 flag_invalid(Absinthe.Blueprint.node_t()) :: Absinthe.Blueprint.node_t()

 Link to this function

 flag_invalid(node, flag)

 View Source

 Specs

 flag_invalid(Absinthe.Blueprint.node_t(), atom()) :: Absinthe.Blueprint.node_t()

 Link to this function

 inherit_invalid(node, children, add_flag)

 View Source

 Link to this function

 put_flag(node, flag)

 View Source

 Link to this function

 run(bp, _)

 View Source

Run validate

Absinthe.Federation.Schema.Phase.Validation.Util

 Anchor for this section

 Summary

 Functions

 is_nested?(key_fields)

 no_object_error(key, object, target_object)

 parse_key_fields(nested_key)

 syntax_error(key, object)

 Anchor for this section

Functions

 Link to this function

 is_nested?(key_fields)

 View Source

 Link to this function

 no_object_error(key, object, target_object)

 View Source

 Link to this function

 parse_key_fields(nested_key)

 View Source

 Link to this function

 syntax_error(key, object)

 View Source

mix absinthe.federation.schema.sdl

Generate a schema.graphql file.
Usage
mix absinthe.schema.sdl [OPTIONS] [FILENAME]
Options
	--schema - The name of the Absinthe.Schema module defining the schema to be generated.
 Default: As configured for :absinthe :schemaExamples
Write to default path ./schema.graphql using the :schema configured for the :absinthe application:
 mix absinthe.schema.sdl
Write to path /path/to/schema.graphql using the MySchema schema
 mix absinthe.schema.sdl --schema MySchema /path/to/schema.graphql

 Anchor for this section

 Summary

 Functions

 generate_schema(options)

 parse_options(argv)

 Anchor for this section

Functions

 Link to this function

 generate_schema(options)

 View Source

 Link to this function

 parse_options(argv)

 View Source

 OEBPS/dist/app-db64fcdc429a9b460caa.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

