

 absinthe

 v1.5.0-beta.1

 [image: Logo]

 Table of contents

 	Introduction

 	Overview

 	Installation

 	Learning

 	Community

 	Tutorial

 	Getting Started

 	Our First Query

 	Query Arguments

 	Mutations

 	Complex Arguments

 	Conclusion

 	Topics

 	Writing Schemas

 	Plug and Phoenix Setup

 	Ecto Best Practices

 	Writing Middleware and Plugins

 	Returning Errors

 	Batching Resolution

 	Dataloader

 	The Context and Authentication

 	Understanding Subscriptions

 	Custom Scalar Types

 	Importing Types

 	Importing Fields

 	Using Document Variables

 	Schema Introspection

 	Schema Deprecation

 	Document Adapters

 	Complexity Analysis

 	File Uploads

 	Testing

 	Client Guides

 	Using with JavaScript

 	Using with Apollo Client

 	Using with Relay

 	Upgrade Guides

 	Upgrading to v1.4

 	Modules

 	Absinthe

 	Absinthe.Lexer

 	Absinthe.Middleware.Telemetry

 	Absinthe.Phase.Document.Context

 	Absinthe.Phase.Schema.Validation.NoCircularFieldImports

 	Absinthe.Phase.Schema.Validation.ObjectInterfacesMustBeValid

 	Absinthe.Phase.Telemetry

 	Absinthe.Schema.Hydrator

 	Absinthe.Schema.Prototype

 	Absinthe.Schema.Prototype.Compiled

 	TestSchema

 	TestSchema.Compiled

 	Absinthe.Resolution.Helpers

 	Absinthe.Schema

 	Absinthe.Schema.Notation

 	Absinthe.Type.Argument

 	Absinthe.Type.Custom

 	Absinthe.Type.Directive

 	Absinthe.Type.Enum

 	Absinthe.Type.Enum.Value

 	Absinthe.Type.Field

 	Absinthe.Type.InputObject

 	Absinthe.Type.Interface

 	Absinthe.Type.List

 	Absinthe.Type.NonNull

 	Absinthe.Type.Object

 	Absinthe.Type.Scalar

 	Absinthe.Type.Union

 	Absinthe.Middleware

 	Absinthe.Middleware.Async

 	Absinthe.Middleware.Batch

 	Absinthe.Middleware.Dataloader

 	Absinthe.Middleware.MapGet

 	Absinthe.Middleware.PassParent

 	Absinthe.Plugin

 	Absinthe.Subscription

 	Absinthe.Subscription.Local

 	Absinthe.Subscription.Pubsub

 	Absinthe.Phase

 	Absinthe.Phase.Validation.Helpers

 	Absinthe.Pipeline

 	Absinthe.Pipeline.ErrorResult

 	Absinthe.Adapter

 	Absinthe.Adapter.LanguageConventions

 	Absinthe.Adapter.Passthrough

 	Absinthe.Adapter.Underscore

 	Absinthe.Blueprint

 	Absinthe.Blueprint.Execution

 	Absinthe.Complexity

 	Absinthe.Resolution

 	Absinthe.Introspection

 	Absinthe.Test

 	Absinthe.Logger

 	Absinthe.Utils

 	Absinthe.Utils.Suggestion

 	Exceptions

 	Absinthe.AnalysisError

 	Absinthe.ExecutionError

 	Absinthe.Schema.Error

 	Absinthe.Schema.Notation.Error

 	Mix Tasks

 	mix absinthe.schema.json

 	mix absinthe.schema.sdl

Overview

Absinthe is the GraphQL toolkit for Elixir, an implementation of the GraphQL specification built to suit the language's capabilities and idiomatic style.

The Absinthe project consists of several complementary packages. You can find the full listing on the absinthe-graphql GitHub organization page.

GraphQL Basics

If you're new to GraphQL, we suggest you read up a bit on GraphQL's foundational principles before you dive into Absinthe.

Here are a few resources that might be helpful:

	The official GraphQL website

	How to GraphQL, which includes a brief tutorial using Absinthe

Absinthe

Absinthe's functionality generally falls into two broad areas. You can read more about the details in the guides provided as part of this documentation and in the related packages/projects:

	Defining Schemas. A schema:

	defines the structure of data entities and the relationships between, as well as the available queries, mutations, and subscriptions, using an elegant collection of declarative macros

	defines custom scalar types

	declares any deprecated definitions

	defines resolution functions to access data, using a flexible and extensible middleware/plugin system

	Executing Documents. A GraphQL document:

	can be any standard GraphQL query, mutation, or subscription

	may include reusable variable definitions

	can be analyzed for its complexity and be rejected if it's unsafe/too expensive

	has a context that you can integrate with authentication and authorization strategies

	can contain standard GraphQL introspection fields

	can include multipart file uploads as GraphQL arguments (as part of the absinthe_plug package)

Integrations

Absinthe integrates with a number of other important projects, both on the backend and frontend, to provide a better experience for developers.

	Elixir

	Support for HTTP APIs using Plug and Phoenix via the absinthe_plug and absinthe_phoenix packages

	Support for Ecto via the dataloader package

	JavaScript (client-side)

	Support for Relay and Apollo Client

	Support for Absinthe's channel-based subscriptions. See absinthe-socket.

Guides

To contribute to the guides, please submit a pull request to the absinthe project on GitHub.

You'll find the content under guides/.

Installation

To install Absinthe, just add an entry to your mix.exs:

def deps do
 [
 # ...
 {:absinthe, "~> 1.4"}
]
end

(Check Hex to make sure you're using an up-to-date version number.)

Overriding Dependencies

Because the Absinthe project is made up of a large number of related packages to support integrations with other tools, sometimes you may want to update only part of your absinthe-related dependencies.

Don't forget you can use the :override option for your Mix dependencies if you'd like to ensure a specific package is at a specific version number. For example, If you wanted to try a new version of Absinthe without updating something that depends on it (which is locked to an older version):

def deps do
 [
 # ...
 {:absinthe, "~> 1.4", override: true}
]
end

Plug, Phoenix, and GraphiQL

Most people use Absinthe to support an HTTP API.

You'll want to read the Plug and Phoenix for specific installation and configuration options, including how you can run the handy, included GraphiQL tool directly from your application.

Learning

The following are some Absinthe-specific educational resources that are available.

Books

	Craft GraphQL APIs in Elixir with Absinthe by the creators of Absinthe (ebook in beta, print version out in late 2017/early 2018)

Online Resources

	Website (mostly just links elsewhere)

	Documentation (current stable release)

	How to GraphQL (with Absinthe)

Videos

	Live APIs with GraphQL Subscriptions, ElixirConf 2017 (Bellevue)

	GraphQL in Practice, ElixirConf EU 2017 (Barcelona)

General GraphQL Information

There's a ton of GraphQL resources on the web.

The official website and How to GraphQL are good places to start.

Community

Twitter

Follow the project on Twitter as @absinthegraphql for news and additional resources.

Chat

You can find the maintainers and an active community of users and contributors in the #absinthe-graphql channel in the Elixir Slack.

Forum

Questions and suggestions can be submitted on the Elixir Forum. Please categorize/tag as Absinthe.

Getting Started

We'll be building a very basic GraphQL API for a blog, written in Elixir using
Absinthe.

Background

Before you start, it's a good idea to have some background into GraphQL in general. Here are a few resources that might be helpful:

	The official GraphQL website

	How to GraphQL (this includes another brief tutorial using Absinthe)

The Example

 The tutorial expects you to have a properly set-up Phoenix application with absinthe and absinthe_plug added to the dependencies.

 If you'd like to cheat, you can find the finished code for the tutorial
 in the Absinthe Example
 project on GitHub.

First Step

Let's get started with our first query!

Our First Query

The first thing our viewers want is a list of our blog posts, so
that's what we're going to give them. Here's the query we want to
support:

{
 posts {
 title
 body
 }
}

To do this we're going to need a schema. Let's create some basic types
for our schema, starting with a :post. GraphQL has several fundamental
types on top of which all of our types will be
built. The Object type is the right one
to use when representing a set of key value pairs.

Since our Post Ecto schema lives in the Blog.Content Phoenix
context, we'll define its GraphQL counterpart type, :post, in a
matching BlogWeb.Schema.ContentTypes module:

In blog_web/schema/content_types.ex:

defmodule BlogWeb.Schema.ContentTypes do
 use Absinthe.Schema.Notation

 object :post do
 field :id, :id
 field :title, :string
 field :body, :string
 end
end

The GraphQL specification requires that type names be unique, TitleCased words.
Absinthe does this automatically for us, extrapolating from our type identifier
(in this case :post gives us "Post". If really needed, we could provide a
custom type name as a :name option to the object macro.

If you're curious what the type :id is used by the :id field, see
the GraphQL spec. It's
an opaque value, and in our case is just the regular Ecto id, but
serialized as a string.

With our type completed we can now write a basic schema that will let
us query a set of posts.

In blog_web/schema.ex:

defmodule BlogWeb.Schema do
 use Absinthe.Schema
 import_types BlogWeb.Schema.ContentTypes

 alias BlogWeb.Resolvers

 query do

 @desc "Get all posts"
 field :posts, list_of(:post) do
 resolve &Resolvers.Content.list_posts/3
 end

 end

end

For more information on the macros available to build a schema, see
their definitions in Absinthe.Schema and
Absinthe.Schema.Notation.

This uses a resolver module we've created (again, to match the Phoenix context naming)
at blog_web/resolvers/content.ex:

defmodule BlogWeb.Resolvers.Content do

 def list_posts(_parent, _args, _resolution) do
 {:ok, Blog.Content.list_posts()}
 end

end

Queries are defined as fields inside the GraphQL object returned by
our query function. We created a posts query that has a type
list_of(:post) and is resolved by our
BlogWeb.Resolvers.Content.list_posts/3 function. Later we'll talk
more about the resolver function parameters; for now just remember
that resolver functions can take two forms:

	A function with an arity of 3 (taking a parent, arguments, and resolution struct)

	An alternate, short form with an arity of 2 (omitting the first parameter, the parent)

The job of the resolver function is to return the data for the
requested field. Our resolver calls out to the Blog.Content module,
which is where all the domain logic for posts lives, invoking its
list_posts/0 function, then returns the posts in an :ok tuple.

Resolvers can return a wide variety of results, to include errors and configuration
for advanced plugins that further process the data.

If you're asking yourself what the implementation of the domain logic looks like, and exactly how
the related Ecto schemas are built, read through the code in the absinthe_tutorial
repository. The tutorial content here is intentionally focused on the Absinthe-specific code.

Now that we have the functional pieces in place, let's configure our
Phoenix router to wire this into HTTP:

In blog_web/router.ex:

defmodule BlogWeb.Router do
 use BlogWeb, :router

 pipeline :api do
 plug :accepts, ["json"]
 end

 scope "/api" do
 pipe_through :api

 forward "/graphiql", Absinthe.Plug.GraphiQL,
 schema: BlogWeb.Schema

 forward "/", Absinthe.Plug,
 schema: BlogWeb.Schema

 end

end

In addition to our API, we've wired in a handy GraphiQL user interface to play with it. Absinthe integrates both the classic GraphiQL and more advanced GraphiQL Workspace interfaces as part of the absinthe_plug package.

Now let's check to make sure everything is working. Start the server:

$ mix phx.server

Absinthe does a number of sanity checks during compilation, so if you misspell a type or make another schema-related gaffe, you'll be notified.

Once it's up-and-running, take a look at http://localhost:4000/api/graphiql:

[image:]Make sure that the URL is pointing to the correct place and press the play button. If everything goes according to plan, you should see something like this:

[image:]Next Step

Now let's look at how we can add arguments to our queries.

Query Arguments

Our GraphQL API would be pretty boring (and useless) if clients
couldn't retrieve filtered data.

Let's assume that our API needs to add the ability to look-up users by
their ID and get the posts that they've authored. Here's what a basic query to do that
might look like:

{
 user(id: "1") {
 name
 posts {
 id
 title
 }
 }
}

The query includes a field argument, id, contained within the
parentheses after the user field name. To make this all work, we need to modify
our schema a bit.

Defining Arguments

First, let's create a :user type and define its relationship to
:post while we're at it. We'll create a new module for the
account-related types and put it there; in
blog_web/schema/account_types.ex:

defmodule BlogWeb.Schema.AccountTypes do
 use Absinthe.Schema.Notation

 @desc "A user of the blog"
 object :user do
 field :id, :id
 field :name, :string
 field :email, :string
 field :posts, list_of(:post)
 end

end

The :posts field points to a list of :post results. (This matches
up with what we have on the Ecto side, where Blog.Accounts.User
defines a has_many association with Blog.Content.Post.)

We've already defined the :post type, but let's go ahead and add an
:author field that points back to our :user type. In
blog_web/schema/content_types.ex:

object :post do

 # post fields we defined earlier...

 field :author, :user

end

Now let's add the :user field to our query root object in our
schema, defining a mandatory :id argument and using the
Resolvers.Accounts.find_user/3 resolver function. We also need to
make sure we import the types from BlogWeb.Schema.AccountTypes so
that :user is available.

In blog_web/schema.ex:

defmodule BlogWeb.Schema do
 use Absinthe.Schema

 import_types Absinthe.Type.Custom

 # Add this `import_types`:
 import_types BlogWeb.Schema.AccountTypes

 import_types BlogWeb.Schema.ContentTypes

 alias BlogWeb.Resolvers

 query do

 @desc "Get all posts"
 field :posts, list_of(:post) do
 resolve &Resolvers.Content.list_posts/3
 end

 # Add this field:
 @desc "Get a user of the blog"
 field :user, :user do
 arg :id, non_null(:id)
 resolve &Resolvers.Accounts.find_user/3
 end

 end

end

Now lets use the argument in our resolver. In blog_web/resolvers/accounts.ex:

defmodule BlogWeb.Resolvers.Accounts do

 def find_user(_parent, %{id: id}, _resolution) do
 case Blog.Accounts.find_user(id) do
 nil ->
 {:error, "User ID #{id} not found"}
 user ->
 {:ok, user}
 end
 end

end

Our schema marks the :id argument as non_null, so we can be
certain we will receive it. If :id is left out of the query,
Absinthe will return an informative error to the user, and the resolve
function will not be called.

If you have experience writing Phoenix controller actions, you might
wonder why we can match incoming arguments with atoms instead of
having to use strings.

The answer is simple: you've defined the arguments in the schema
using atom identifiers, so Absinthe knows what arguments will be
used ahead of time, and will coerce as appropriate---culling any
extraneous arguments given to a query. This means that all arguments
can be supplied to the resolve functions with atom keys.

Finally you'll see that we can handle the possibility that the query,
while valid from GraphQL's perspective, may still ask for a user that
does not exist. We've decided to return an error in that case.

There's a valid argument for just returning {:ok, nil} when a
record can't be found. Whether the absence of data constitutes an
error is a decision you get to make.

Arguments and Non-Root Fields

Let's assume we want to query all posts from a user published within a
given time range. First, let's add a new field to our :post object
type, :published_at.

The GraphQL specification doesn't define any official date or time
types, but it does support custom scalar types (you can read more
about them in the related guide, and
Absinthe ships with several built-in scalar types. We'll use
:naive_datetime (which doesn't include timezone information) here.

Edit blog_web/schema/content_types.ex:

defmodule BlogWeb.Schema.ContentTypes do
 use Absinthe.Schema.Notation

 @desc "A blog post"
 object :post do
 field :id, :id
 field :title, :string
 field :body, :string
 field :author, :user
 # Add this:
 field :published_at, :naive_datetime
 end
end

To make the :naive_datetime type available, add an import_types line to
your blog_web/schema.ex:

import_types Absinthe.Type.Custom

For more information about how types are imported,
read the guide on the topic.

For now, just remember that import_types should only be
used in top-level schema module. (Think of it like a manifest.)

Here's the query we'd like to be able to use, getting the posts for a user
on a given date:

{
 user(id: "1") {
 name
 posts(date: "2017-01-01") {
 title
 body
 publishedAt
 }
 }
}

To use the passed date, we need to update our :user object type and
make some changes to its :posts field; it needs to support a :date
argument and use a custom resolver. In blog_web/schema/account_types.ex:

defmodule BlogWeb.Schema.AccountTypes do
 use Absinthe.Schema.Notation

 alias BlogWeb.Resolvers

 object :user do
 field :id, :id
 field :name, :string
 field :email, :string
 # Add the block here:
 field :posts, list_of(:post) do
 arg :date, :date
 resolve &Resolvers.Content.list_posts/3
 end
 end

end

For the resolver, we've added another function head to
Resolvers.Content.list_posts/3. This illustrates how you can use the
first argument to a resolver to match the parent object of a field. In
this case, that parent object would be a Blog.Accounts.User Ecto
schema:

Add this:
def list_posts(%Blog.Accounts.User{} = author, args, _resolution) do
 {:ok, Blog.Content.list_posts(author, args)}
end
Before this:
def list_posts(_parent, _args, _resolution) do
 {:ok, Blog.Content.list_posts()}
end

Here we pass on the user and arguments to the domain logic function,
Blog.Content.list_posts/3, which will find the posts for the user
and date (if it's provided; the :date argument is optional). The
resolver, just as when it's used for the top level query :posts,
returns the posts in an :ok tuple.

Check out the full implementation of logic for
Blog.Content.list_posts/3--and some simple seed data--in
the
absinthe_tutorial repository.

If you've done everything correctly (and have some data handy), if you
start up your server with mix phx.server and head over
to http://localhost:4000/api/graphiql, you should be able to play
with the query.

It should look something like this:

[image:]Next Step

Next up, we look at how to modify our data using mutations.

Mutations

A blog is no good without new content. We want to support a mutation
to create a blog post:

mutation CreatePost {
 createPost(title: "Second", body: "We're off to a great start!") {
 id
 }
}

Now we just need to define a mutation portion of our schema and
a :create_post field:

In blog_web/schema.ex:

mutation do

 @desc "Create a post"
 field :create_post, type: :post do
 arg :title, non_null(:string)
 arg :body, non_null(:string)
 arg :published_at, :naive_datetime

 resolve &Resolvers.Content.create_post/3
 end

end

The resolver in this case is responsible for making any changes and
returning an {:ok, post} tuple matching the :post type we defined
earlier:

In our blog_web/resolvers/content.ex module, we'll add the
create_post/3 resolver function:

def create_post(_parent, args, %{context: %{current_user: user}}) do
 Blog.Content.create_post(user, args)
end
def create_post(_parent, _args, _resolution) do
 {:error, "Access denied"}
end

Obviously things can go wrong in a mutation. To learn more about the
types of error results that Absinthe supports, read the guide.

Authorization

This resolver adds a new concept: authorization. The resolution struct
(that is, an Absinthe.Resolution)
passed to the resolver as the third argument carries along with it the
Absinthe context, a data structure that serves as the integration
point with external mechanisms---like a Plug that authenticates the
current user. You can learn more about how the context can be used in
the Context and Authentication
guide.

Going back to the resolver code:

	If the match for a current user is successful, the underlying
 Blog.Content.create_post/2 function is invoked. It will return a
 tuple suitable for return. (To read the Ecto-related nitty gritty,
 check out the absinthe_tutorial
 repository.)

	If the match for a current user isn't successful, the fall-through
 match will return an error indicating that a post can't be created.

Next Step

Now let's take a look at more complex arguments.

Complex Arguments

In preparation for supporting comments on our blog, let's create users. We're building
a modern mobile first blog of course, and thus want to support either a phone number
or an email as the contact method for a user.

We want to support the following mutations.

Support creation of a user with their email address:

mutation CreateEmailUser {
 createUser(contact: {type: EMAIL, value: "foo@bar.com"}, name: "Jane", password: "hunter1") {
 id
 contacts {
 type
 value
 }
 }
}

And by using their phone number:

mutation CreatePhoneUser {
 createUser(contact: {type: PHONE, value: "+1 123 5551212"}, name: "Joe", password: "hunter2") {
 id
 contacts {
 type
 value
 }
 }
}

To do this we need the ability to create nested arguments. GraphQL has input objects
for this purpose. Input objects, like regular object, contain key value pairs, but
they are intended for input only (you can't do circular references with them for example).

Another notion we'll look at here is an enumerable type. We only want to support contact
types "email" and "phone" at the moment, and GraphQL gives us the ability to
specify this in our schema.

Let's start with our :contact_type Enum. In blog_web/schema/account_types.ex:

enum :contact_type do
 value :phone, as: "phone"
 value :email, as: "email"
end

We're using the :as option here to make sure the parsed enum is represented by a string
when it's passed to our controllers; this is to ease integration with our Ecto schema
(by default, the enum values are passed as atoms).

The standard convention for representing incoming enum values in
GraphQL documents are in all caps. For instance, given our settings
here, the accepted values would be PHONE and EMAIL (without
quotes). See the GraphQL document examples above for examples.

While the enum macro supports configuring this incoming format, we
highly recommend you just use the GraphQL convention.

Now if a user tries to send some other kind of contact type they'll
get a nice error without any extra effort on your part. Enum types are
not a substitute for modeling layer validations however, be sure to
still enforce things like this on that layer too.

Now for our contact input object.

In blog_web/schema/account_types.ex:

input_object :contact_input do
 field :type, non_null(:contact_type)
 field :value, non_null(:string)
end

Note that we name this type :contact_input. Input object types have
their own names, and the _input suffix is common.

Important: It's very important to remember that only input
types---basically scalars and input objects---can be used to model
input.

Finally our schema, in blog_web/schema.ex:

mutation do

 #... other mutations

 @desc "Create a user"
 field :create_user, :user do
 arg :name, non_null(:string)
 arg :contact, non_null(:contact_input)
 arg :password, non_null(:string)

 resolve &Resolvers.Accounts.create_user/3
 end

end

Suppose in our database that we store contact information in a different database
table. Our mutation would be used to create both records in this case.

There does not need to be a one to one correspondence between how data is structured
in your underlying data store and how things are presented by your GraphQL API.

Our resolver, blog_web/resolvers/accounts.ex might look something like this:

def create_user(_parent, args, %{context: %{current_user: %{admin: true}}}) do
 Blog.Accounts.create_user(args)
end
def create_user(_parent, args, _resolution) do
 {:error, "Access denied"}
end

You'll notice we're checking for :current_user again in our Absinthe
context, just as we did before for posts. In this case we're taking
the authorization check a step further and verifying that only
administrators (in this simple example, an administrator is a user
account with :admin set to true) can create a user.

Everyone else gets an "Access denied" error for this field.

To see the Ecto-related implementation of the
Blog.Accounts.create_user/1 function and the (stubbed) authentication logic we're
using for this example, see the absinthe_tutorial
repository.

Here's our mutation in action in GraphiQL.

[image:]Note we're sending a Authorization header to authenticate, which a
plug is handling. Make sure to read the
related guide for more
information on how to set-up authentication in your own
applications.

Our simple tutorial application is just using a simple stub: any
authorization token logs you in the first user. Obviously not what
you want in production!

Next Step

Now let's wrap things up.

Conclusion

With this we have a basic GraphQL based API for a blog. Head on over
to the github page if
you want the final code.

We hope to expand this tutorial to include a comment system that will
acquaint you with Union types and Fragments in the coming days.

Head on over to the topic guides for further reading, and see
the community page for information
on how to get help, ask questions, or contribute!

Please Help!

This tutorial is a work in progress, and while it covers the basics of
using Absinthe, there is plenty more that can be added and improved
upon. It's important that it's kept up-to-date, too, so if you notice
something that's slipped by us, please help us fix it!

Please contribute your GitHub issues (and pull requests!):

	The tutorial text is under guides/tutorial in the absinthe
 repository. It's in Markdown and easy to edit!

	The tutorial code located in the absinthe_tutorial repository.

Writing Schemas

A GraphQL API starts by building a schema. Using Absinthe, schemas are normal
modules that use Absinthe.Schema.

Here's a schema that supports looking up an item by ID:

filename: myapp/schema.ex
defmodule MyAppWeb.Schema do

 use Absinthe.Schema

 # Example data
 @items %{
 "foo" => %{id: "foo", name: "Foo"},
 "bar" => %{id: "bar", name: "Bar"}
 }

 query do
 field :item, :item do
 arg :id, non_null(:id)
 resolve fn %{id: item_id}, _ ->
 {:ok, @items[item_id]}
 end
 end
 end

end

 You may want to refer to the Absinthe API
 documentation for more detailed information as you look this over..

Some macros and functions used here that are worth mentioning, pulled in automatically from
Absinthe.Schema.Notation by use Absinthe.Schema:

	query - Defines the root query object. It's like using object but with
 nice defaults. There is a matching mutation macro as well.

	field - Defines a field in the enclosing object, input_object, or interface.

	arg - Defines an argument in the enclosing field or directive.

	resolve - Sets the resolve function for the enclosing field.

You'll notice we mention some types being referenced: :item and :id. :id
is a built-in scalar type (like :string, :boolean, and others), but :item
we need to define ourselves.

We can do it in the same MyAppWeb.Schema module, using the object macro defined by Absinthe.Schema.Notation:

filename: myapp/schema.ex
@desc "An item"
object :item do
 field :id, :id
 field :name, :string
end

Now you can use Absinthe to execute a query document. Keep in mind that for
HTTP, you'll probably want to use
Absinthe.Plug instead of executing
GraphQL query documents yourself. Absinthe doesn't know or care about HTTP,
but the absinthe_plug project does: it handles the vagaries of interacting
with HTTP GraphQL clients so you don't have to.

If you were executing query documents yourself (let's assume for a local tool),
it would go something like this:

"""
{
 item(id: "foo") {
 name
 }
}
"""
|> Absinthe.run(MyAppWeb.Schema)

Result
{:ok, %{data: %{"item" => %{"name" => "Foo"}}}}

Your schemas can be further customized using the options available to
Absinthe.Schema.Notation.field/4 to help provide for a richer experience for
your users, customize the field names, or mark fields as deprecated.

filename: myapp/language_schema.ex
@desc "A Language"
object :language do
 field :id, :id
 field :iso_639_1, :string, description: "2 character ISO 639-1 code", name: "iso639"
 field :name, :string, description: "English name of the language"
end

Importing Types

We could also move our type definitions out into a different module, for instance, MyAppWeb.Schema.Types, and then use import_types in our MyAppWeb.Schema:

filename: myapp/schema.ex
defmodule MyAppWeb.Schema.Types do
 use Absinthe.Schema.Notation

 object :item do
 field :id, :id
 field :name, :string
 end

 # ...

end

filename: myapp/schema.ex
defmodule MyAppWeb.Schema do
 use Absinthe.Schema

 import_types MyAppWeb.Schema.Types

 # ...

end

It's a nice way of separating the top-level query and mutation information,
which define the surface area of the API, with the actual types that it uses.

See Importing Types for a full guide to importing types.

Plug and Phoenix Setup

First, install Absinthe.Plug and a JSON codec of your choice,
eg, Jason:

filename: mix.exs
def deps do
 [
 {:absinthe_plug, "~> 1.4"},
 {:jason, "~> 1.1.0"},
]
end

Plug

To use, simply plug Absinthe.Plug in your pipeline.

plug Absinthe.Plug,
 schema: MyAppWeb.Schema

If you are going to support content types other than simply application/graphql
you should plug Absinthe.Plug after Plug.Parsers.

plug Plug.Parsers,
 parsers: [:urlencoded, :multipart, :json, Absinthe.Plug.Parser],
 json_decoder: Jason

plug Absinthe.Plug,
 schema: MyAppWeb.Schema

For more information on how the content types work, see General Usage.

Phoenix

If your entire API is going to be based on GraphQL, we recommend simply plugging
Absinthe.Plug in at the bottom of your endpoint, and removing your router altogether.

defmodule MyApp.Endpoint do
 use Phoenix.Endpoint, otp_app: :my_app

 plug Plug.RequestId
 plug Plug.Logger

 plug Plug.Parsers,
 parsers: [:urlencoded, :multipart, :json],
 pass: ["*/*"],
 json_decoder: Jason

 plug Absinthe.Plug,
 schema: MyAppWeb.Schema
end

If you want only Absinthe.Plug to serve a particular route, configure your router
like:

defmodule MyAppWeb.Router do
 use Phoenix.Router

 resource "/pages", MyAppWeb.PagesController

 forward "/api", Absinthe.Plug,
 schema: MyAppWeb.Schema
end

Now Absinthe.Plug will only serve GraphQL from the /api url.

Absinthe Context

Absinthe.Plug will pass any values found inside conn.private[:absinthe][:context]
on to Absinthe.run as the context. This is how you should handle logic that
uses headers -- most notably, Authentication.

For more information, see the Context guide.

GraphiQL

See the absinthe_plug
project and the GraphiQL portion of the Introspection guide to
learn how to use the built-in Absinthe.Plug.GraphiQL plug.

General Usage

This plug supports requests in a number of ways:

[bookmark: via-a-get]Via a GET

With a query string:

?query=query+GetItem($id:ID!){item(id:$id){name}}&variables={id:"foo"}

Due to varying limits on the maximum size of URLs,
we recommend using one of the POST options below instead, putting the query into the body of the request.

Via an application/json POST

With a POST body:

{
 "query": "query GetItem($id: ID!) { item(id: $id) { name } }",
 "variables": {
 "id": "foo"
 }
}

(We could also pull either query or variables out to the query string, just
as in the GET example.)

Via an application/graphql POST

With a query string:

?variables={id:"foo"}

And a POST body:

query GetItem($id: ID!) {
 item(id: $id) {
 name
 }
}

HTTP API

How clients interact with the plug over HTTP is designed to closely match that
of the official
express-graphql middleware.

In the example above, we went over the various ways to
make a request, but here are the details:

Once installed at a path, the plug will accept requests with the
following parameters:

	query - A string GraphQL document to be executed.

	variables - The runtime values to use for any GraphQL query variables
as a JSON object.

	operationName - If the provided query contains multiple named
operations, this specifies which operation should be executed. If not
provided, a 400 error will be returned if the query contains multiple
named operations.

The plug will first look for each parameter in the query string, eg:

/graphql?query=query+getUser($id:ID){user(id:$id){name}}&variables={"id":"4"}

If not found in the query string, it will look in the POST request body, using
a strategy based on the Content-Type header.

For content types application/json and application/x-www-form-urlencoded,
configure Plug.Parsers (or equivalent) to parse the request body before Absinthe.Plug, eg:

plug Plug.Parsers,
 parsers: [:urlencoded, :multipart, :json],
 pass: ["*/*"],
 json_decoder: Jason

For application/graphql, the POST body will be parsed as GraphQL query string,
which provides the query parameter. If variables or operationName are
needed, they should be passed as part of the

Configuration Notes

As a plug, Absinthe.Plug requires very little configuration. If you want to support
application/x-www-form-urlencoded or application/json you'll need to plug
Plug.Parsers first.

plug Plug.Parsers,
 parsers: [:urlencoded, :multipart, :json],
 pass: ["*/*"],
 json_decoder: Jason

plug Absinthe.Plug,
 schema: MyApp.Linen.Schema

Absinthe.Plug requires a schema: config.

It also takes several options. See the documentation
for the full listing.

Inside Phoenix controllers

You can use GraphQL as the datasource for your Phoenix controllers. For this
you'll need to add absinthe_phoenix to your dependencies. See Absinthe Phoenix for installation instructions.

@graphql """
 query ($filter: UserFilter) {
 users(filter: $filter, limit: 10)
 }
"""
def index(conn, %{data: data}) do
 render conn, "index.html", data
end

The results of the query are now available in the "index.html" template. For
more information, see Absinthe.Phoenix.Controller

Ecto Best Practices

Avoiding N+1 Queries

In general, you want to make sure that when accessing Ecto associations that you
preload the data in the top level resolver functions to avoid N+1 queries.

Imagine this scenario: You have posts and users. A Post has an author field, which
returns a user. You want to list all posts, and get the name of their author:

{
 posts {
 author {
 name
 }
 }
}

If you write your schema like this, you're going to have a bad time due to issues with N + 1:

object :post do
 @desc "Author of the post"
 field :author, :user do
 resolve fn post, _, _ ->
 author =
 post
 |> Ecto.assoc(:author)
 |> Repo.one

 {:ok, author}
 end
 end
end

query do
 field :posts, list_of(:post) do
 resolve fn _, _ ->
 {:ok, Post |> Repo.all}
 end
 end
end

What this schema will do when presented with the GraphQL query is
run Post |> Repo.all, which will retrieve N posts. Then for each
post it will resolve child fields, which runs our Repo.one query
function, resulting in N+1 calls to the database.

One way to handle this issue is with Absinthe's support for
batching. The idea with batching is that we're gonna aggregate all the
author_ids from each post, and then make one call to the user.

Let's first make a function to get a model by ids:

defmodule MyAppWeb.Schema.Helpers do
 def by_id(model, ids) do
 import Ecto.Query

 ids = ids |> Enum.uniq

 model
 |> where([m], m.id in ^ids)
 |> Repo.all
 |> Map.new(&{&1.id, &1})
 end
end

Now we can use this function to batch our author lookups:

object :post do

 @desc "Author of the post"
 field :author, :user do
 resolve fn post, _, _ ->
 batch({MyAppWeb.Schema.Helpers, :by_id, User}, post.author_id, fn batch_results ->
 {:ok, Map.get(batch_results, post.author_id)}
 end)
 end
 end

end

Now we make just two calls to the database. The first call loads all of the posts.
Then as Absinthe walks through each post and tries to get the author, it's instead
told to aggregate its information.

That aggregate information is passed on to our by_id/2 function from earlier.
It grabs ALL the users in just one database call, and creates a map of user ids
to users.

Absinthe then does a second pass and calls the batch_results function with that
map, letting us retrieve the individual author for each post.

Not only is this a very efficient way to query the data, it's also 100% dynamic.
If a query document asks for authors, they're loaded efficiently. If it does not,
they aren't loaded at all.

We've made it easier and more flexible, however, with
Elixir's dataloader package.

Dataloader

Absinthe.Middleware.Batch achieves a lot and, with some helpers, was the
standard way to solve this problem for a long time. While batching still has a
place, it has a few limitations that have driven the development of Dataloader.
There are small scale annoyances like the limitation of only being able to batch
one thing at a time in a field, or the fact that the API can get very verbose.

There's also some larger scale issues however. Ecto has a fair number of quirks
that make it a difficult library to abstract access to. If you want the
concurrent test system to work, you need to add self() to all the batch keys
and do Repo.all(caller: pid) in every batch function so that it knows which
sandbox to use. It gets very easy for your GraphQL functions to become full of
direct database access, inevitably going around important data access rules you
may want to enforce in your contexts. Alternatively, your context functions can
end up with dozens of little functions that only exist to support batching items
by ID.

In time, people involved in larger projects have been able to build some
abstractions, helpers, and conventions around the Absinthe.Middleware.Batch
plugin that have done a good job of addressing these issues. That effort has been
extracted into the Dataloader project, which also draws inspiration from similar
projects in the GraphQL world.

Getting Started

Let's jump straight in to getting Dataloader working, and then we'll expand on
what's actually happening behind the scenes.

Using Dataloader is as simple as doing:

import Absinthe.Resolution.Helpers, only: [dataloader: 1]

object :author do
 @desc "Author of the post"
 field :posts, list_of(:post), resolve: dataloader(Blog)
end

To make this work we need to setup a dataloader, add the Blog source to it, and
make sure our schema knows it needs to run the dataloader.

First however make sure to include the dataloader dependency in your application:

{:dataloader, "~> 1.0.0"}

Latest install instructions found here: https://github.com/absinthe-graphql/dataloader

Let's start with a data source. Dataloader data sources are just structs that encode
a way of retrieving data in batches. In a Phoenix application you'll generally have one
source per context, so that each context can control how its data is loaded.

Here is a hypothetical Blog context and a dataloader ecto source:

defmodule MyApp.Blog do
 def data() do
 Dataloader.Ecto.new(MyApp.Repo, query: &query/2)
 end

 def query(queryable, _params) do
 queryable
 end
end

When integrating Dataloader with GraphQL, we want to place it in our context so
that we can access it in our resolvers. In your schema module add:

alias MyApp.{Blog, Foo}

def context(ctx) do
 loader =
 Dataloader.new
 |> Dataloader.add_source(Blog, Blog.data())
 |> Dataloader.add_source(Foo, Foo.data()) # Foo source could be a Redis source

 Map.put(ctx, :loader, loader)
end

def plugins do
 [Absinthe.Middleware.Dataloader] ++ Absinthe.Plugin.defaults()
end

The context/1 function is a callback specified by the Absinthe.Schema behaviour that gives
the schema itself an opportunity to set some values in the context that it may need in order to run.

The plugins/0 function has been around for a while, and specifies what plugins the schema needs to resolve.
See the documentation for more.

That's it! If you run a GraphQL query that hits that field, it will be loaded efficiently without N+1.

Unpacking Dataloader

The data/0 function creates an Ecto data source, to which you pass your repo and a query function. This query function
is called every time you want to load something, and provides an opportunity to apply arguments or
set defaults. So for example if you always want to only load non-deleted posts you can do:

def query(Post, _) do
 from p in Post, where: is_nil(p.deleted_at)
end
def query(queryable, _) do
 queryable
end

Now any time you're loading posts, you'll just get posts that haven't been
deleted. Helpfully, this rule is defined within your context, helping ensure
that it has the final say about data access.

To actually use this data source we need to add a loader to your Absinthe
Context:

defmodule MyAppWeb.Context do
 alias MyApp.Blog
 def dataloader() do
 Dataloader.new
 |> Dataloader.add_source(Blog, Blog.data())
 end
end

Deprecated in v1.4: Batching with Absinthe.Ecto

The batching helper functions present
in absinthe_ecto
provided some early support for making it easy to get data from Ecto.

These batching features are considered DEPRECATED in favor of
Dataloader, described above.

There are a number of useful features that may be added to absinthe_ecto in the
future to support other integration concerns (schema definition, error handling),
but the batching support will eventually be phased out. Please use Dataloader.

Here's an example of use:

use Absinthe.Ecto, repo: MyApp.Repo

object :post do
 @desc "Author of the post"
 field :author, :user, resolve: assoc(:author)
end

You can pass a function to it so that you can handle query arguments:

use Absinthe.Ecto, repo: MyApp.Repo
import Ecto.Query

object :author do
 @desc "posts by an author"
 field :posts, list_of(:post) do
 arg :category_id, :id
 resolve assoc(:posts, fn query, args, _ctx ->
 query |> where(category_id ^args.category_id)
 end)
 end
end

The issue here is that the resolvers become full of lots of on off SQL queries,
without providing your domain logic any easy opportunity to apply general rules
about how data should be accessed or loaded.

Although Dataloader requires a little bit more setup, it is a lot more flexible
since it can handle non-Ecto data sources, and it lets each part of your code
focus on what it should be doing. Your resolvers handle translating GraphQL
specific concerns into function calls to your domain logic, and your domain
logic gets to focus on enforcing the rules you want, without getting cluttered
up with dozens and dozens of single purpose data loading functions.

Formatting Ecto.Changeset Errors

You may want to look at the errors guide and
the kronky package.

Writing Middleware and Plugins

Middleware enables custom resolution behaviour on a field. You can use them to share common logic that needs to happen before or after resolving fields. Things like authentication and error handling.

Create a Middleware

In order to create a Middleware you need a module that implements Absinthe.Middleware behaviour . Your module needs to have a call/2 method which receives an %Absinthe.Resolution{} struct and some options as its parameters, and then returns a possibly altered resolution struct.

Here is an example of a middleware that handle Ecto.Changeset errors and makes sure we properly add error message to the errors in the response.

defmodule MyApp.Middlewares.HandleChangesetErrors do
 @behaviour Absinthe.Middleware
 def call(resolution, _) do
 %{resolution |
 errors: Enum.flat_map(resolution.errors, &handle_error/1)
 }
 end

 defp handle_error(%Ecto.Changeset{} = changeset) do
 changeset
 |> Ecto.Changeset.traverse_errors(fn {err, _opts} -> err end)
 |> Enum.map(fn({k,v}) -> "#{k}: #{v}" end)
 end
 defp handle_error(error), do: [error]
end

The resolution struct has all kinds of useful values inside of it. You can access the Absinthe context, the root value, information about the current field's AST, and more. For more information on how the current user ends up in the context please see our full authentication guide.

Using Middlewares

Middleware can be placed on a field in few different ways:

1. Using the Absinthe.Schema.Notation.middleware/2 macro used inside a field definition

This option is good when you want to add your middleware on few specific fields. You can use middleware to add multiple Middlewares before or after resolve. In this example MyApp.Web.Authentication would run before resolution, and HandleError would run after.

field :hello, :string do
 middleware MyApp.Web.Authentication
 resolve &get_the_string/2
 middleware HandleError, :foo
end

2. Using the middleware/3 callback in your schema.

This option is good if you want to add your middleware on all or a group of fields based on the type of query. middleware/3 is a function callback on a schema. When you use Absinthe.Schema a default implementation of this function is placed in your schema. It is passed the existing middleware for a field, the field itself, and the object that the field is a part of.
You can override this callback to add your Middleware in the list of existing middlewares. In this example we add our HandleChangesetError Middleware only to mutations.

add this to your schema module

if it's a field for the mutation object, add this middleware to the end
def middleware(middleware, _field, %{identifier: :mutation}) do
 middleware ++ [MyApp.Middlewares.HandleChangesetErrors]
end
if it's any other object keep things as is
def middleware(middleware, _field, _object), do: middleware

3. Returning a {:middleware, middleware_spec, config} tuple from a resolution function.

You can update your resolution function to return {:middleware, MyApp.Middlewares.HandleChangesetErrors, config}, note that in this case the middleware can only be applied after the resolution.

Returning Errors

This guide could use some improvement.

You can help! Please fork the absinthe repository, edit guides/errors.md, and submit a pull request.

One or more errors for a field can be returned in a single {:error, error_value} tuple.

error_value can be:

	A simple error message string.

	A map containing :message key, plus any additional serializable metadata.

	A keyword list containing a :message key, plus any additional serializable metadata.

	A list containing multiple of any/all of these.

	Any other value compatible with to_string/1.

Basic Errors

A simple error message:

{:error, "Something bad happened"}

Multiple error messages:

{:error, ["Something bad", "Even worse"]}

Single custom errors (note the required :message keys):

{:error, message: "Unknown user", code: 21}
{:error, %{message: "A database error occurred", details: format_db_error(some_value)}}

Three errors of mixed types:

{:error, ["Simple message", [message: "A keyword list error", code: 1], %{message: "A map error"}]}

Generic handler for interoperability with errors from other libraries:

{:error, :foo}
{:error, 1.0}
{:error, 2}

Ecto.Changeset Errors

You may want to look at the Absinthe ErrorPayload package.

Batching Resolution

We're sorry, this guide hasn't been written yet.

You can help! Please fork the absinthe repository, edit guides/batching.md, and submit a pull request.

See the documentation for Absinthe.Middleware.Batch for more information.

Dataloader

Dataloader provides an easy way efficiently load data in batches.
It's inspired by https://github.com/facebook/dataloader

Installation

def deps do
 [
 {:dataloader, "~> 1.0.0"}
]
end

Usage

The core concept of dataloader is a data source which is just a struct
that encodes a way of retrieving data. More info in the Sources section.

Schema

Absinthe provides some dataloader helpers out of the box that you can import into your schema

 import Absinthe.Resolution.Helpers, only: [dataloader: 1]

This is needed to use the various dataloader helpers to resolve a field:

field(:teams, list_of(:team), resolve: dataloader(Nhl))

It also provides a plugin you need to add to help with resolution:

def plugins do
 [Absinthe.Middleware.Dataloader] ++ Absinthe.Plugin.defaults()
end

Finally you need to make sure your loader is in your context:

def context(ctx) do
 loader =
 Dataloader.new()
 |> Dataloader.add_source(Nhl, Nhl.data())

 Map.put(ctx, :loader, loader)
end

Putting all that together looks like this:

defmodule MyProject.Schema do
 use Absinthe.Schema
 use Absinthe.Schema.Notation

 import Absinthe.Resolution.Helpers, only: [dataloader: 1]

 alias MyProject.Loaders.Nhl

 def context(ctx) do
 loader =
 Dataloader.new()
 |> Dataloader.add_source(Nhl, Nhl.data())

 Map.put(ctx, :loader, loader)
 end

 def plugins do
 [Absinthe.Middleware.Dataloader] ++ Absinthe.Plugin.defaults()
 end

 object :team do
 field(:id, non_null(:id))
 field(:name, non_null(:string))
 field(:city, non_null(:string))
 end

 query do
 field(:teams, list_of(:team), resolve: dataloader(Nhl))
 field :team, :team do
 arg(:id, non_null(:id))
 resolve(dataloader(Nhl))
 end
 end
end

Sources

Dataloader ships with two different built in sources:

	Ecto - for easily pulling out data with ecto

	KV - a simple KV key value source.

KV

Here is a simple example of a loader using the KV source in combination with absinthe:

defmodule MyProject.Loaders.Nhl do
 @teams [%{
 id: 1,
 name: "New Jersey Devils",
 abbreviation: "NJD"
 },
 %{
 id: 2,
 name: "New York Islanders",
 abbreviation: "NYI"
 }
 # etc.
]

 def data() do
 Dataloader.KV.new(&fetch/2)
 end

 def fetch(:teams, [%{}]) do
 %{
 %{} => @teams
 }
 end

 def fetch(:team, args) do
 # must return a map keyed by the args
 # args is a list of the args used to resolve your field
 # for example, if you have arg(:foo, non_null(:string))
 # args will look like: [%{foo: "value of foo here")}]

 args
 |> Enum.reduce(%{}, fn(%{id: id} = arg, result) ->
 Map.put(result, arg, find_team(id))
 end)
 end

 def fetch(_batch, args) do
 args |> Enum.reduce(%{}, fn(arg, accum) -> Map.put(accum, arg, nil) end)
 end

 defp find_team(id) do
 @teams |> Enum.find(fn(t) -> t |> Map.get(:id) == id end)
 end
end

Dataloader.KV requires a load function that accepts a batch and args. It must return a map of values keyed by the args.
This is the purpose of the fetch/2 function. The dataloader helper we imported above uses the field name as the batch, and a map where the argument name is the key. For example: fetch(:team, [%{ id: 1 }])

Pattern matching can be used to fetch differently depending on the batch. For example, when the :teams batch is requested, the args will actually be an empty map (i.e. %{}).

The Context and Authentication

Absinthe context exists to provide shared values to a given document execution.
A common use would be to pass in the current user of a given request. The context
is set at the call to Absinthe.run, and cannot be modified over the course of
a given execution.

Basic Usage

As a basic example let's think about a profile page, where we want the current user
to be able to access basic information about themselves, but not other users.

First we'll need a very basic schema:

defmodule MyAppWeb.Schema do
 use Absinthe.Schema

 @fakedb %{
 "1" => %{name: "Bob", email: "bubba@foo.com"},
 "2" => %{name: "Fred", email: "fredmeister@foo.com"},
 }

 query do
 field :profile, :user do
 resolve fn _, _, _ ->
 # How could we get a current user here?
 end
 end
 end

 object :user do
 field :id, :id
 field :name, :string
 field :email, :string
 end
end

A query we might want could look like:

{
 profile {
 email
 }
}

If we're signed in as user 1, we should get only user 1's email, for example:

{
 "profile": {
 "email": "bubba@foo.com"
 }
}

In order to set the context, our call to Absinthe.run/3 should look like:

Absinthe.run(document, MyAppWeb.Schema, context: %{current_user: %{id: "1"}})

To access this, we need to update our query's resolve function:

query do
 field :profile, :user do
 resolve fn _, _, %{context: %{current_user: current_user}} ->
 {:ok, Map.get(@fakedb, current_user.id)}
 end
 end
end

And now it works!

Context and Plugs

When using Absinthe.Plug you don't have direct access to the Absinthe.run call.
Instead, we can use Absinthe.Plug.put_options/2 to set context values which
Absinthe.Plug will use to pass it along to Absinthe.run.

Setting up your GraphQL context is as simple as writing a plug that inserts the
appropriate values into the connection.

Let's use this mechanism to set our current_user from the previous example via
an authentication header. We will use the same Schema as before.

First, our plug. We'll be checking the for the authorization header, and calling
out to some unspecified authentication mechanism.

defmodule MyAppWeb.Context do
 @behaviour Plug

 import Plug.Conn
 import Ecto.Query, only: [where: 2]

 alias MyApp.{Repo, User}

 def init(opts), do: opts

 def call(conn, _) do
 context = build_context(conn)
 Absinthe.Plug.put_options(conn, context: context)
 end

 @doc """
 Return the current user context based on the authorization header
 """
 def build_context(conn) do
 with ["Bearer " <> token] <- get_req_header(conn, "authorization"),
 {:ok, current_user} <- authorize(token) do
 %{current_user: current_user}
 else
 _ -> %{}
 end
 end

 defp authorize(token) do
 User
 |> where(token: ^token)
 |> Repo.one
 |> case do
 nil -> {:error, "invalid authorization token"}
 user -> {:ok, user}
 end
 end

end

This plug will use the authorization header to lookup the current user. If one
is found, it correctly sets the absinthe context. If you're using Guardian or
some other library that provides utilities for authenticating users you can use
those here too, and just add their output to the context.

If there is no current user it's better to simply not have the :current_user
key inside the map, instead of doing %{current_user: nil}. This way you an
just pattern match for %{current_user: user} in your code and not need to
worry about the nil case.

Using this plug is very simple. If we're just in a normal plug context we can
just make sure it's plugged prior to Absinthe.Plug

plug MyAppWeb.Context

plug Absinthe.Plug,
 schema: MyAppWeb.Schema

If you're using a Phoenix router, add the context plug to a pipeline.

defmodule MyAppWeb.Router do
 use Phoenix.Router

 resource "/pages", MyAppWeb.PagesController

 pipeline :graphql do
 plug MyAppWeb.Context
 end

 scope "/api" do
 pipe_through :graphql

 forward "/", Absinthe.Plug,
 schema: MyAppWeb.Schema
 end
end

Understanding Subscriptions

GraphQL subscriptions are a way to have events in the server push data out to clients in real time. The client submits a subscription document that asks for particular data, and then when events happen that document is run against that event and the resulting data is pushed out.

Like queries and mutations, subscriptions are not intrinsically tied to any particular transport, and they're built within Absinthe itself to be able to operate on many different platforms.

At the moment however the most common and fully featured platform that you can run them on with Elixir is via Phoenix channels, so this guide will walk you through the basics of getting them hooked up to a phoenix application.

Absinthe.Phoenix Setup

Packages you'll need:

{:absinthe, "~> 1.4.0"},
{:absinthe_phoenix, "~> 1.4.0"},

You need to have a working Phoenix pubsub configured. Here is what the default looks like if you create a new Phoenix project:

config :my_app, MyAppWeb.Endpoint,
 # ... other config
 pubsub: [name: MyApp.PubSub,
 adapter: Phoenix.PubSub.PG2]

In your application supervisor add a line after your existing endpoint supervision
line:

[
 # other children ...
 supervisor(MyAppWeb.Endpoint, []), # this line should already exist
 supervisor(Absinthe.Subscription, [MyAppWeb.Endpoint]), # add this line
 # other children ...
]

In Phoenix v1.4, the supervisor children are mounted like so:

List all child processes to be supervised
 children = [
 # Start the Ecto repository
 MyAppWeb.Repo,
 # Start the endpoint when the application starts
 MyAppWeb.Endpoint,
 {Absinthe.Subscription, [MyAppWeb.Endpoint]}
]

 # See https://hexdocs.pm/elixir/Supervisor.html
 # for other strategies and supported options
 opts = [strategy: :one_for_one, name: MyAppWeb.Supervisor]
 Supervisor.start_link(children, opts)

Where MyAppWeb.Endpoint is the name of your application's phoenix endpoint.

In your MyAppWeb.Endpoint module add:

use Absinthe.Phoenix.Endpoint

For your socket, different configurations are used depending on what version of
Phoenix you're using.

Phoenix 1.3 and 1.4

use Absinthe.Phoenix.Socket,
 schema: MyAppWeb.Schema

Phoenix 1.2

 use Absinthe.Phoenix.Socket
 def connect(_params, socket) do
 socket = Absinthe.Phoenix.Socket.put_schema(socket, MyAppWeb.Schema)
 {:ok, socket}
 end

Where MyAppWeb.Schema is the name of your Absinthe schema module.

GraphiQL (optional)

If you're using the GraphiQL plug, in your MyAppWeb.Router, specify the socket option:

forward "/graphiql",
 Absinthe.Plug.GraphiQL,
 schema: MyAppWeb.Schema,
 socket: MyAppWeb.UserSocket

That is all that's required for setup on the server.

Setting Options

Options like the context can be configured in the connect/2 callback in your
socket module.

Note: The transport macro is deprecated in phoenix 1.4 and can be omitted.

defmodule MyAppWeb.UserSocket do
 use Phoenix.Socket
 use Absinthe.Phoenix.Socket,
 schema: MyApp.Web.Schema

 # Deprecated in Phoenix v1.4
 transport :websocket, Phoenix.Transports.WebSocket

 def connect(params, socket) do
 current_user = current_user(params)
 socket = Absinthe.Phoenix.Socket.put_opts(socket, context: %{
 current_user: current_user
 })
 {:ok, socket}
 end

 defp current_user(%{"user_id" => id}) do
 MyApp.Repo.get(User, id)
 end

 def id(_socket), do: nil
end

Schema

Here's an example schema that lets you use subscriptions to get notified when a comment
is submitted to a GitHub repository:

mutation do
 field :submit_comment, :comment do
 arg :repo_name, non_null(:string)
 arg :content, non_null(:string)

 resolve &Github.submit_comment/3
 end
end

subscription do
 field :comment_added, :comment do
 arg :repo_name, non_null(:string)

 # The topic function is used to determine what topic a given subscription
 # cares about based on its arguments. You can think of it as a way to tell the
 # difference between
 # subscription {
 # commentAdded(repoName: "absinthe-graphql/absinthe") { content }
 # }
 #
 # and
 #
 # subscription {
 # commentAdded(repoName: "elixir-lang/elixir") { content }
 # }
 #
 # If needed, you can also provide a list of topics:
 # {:ok, topic: ["absinthe-graphql/absinthe", "elixir-lang/elixir"]}
 config fn args, _ ->
 {:ok, topic: args.repo_name}
 end

 # this tells Absinthe to run any subscriptions with this field every time
 # the :submit_comment mutation happens.
 # It also has a topic function used to find what subscriptions care about
 # this particular comment
 trigger :submit_comment, topic: fn comment ->
 comment.repository_name
 end

 resolve fn comment, _, _ ->
 # this function is often not actually necessary, as the default resolver
 # for subscription functions will just do what we're doing here.
 # The point is, subscription resolvers receive whatever value triggers
 # the subscription, in our case a comment.
 {:ok, comment}
 end

 end
end

Concretely, if client A submits a subscription document:

subscription {
 commentAdded(repoName: "absinthe-graphql/absinthe") {
 content
 }
}

This tells Absinthe to subscribe client A in the :comment_added field on the "absinthe-graphql/absinthe" topic, because that's what comes back from the setup function.

Then, if client B submits a mutation:

mutation {
 submitComment(repoName: "absinthe-graphql/absinthe", content: "Great library!") {
 id
 }
}

Client B will get the normal response to their mutation, and since they just ask for the id that's what they'll get.

Additionally, the :submit_comment mutation is configured as a trigger on the :commented_added subscription field, so the trigger function is called. That function returns "absinthe-graphql/absinthe" because that's the repository name for the comment, and now Absinthe knows it needs to get all subscriptions on the :comment_added field that have the "absinthe-graphql/absinthe" topic, so client A gets back:

{"data":{"commentAdded":{"content":"Great library!"}}}

If you want to publish to this subscription manually (not using triggers in the schema) you can do:

Absinthe.Subscription.publish(MyAppWeb.Endpoint, comment, comment_added: "absinthe-graphql/absinthe")

If you want to subscribe to mutations from within your application, you can do:

{:ok, %{"subscribed" => topic}} = Absinthe.run(subscription_query, MyAppWeb.Schema, context: %{pubsub: MyAppWeb.Endpoint})
MyAppWeb.Endpoint.subscribe(topic)

De-duplicating Updates

By default, Absinthe will resolve each outgoing publish once per individual subscription. This ensures:

	Different GraphQL documents each receive the different fields they requested

	User-specific updates are sent out, in case context contains user-specific data

To improve the scale at which your subscriptions operate, you may tell Absinthe when it is safe to de-duplicate updates. Simply return a context_id from your field's config function:

subscription do
 field :news_article_published, :article do
 config fn _, _ ->
 {:ok, topic: "*", context_id: "global"}
 end
 end
end

Here we return a constant ("global") because our :article type doesn't contain any user-specific fields on it.

Given these three active subscriptions:

user 1
subscription {
 newsArticlePublished { content }
}

user 2
subscription {
 newsArticlePublished { content author }
}

user 3
subscription {
 newsArticlePublished { content }
}

Since we provided a context_id, Absinthe will only run two documents per publish to this field:

	Once for user 1 and user 3 because they have the same context ID ("global") and sent the same document.

	Once for user 2. While user 2 has the same context ID ("global"), they provided a different document, so it cannot be de-duplicated with the other two.

Custom Scalar Types

One of the strengths of GraphQL is its extensibility---which doesn't end with
its object types, but is present all the way down to the scalar value level.

Sometimes it makes sense to build custom scalar types to better model your
domain. Here's how to do it.

The GraphQL Specification doesn't define date and datetime types, but Absinthe ships with several pre-built for use via import_types. In this example we'll look at how :datetime is defined.

Defining a scalar

Supporting additional scalar types is as easy as using the scalar macro and
providing parse and serialize functions.

Here's the definition for :datetime from Absinthe.Type.Custom:

@desc """
The [`DateTime`](https://hexdocs.pm/elixir/DateTime.html) scalar type represents a date and time in the UTC
timezone. The DateTime appears in a JSON response as an ISO8601 formatted
string, including UTC timezone ("Z"). The parsed date and time string will
be converted to UTC and any UTC offset other than 0 will be rejected.
"""
scalar :datetime, name: "DateTime" do
 serialize &DateTime.to_iso8601/1
 parse &parse_datetime/1
end

@spec parse_datetime(Absinthe.Blueprint.Input.String.t) :: {:ok, DateTime.t} | :error
@spec parse_datetime(Absinthe.Blueprint.Input.Null.t) :: {:ok, nil}
defp parse_datetime(%Absinthe.Blueprint.Input.String{value: value}) do
 case DateTime.from_iso8601(value) do
 {:ok, datetime, 0} -> {:ok, datetime}
 {:ok, _datetime, _offset} -> :error
 _error -> :error
 end
end
defp parse_datetime(%Absinthe.Blueprint.Input.Null{}) do
 {:ok, nil}
end
defp parse_datetime(_) do
 :error
end

Scalar definitions, created using the scalar macro from
Absinthe.Schema.Notation, are made up of two major elements:

	A function provided to parse that defines how input is converted
 from an AST
 value (an Absinthe.Blueprint.Input.t) to a value that's suitable
 for use in an argument and passed to a resolver.

	A function provided to serialize that defines how input is
 serialized back out when used as a result that should be sent back
 to the user.

In this example:

mutation CreatePost {
 post(title: "Second", body: "We're off to a great start!", publishedAt: "2017-11-01T12:00:00Z") {
 id
 publishedAt
 }
}

If our schema defines a :published_at argument with the :datetime type:

field :post, :post do
 arg :published_at, :datetime
 resolve fn _, args, _ ->
 # If the arg is provided, `args.published_at` will be a DateTime struct
 # ...
 end
end

Then, the value of the publishedAt GraphQL field ends up being
parsed by the parse_datetime/1 function; it's been defined as the
parse function for the :datetime type using the parse macro.

The value, "2017-11-01T12:00:00Z", will come into the function as an %Absinthe.Blueprint.Input.String{}, thanks to the hard work of the Absinthe parser and processing pipeline.

The parse_datetime/1 function pulls the string value out of the
input, parses it with DateTime.from_iso8601/1, then returns the
correct result. That result will be used as the value of the
:published_at argument when it's passed to the :post field
resolver.

It's important to note that---currently---the correct result from a
scalar's parse function in the event of the error is a lone atom,
:error, not an error tuple with a reason. In a future version of
Absinthe, custom parse errors may be supported.

The serializer of :datetime is a pretty simple affair; it uses the
DateTime.to_iso8601/1 utility function. It would be called to
serialize the %DateTime{} struct for the requested :published_at
field in the result.

More custom scalar examples can be found under Absinthe Wiki - Scalar Recipes.

Importing Types

It doesn't take long for a schema module to become crowded with types,
resolvers, and other customizations.

A good first step in cleaning up your schema is extracting your types,
organizing them into other modules, and then using Absinthe.Schema.Notation.import_types/1
to make them available to your schema.

Example

Let's say you have a schema that looks something like this:

defmodule MyAppWeb.Schema do
 use Absinthe.Schema

 object :user do
 field :name, :string
 end

 # Rest of the schema...

end

You could extract your :user type into a module, MyAppWeb.Schema.AccountTypes:

defmodule MyAppWeb.Schema.AccountTypes do
 use Absinthe.Schema.Notation

 object :user do
 field :name, :string
 end
end

Note that, unlike your schema module, type modules should use
Absinthe.Schema.Notation, not Absinthe.Schema.

Now, you need to make sure you use import_types to tell your schema
where to find additional types:

defmodule MyAppWeb.Schema do
 use Absinthe.Schema

 import_types MyAppWeb.Schema.AccountTypes

 # Rest of the schema...
end

Important: You should only use import_types from your schema
module; think of it like a manifest.

Now, your schema will be able to resolve any references to your :user type
during compilation.

What about root types?

Root types (which are defined using the query, mutation, and
subscription macros), can only be defined on the schema module---you
can't extract them, but you can use the import_fields mechanism to
extract their contents.

Here's an example:

query do
 import_fields :account_queries
end

This will look for a matching object type :account_queries, and pull
its fields into the root query type.

For more information, see the guide.

Importing Fields

Sometimes an object type becomes too large and needs to be broken into
pieces. This is especially true of the root query, mutation, and
subscription types that are defined in the schema module itself.

Absinthe provides a mechanism,
Absinthe.Schema.Notation.import_fields/1, to support objects being
able to import fields from other object types.

An Example

Let's say you're building a content management system. Your root query
type has become unwieldy over time, and your schema looks something
like this:

defmodule MyAppWeb.Schema do
 use Absinthe.Schema

 query do

 @desc "Get all the users, optionally filtering"
 field :users, list_of(:user) do
 # ...
 end

 @desc "Get a user using criteria"
 field :user, :user do
 # ...
 end

 # More account-related fields..

 @desc "Get all the articles, optionally filtering"
 field :articles, list_of(:article) do
 # ...
 end

 @desc "Get an article using criteria"
 field :article, :article do
 # ...
 end

 # More content-related fields...

 end

 # Other types...

end

This could be cleaned up to look something like this:

defmodule MyAppWeb.Schema do
 use Absinthe.Schema

 import_types MyAppWeb.Schema.AccountTypes
 import_types MyAppWeb.Schema.ContentTypes

 query do

 # Using :account_queries from MyAppWeb.Schema.AccountTypes
 import_fields :account_queries

 # Using :content_queries from MyAppWeb.Schema.ContentTypes
 import_fields :content_queries

 end

 # Other types...

end

import_fields here is pulling fields in from separate object types.

Before you can import fields from another object type, make sure
that the type in question is available to your schema. See
the guide on importing types for information
on how that's done.

Here's how those object types are defined.

First, AccountTypes:

defmodule MyAppWeb.Schema.AccountTypes do
 use Absinthe.Schema.Notation

 object :account_queries do

 @desc "Get all the users, optionally filtering"
 field :users, list_of(:user) do
 # ...
 end

 @desc "Get a user using criteria"
 field :user, :user do
 # ...
 end

 # More account-related fields...

 end

 # More account-related types...

end

And ContentTypes:

defmodule MyAppWeb.Schema.ContentTypes do
 use Absinthe.Schema.Notation

 object :content_queries do

 @desc "Get all the articles, optionally filtering"
 field :articles, list_of(:article) do
 # ...
 end

 @desc "Get an article using criteria"
 field :article, :article do
 # ...
 end

 # More content-related fields

 end

 # More content-related types...

end

For more information on import_types, see the guide.

Using Document Variables

GraphQL supports query documents that declare variables that can be accepted to fill-in values. This is a useful mechanism for reusing GraphQL documents---instead of attempting to interpolate values yourself.

	To support variables, simply define them for your query document as the specification expects, and pass in a variables option to Absinthe.run.

	If you're using absinthe_plug, variables are passed in for you automatically after being parsed
from the query parameters or POST body.

Here's an example of defining a non-nullable variable, id, in a document and then executing the document with a value for the variable:

"""
query GetItem($id: ID!) {
 item(id: $id) {
 name
 }
}
"""
|> Absinthe.run(MyAppWeb.Schema, variables: %{"id" => "bar"})

Result
{:ok, %{data: %{"item" => %{"name" => "Bar"}}}}

Schema Introspection

You can introspect your schema using __schema, __type, and __typename,
as described in the specification.

Examples

Seeing the names of the types in the schema:

"""
{
 __schema {
 types {
 name
 }
 }
}
""" |> Absinthe.run(MyAppWeb.Schema)
{:ok,
 %{data: %{
 "__schema" => %{
 "types" => [
 %{"name" => "Boolean"},
 %{"name" => "Float"},
 %{"name" => "ID"},
 %{"name" => "Int"},
 %{"name" => "String"},
 ...
]
 }
 }}
}

Getting the name of the queried type:

"""
{
 profile {
 name
 __typename
 }
}
""" |> Absinthe.run(MyAppWeb.Schema)
{:ok,
 %{data: %{
 "profile" => %{
 "name" => "Joe",
 "__typename" => "Person"
 }
 }}
}

Getting the name of the fields for a named type:

"""
{
 __type(name: "Person") {
 fields {
 name
 type {
 kind
 name
 }
 }
 }
}
""" |> Absinthe.run(MyAppWeb.Schema)
{:ok,
 %{data: %{
 "__type" => %{
 "fields" => [
 %{
 "name" => "name",
 "type" => %{"kind" => "SCALAR", "name" => "String"}
 },
 %{
 "name" => "age",
 "type" => %{"kind" => "SCALAR", "name" => "Int"}
 },
]
 }
 }}
}

Note that you may have to nest several depths of type/ofType, as
type information includes any wrapping layers of List
and/or NonNull.

Using GraphiQL

The GraphiQL project is
"an in-browser IDE for exploring GraphQL."

Absinthe provides GraphiQL via a plug in absinthe_plug. See the Plug and Phoenix Guide
for how to install that library. Once installed, usage is simple as:

plug Absinthe.Plug.GraphiQL, schema: MyAppWeb.Schema

If you want to use it at a particular path (in this case graphiql in your Phoenix
router, simply do:

filename: router.ex
forward "/graphiql", Absinthe.Plug.GraphiQL, schema: MyAppWeb.Schema

This can be trivially reserved to just the :dev elixir environment by doing:

filename: router.ex
if Mix.env == :dev do
 forward "/graphiql", Absinthe.Plug.GraphiQL, schema: MyAppWeb.Schema
end

If you'd prefer to use a desktop application, we recommend using the pre-built
Electron-based wrapper application,
GraphiQL.app.

GraphQL Hub

GraphQL Hub is an interesting website that you
can use to introspect a number of public GraphQL servers, using GraphiQL in the
browser and providing useful examples.

Schema Deprecation

Use the deprecate option when defining any field or enum value.

	Provide a binary value to give a deprecation reason

	Provide true to just mark it as deprecated

An example:

query do
 field :old_item, :item, deprecate: true
 field :another_old_item, :item, deprecate: "still too old"
end

You can also use the deprecate as a macro inside a block, for instance:

field :age, :integer do
 deprecate
 arg :user_id, non_null(:id)
end

With a reason:

field :ssn, :string do
 deprecate "Privacy concerns"
end

Warning: Deprecated fields and enum values are not reported by default during introspection.

Document Adapters

Absinthe supports an adapter mechanism that allows developers to define their
schema using one code convention (eg, snake_cased fields and arguments), but
accept query documents and return results (including names in errors) in
another (eg, camelCase). This is useful in allowing both client and server to
use conventions most natural to them.

Absinthe ships with two adapters:

	Absinthe.Adapter.LanguageConventions, which expects schemas to be defined
 in snake_case (the standard Elixir convention), translating to/from camelCase
 for incoming query documents and outgoing results. This is the default as of v0.3,
 and it is highly recommended that it's the adapter you use, as introspection
 currently makes certain assumptions about how to return results.

	Absinthe.Adapter.Underscore, which is similar to the LanguageConventions
 adapter but converts all incoming identifiers to underscores and does not
 modify outgoing identifiers (since those are already expected to be
 underscores). Unlike Absinthe.Adapter.Passthrough this does not break
 introspection.

	Absinthe.Adapter.Passthrough, which is a no-op adapter and makes no
 modifications.

To set the adapter, you provide it as an option to Absinthe.run/3:

Absinthe.run(query, MyAppWeb.Schema,
 adapter: Absinthe.Adapter.TheAdapterName)

Notably, this means you're able to switch adapters on case-by-case basis.
In a Phoenix application, this means you could even support using different
adapters for different clients.

A custom adapter module must merely implement the Absinthe.Adapter behaviour,
in many cases with use Absinthe.Adapter and only overriding the desired
functions.

Note that types that are defined external to your application (including
the introspection types) may not be compatible if you're using a different
adapter.

Complexity Analysis

A misbehaving client might send a very complex GraphQL query that would require
considerable resources to handle. In order to protect against this scenario, the
complexity of a query can be estimated before it is resolved and limited to a
specified maximum.

For example, to enable complexity analysis and limit the complexity to a value
of 50 -- if we were using Absinthe.run/3 directly -- we would do this:

Absinthe.run(doc, MyAppWeb.Schema, analyze_complexity: true, max_complexity: 50)

That would translate to the following configuration when using
absinthe_plug (>= v1.2.3):

plug Absinthe.Plug,
 schema: MyAppWeb.Schema,
 analyze_complexity: true,
 max_complexity: 50

The maximum value, 50, is compared to complexity values calculated for each request.

Complexity Analysis

Here's how the complexity value is calculated:

By default each field in a query will increase the complexity by 1. However it
can be useful to customize how the complexity value for a field. This is done in your schema using the
complexity/1 macro, which can accept a function or an explicit integer value.

As an example, when a field is a list, the complexity is often correlated to the
size of the list. To prevent large selections, a field can use a limit argument
with a suitable default (think, for instance, of page sizes during pagination),
and complexity can be calculated keeping that in mind. Here is a schema that
supports analyzing (and limiting) complexity using that approach:

defmodule MyAppWeb.Schema do

 use Absinthe.Schema

 query do
 field :people, list_of(:person) do
 arg :limit, :integer, default_value: 10
 complexity fn %{limit: limit}, child_complexity ->
 # set complexity based on maximum number of items in the list and
 # complexity of a child.
 limit * child_complexity
 end
 end
 end

 object :person do
 field :name, :string
 field :age, :integer
 # constant complexity for this object
 complexity 3
 end

end

For a field, the first argument to the function you supply to complexity/1 is the user arguments
-- just as a field's resolver can use user arguments to resolve its value, the complexity
function that you provide can use the same arguments to calculate the field's complexity.

The second argument passed to your complexity function is the child (that is,
the result of the field); in the example above, child_complexity would be 3,
as the field returns a list of :person objects, and the complexity of
:person is explicitly set to 3.

(If a complexity function accepts three arguments, the third will be an
%Absinthe.Resolution{} struct, just as with resolvers.)

If the value of a document's :limit argument was 10, the complexity of a single
:people field would be calculated as 30; 10, the value of :limit, times 3, the complexity of
the :person type.

So this would be okay:

{
 people(limit: 10) {
 name
 }
}

But this, at a complexity of 60, wouldn't:

{
 people(limit: 20) {
 name
 }
}

Complexity limiting

If a document's calculated complexity exceeds the configured limit, resolution
will be skipped and an error will be returned in the result detailing the
calculated and maximum complexities.

File Uploads

Absinthe provides a unique pattern to support file uploads in conjunction with normal GraphQL field arguments as part of the absinthe_plug package.

Example

The following schema includes a mutation field that accepts multiple uploaded files as arguments (:users and :metadata):

defmodule MyAppWeb.Schema do
 use Absinthe.Schema

 # Important: Needed to use the `:upload` type
 import_types Absinthe.Plug.Types

 mutation do
 field :upload_file, :string do
 arg :users, non_null(:upload)
 arg :metadata, :upload

 resolve fn args, _ ->
 args.users # this is a `%Plug.Upload{}` struct.

 {:ok, "success"}
 end
 end
 end
end

To send a mutation that includes a file upload, you need to
use the multipart/form-data content type. For example, using cURL:

$ curl -X POST \\
-F query="mutation { uploadFile(users: \"users_csv\", metadata: \"metadata_json\")}" \\
-F users_csv=@users.csv \\
-F metadata_json=@metadata.json \\
localhost:4000/graphql

Note how there is a correspondence between the value of the :users argument
and the -F option indicating the associated file.

By treating uploads as regular arguments we get all the usual GraphQL argument
benefits (such as validation and documentation)---which we wouldn't get if
we were merely putting them in the context as in other implementations.

Integration with Client-side GraphQL Frameworks

	Apollo: apollo-absinthe-upload-link

	Apollo (v1): apollo-absinthe-upload-client (Note: does not support Relay Native as of v1.0.1)

	Relay: (None known. Please submit a pull request updating this information.)

Testing

There are three main approaches to testing GraphQL APIs built with Absinthe:

	Testing resolver functions, since they do most of work.

	Testing GraphQL document execution directly via Absinthe.run/3, for the bigger picture.

	Outside-in, testing the full HTTP request/response cycle with absinthe_plug.

This guide focuses on the third approach, which we generally recommend since it exercises more
of your application.

Testing with Absinthe Plug

GraphQL is transport independent, but it's most often served over HTTP. To test HTTP requests with absinthe you'll also need absinthe_plug. This guide will also assume you're using Phoenix, although
it is possible to use Absinthe without it (see the Plug and Phoenix Setup Guide).

Example

Say we want to test the following schema:

defmodule MyAppWeb.Schema do
 use Absinthe.Schema

 @fakedb %{
 "1" => %{name: "Bob", email: "bubba@foo.com"},
 "2" => %{name: "Fred", email: "fredmeister@foo.com"}
 }

 query do
 field :user, :user do
 arg :id, non_null(:id)

 resolve &find_user/2
 end
 end

 object :user do
 field :name, :string
 field :email, :string
 end

 defp find_user(%{id: id}, _) do
 {:ok, Map.get(@fakedb, id)}
 end
end

Which we have exposed at the /api endpoint:

defmodule MyAppWeb.Router do
 use Phoenix.Router

 scope "/api" do
 forward "/", Absinthe.Plug, schema: MyAppWeb.Schema
 end
end

The test could look something like this:

defmodule MyAppWeb.SchemaTest do
 use MyAppWeb.ConnCase

 @user_query """
 query getUser($id: ID!) {
 user(id: $id) {
 name
 email
 }
 }
 """

 test "query: user", %{conn: conn} do
 conn =
 post(conn, "/api", %{
 "query" => @user_query,
 "variables" => %{id: 1}
 })

 assert json_response(conn, 200) == %{
 "data" => %{"user" => %{"email" => "bubba@foo.com", "name" => "Bob"}}
 }
 end
end

Phoenix generates the MyAppWeb.ConnCase test helper module. This supplies the
conn variable containing the request and response. It also has helper functions
such as post/3
and json_response/2.

The query is stored in the @user_query module attribute. We post this document to
the GraphQL endpoint at /api, along with a map of variables which will be
transformed to arguments for the getUser query.

The response to the query can then be directly asserted to be a JSON object of the right shape.

Using with JavaScript

You can interact with an Absinthe GraphQL server via HTTP (thanks to
absinthe_plug) and websockets (thanks to absinthe_phoenix):

We also have special support for configuring and working with specific
JavaScript frameworks. You can see the guides here:

	Apollo Client

	Relay

Over HTTP

To integrate a JavaScript application via HTTP, any standard GraphQL
HTTP request (GET/POST) will do.

Here's an example using
isomorphic-fetch:

require('isomorphic-fetch');

fetch('http://localhost:4000/graphql', {
 method: 'POST',
 headers: { 'Content-Type': 'application/json' },
 body: JSON.stringify({ query: '{ posts { title } }' }),
})
 .then(res => res.json())
 .then(res => console.log(res.data));

Over Websockets

See the @absinthe/socket NPM package
for special support for Absinthe's use of Phoenix channels for GraphQL over websockets, including support for
subscriptions.

Using with Apollo Client

An Apollo client manages its connection to the GraphQL server using links -- which are essentially middleware that tell Apollo how to resolve each query. You can configure Apollo to connect to your Absinthe server via HTTP, websockets, or both.

Using an HTTP link

Using Apollo with an HTTP link does not require any Absinthe-specific configuration. You can create an HTTP link pointed at your Absinthe server as follows:

import ApolloClient from "apollo-client";
import { createHttpLink } from "apollo-link-http";
import { InMemoryCache } from "apollo-cache-inmemory";

// Create an HTTP link to the Absinthe server.
const link = createHttpLink({
 uri: "http://localhost:4000/graphql"
});

// Apollo also requires you to provide a cache implementation
// for caching query results. The InMemoryCache is suitable
// for most use cases.
const cache = new InMemoryCache();

// Create the client.
const client = new ApolloClient({
 link,
 cache
});

You may find that you need to modify the HTTP request that Apollo makes -- for example, if you wish to send the value of a particular cookie in the Authorization header. The setContext helper allows you to do this, and also demonstrates how links in Apollo can be chained.

import ApolloClient from "apollo-client";
import { createHttpLink } from "apollo-link-http";
import { setContext } from "apollo-link-context";
import { InMemoryCache } from "apollo-cache-inmemory";
import Cookies from "js-cookie";

// Create an HTTP link to the Absinthe server.
const httpLink = createHttpLink({
 uri: "http://localhost:4000/graphql"
});

// Use setContext to create a chainable link object that sets
// the token cookie to the Authorization header.
const authLink = setContext((_, { headers }) => {
 // Get the authentication token from the cookie if it exists.
 const token = Cookies.get("token");

 // Add the new Authorization header.
 return {
 headers: {
 ...headers,
 authorization: token ? `Bearer ${token}` : ""
 }
 };
});

// Chain the HTTP link and the authorization link.
const link = authLink.concat(httpLink);

// Apollo also requires you to provide a cache implementation
// for caching query results. The InMemoryCache is suitable
// for most use cases.
const cache = new InMemoryCache();

// Create the client.
const client = new ApolloClient({
 link,
 cache
});

Using a websocket link

An HTTP link is suitable for many basic use cases, but if you require two-way communication between the server and the client, you will need to use a websocket link. The most common use case is a client that needs to use GraphQL subscriptions to receive updates from the server when particular events occur. To implement a websocket link, we will need to use the @absinthe/socket and @absinthe/socket-apollo-link packages.

import ApolloClient from "apollo-client";
import * as AbsintheSocket from "@absinthe/socket";
import { createAbsintheSocketLink } from "@absinthe/socket-apollo-link";
import { Socket as PhoenixSocket } from "phoenix";
import { InMemoryCache } from "apollo-cache-inmemory";
import Cookies from "js-cookie";

// Create a standard Phoenix websocket connection. If you need
// to provide additional params, like an authentication token,
// you can configure them in the `params` option.
const phoenixSocket = new PhoenixSocket("ws://localhost:4000/socket", {
 params: () => {
 if (Cookies.get("token")) {
 return { token: Cookies.get("token") };
 } else {
 return {};
 }
 }
});

// Wrap the Phoenix socket in an AbsintheSocket.
const absintheSocket = AbsintheSocket.create(phoenixSocket);

// Create an Apollo link from the AbsintheSocket instance.
const link = createAbsintheSocketLink(absintheSocket);

// Apollo also requires you to provide a cache implementation
// for caching query results. The InMemoryCache is suitable
// for most use cases.
const cache = new InMemoryCache();

// Create the client.
const client = new ApolloClient({
 link,
 cache
});

Reconnecting the websocket link

You may find that you periodically need to reconnect the websocket with different parameters. The most common case for this is when a user logs in or logs out; you will then want to refresh their subscriptions to reflect the new authentication state. You can accomplish this by invoking phoenixSocket.conn.close(); from your application code whenever the reconnection needs to happen. Phoenix will notice the closed connection and automatically reconnect. It is important that you provide a function that returns the websocket parameters to the socket params option. If you provide the parameters directly as an object, the new parameters will not be picked up when the websocket reconnects, but if you provide a function, Phoenix invokes the function on each connection to obtain the parameters.

Note that this solution (reconnecting with phoenixSocket.conn.close();) is somewhat unstable because it relies upon an implementation detail of the Phoenix socket. Ideally, a future version of the Phoenix package might add a public API method to reconnect the websocket with new parameters.

import ApolloClient from "apollo-client";
import * as AbsintheSocket from "@absinthe/socket";
import { createAbsintheSocketLink } from "@absinthe/socket-apollo-link";
import { Socket as PhoenixSocket } from "phoenix";
import { InMemoryCache } from "apollo-cache-inmemory";
import Cookies from "js-cookie";

// Create a standard Phoenix websocket connection. If you need
// to provide additional params, like an authentication token,
// you can configure them in the `params` option.
//
// If you plan to reconnect the socket with updated parameters,
// you must provide a function to the `params` option. If you
// provide the parameters directly as an object, the updated
// parameters will not be picked up when the socket reconnects.
const phoenixSocket = new PhoenixSocket("ws://localhost:4000/socket", {
 params: () => {
 if (Cookies.get("token")) {
 return { token: Cookies.get("token") };
 } else {
 return {};
 }
 }
});

// Wrap the Phoenix socket in an AbsintheSocket.
const absintheSocket = AbsintheSocket.create(phoenixSocket);

// Create an Apollo link from the AbsintheSocket instance.
const link = createAbsintheSocketLink(absintheSocket);

// Apollo also requires you to provide a cache implementation
// for caching query results. The InMemoryCache is suitable
// for most use cases.
const cache = new InMemoryCache();

// Create the client.
const client = new ApolloClient({
 link,
 cache
});

// Later in your application code, when you need to reconnect
// the socket.
phoenixSocket.conn.close();

Using both HTTP and websocket links

A common configuration for Apollo client applications is to use both HTTP and websocket links -- HTTP for queries and mutations, and a websocket for subscriptions. We can implement this in our client using directional composition with Apollo's split helper.

import ApolloClient from "apollo-client";
import { createHttpLink } from "apollo-link-http";
import { setContext } from "apollo-link-context";
import * as AbsintheSocket from "@absinthe/socket";
import { createAbsintheSocketLink } from "@absinthe/socket-apollo-link";
import { Socket as PhoenixSocket } from "phoenix";
import { hasSubscription } from "@jumpn/utils-graphql";
import { split } from "apollo-link";
import { InMemoryCache } from "apollo-cache-inmemory";
import Cookies from "js-cookie";

// Create an HTTP link to the Absinthe server.
const httpLink = createHttpLink({
 uri: "http://localhost:4000/graphql"
});

// Use setContext to create a chainable link object that sets
// the token cookie to the Authorization header.
const authLink = setContext((_, { headers }) => {
 // Get the authentication token from the cookie if it exists.
 const token = Cookies.get("token");

 // Add the new Authorization header.
 return {
 headers: {
 ...headers,
 authorization: token ? `Bearer ${token}` : ""
 }
 };
});

// Chain the HTTP link and the authorization link.
const authedHttpLink = authLink.concat(httpLink);

// Create a standard Phoenix websocket connection. If you need
// to provide additional params, like an authentication token,
// you can configure them in the `params` option.
const phoenixSocket = new PhoenixSocket("ws://localhost:4000/socket", {
 params: () => {
 if (Cookies.get("token")) {
 return { token: Cookies.get("token") };
 } else {
 return {};
 }
 }
});

// Wrap the Phoenix socket in an AbsintheSocket.
const absintheSocket = AbsintheSocket.create(phoenixSocket);

// Create an Apollo link from the AbsintheSocket instance.
const websocketLink = createAbsintheSocketLink(absintheSocket);

// If the query contains a subscription, send it through the
// websocket link. Otherwise, send it through the HTTP link.
const link = split(
 operation => hasSubscription(operation.query),
 websocketLink,
 authedHttpLink
);

// Apollo also requires you to provide a cache implementation
// for caching query results. The InMemoryCache is suitable
// for most use cases.
const cache = new InMemoryCache();

// Create the client.
const client = new ApolloClient({
 link,
 cache
});

Using with Relay

While GraphQL specifies what queries, mutations, and object types should look
like, Relay is a client-side implementation of an efficient data storage and
(re-)fetching system that is designed to work with a GraphQL server.

To allow Relay to work its magic on the client side, all GraphQL queries and
mutations need to follow certain conventions. Absinthe.Relay provides
utilities to help you make your server-side schemas Relay-compatible while
requiring only minimal changes to your existing code.

Absinthe.Relay supports three fundamental pieces of the Relay puzzle: nodes,
which are normal GraphQL objects with a unique global ID scheme; mutations,
which in Relay Classic conform to a certain input and output structure; and
connections, which provide enhanced functionality around many-to-one lists
(most notably pagination).

Using Absinthe.Relay

Make sure you have the absinthe_relay
package configured
as a dependency for your application.

To add Relay support schemas should start with use Absinthe.Relay.Schema, eg:

defmodule Schema do
 use Absinthe.Schema
 use Absinthe.Relay.Schema, :classic

 # ...

end

Note that this schema is being prepared to support Relay Classic; if
you do not provide either a :classic or :modern option,
:classic is currently selected as the default, but a warning is
output; :modern will be the default option in v1.5.

If you're defining your types in a separate type module that you're using via
import_types in your schema, use the Notation module instead:

defmodule Schema.Types do
 use Absinthe.Schema.Notation
 use Absinthe.Relay.Schema.Notation, :classic

 # ...

end

Now you're ready to implement the Relay features you need.

Nodes

To enable Relay to be clever about caching and (re-)fetching data objects, your
server must assign a globally unique ID to each object before sending it down
the wire. Absinthe will take care of this for you if you provide some additional
information in your schema.

First of all, you must define a :node interface in your schema. Rather than
do this manually, Absinthe.Relay provides a macro so most of the configuration
is handled for you.

Use node interface in your schema:

node interface do
 resolve_type fn
 %YourApp.Model.Person{}, _ ->
 :person
 %YourApp.Model.Business{}, _ ->
 :business
 _, _ ->
 nil
 end
end

... mutations, queries ...

For instance, if your query or mutation resolver returns:

{:ok, %YourApp.Model.Business{id: 19, business_name: "ACME Corp.", employee_count: 52}}

Absinthe will pattern-match the value to determine that the object type is
:business. This becomes important when you configure your :business type as a node:

node object :business do # <-- notice the macro prefix "node"
 field :business_name, non_null(:string)
 field :employee_count, :integer
end

(Note the macro name, node, looks like a prefix to the object macro.)

While it may appear that your :business object type only has two fields,
:business_name and :employee_count, it actually has three. An :id field
is configured for you because you used the node object macro, and because the
:node interface knows how to identify the values returned from your resolvers,
that :id field is automatically set-up to convert internal (in this case,
numeric) IDs to the global ID scheme -- an opaque string (like "UWxf59AcjK=")
will be returned instead.

Important: the global ID is generated based on the object's
unique identifier, which by default is the value of its existing :id
field. This is convenient, because if you are using Ecto, the
primary key :id database field is typically enough to uniquely identify an
object of a given type. It also means, however, that the internal :id of a
node object will not be available to be queried as :id.

	If you wish to generate your global IDs based on something other than the
 existing :id field (if, for instance, your internal IDs are returned as _id),
 provide the :id_fetcher option (see the documentation).

	If you wish to make your internal ID queryable, you must return it as a
 different field (eg, you could define an :internal_id field whose resolver
 extracts the raw, internal :id value from the source map/struct).

Node query field

Ok, so your node objects provide a global :id. How does Relay use it?

Relay expects you to provide a query field called node that accepts a global
ID (as arg :id) and returns the corresponding node object. Absinthe makes it
easy to set this up -- use the node field macro inside your query.

query do
 # ...
 node field do
 resolve fn
 %{type: :person, id: id}, _ ->
 # Get the person from the DB somehow, returning a tuple
 YourApp.Resolver.Person.find(%{id: id}, %{})
 %{type: :business, id: id}, _ ->
 # Get the business from @businesses
 {:ok, Map.get(@businesses, id)}
 # etc.
 end
 end
 # ... more queries ...
end

Notice that the resolver for node field expects the first (args) argument to
contain a :type and :id. These are the node object type identifier and the
internal (non-global) ID, automatically parsed from the global ID. The resolver
looks up the correct value using the internal ID and returns a tuple, as usual.

For more information, see the documentation.

Converting node IDs to internal IDs for resolvers

If you need to parse a node (global) ID for use in a resolver, there is a
helpful utility, parsing_node_ids/2 that is automatically imported for you.
Here's an example of how it works.

Let's assume we have a field, :employees, that returns a list of :person
objects for a given :business_id -- a node ID:

query do
 field :employees, list_of(:people) do
 arg :business_id, :id
 resolve &resolve_employees/2
 end
end

def resolve_employees(%{business_id: global_id}, _) do
 # But I need an internal ID to look-up the employees!
end

In resolve_employees/2, we could certainly parse out the internal ID manually.
Here's how that would look:

def resolve_employees(%{business_id: global_id}, _) do
 {:ok, %{type: :business, id: internal_id}} =
 Absinthe.Relay.Node.from_global_id(global_id, YourApp.Schema)
 # TODO: find employees using internal_id, return tuple
end

Obviously this can get a bit tedious if we have to do it often. Instead, we can
use parsing_node_ids/2 to wrap our resolver function to do the parsing for
us, invoking our function with the internal ID instead. We just have to tell the
parsing_node_ids/2 what ID field arguments to parse and what the associated
types should be:

query do
 field :employees, list_of(:people) do
 arg :business_id, :id
 resolve parsing_node_ids(&resolve_employees/2, business_id: :business)
 end
end

def resolve_employees(%{business_id: internal_id}, _) do
 # We have an internal ID!
end

This leaves our resolver function virtually unchanged, and keeps our code much
cleaner.

Mutations

Relay Classic sets some specific constraints around the way arguments and results for
mutations are structured.

In Relay Modern (if you're using the :modern option when defining
the schema), you'll have access to a similar set of macros as
discussed here, but be aware that the constraints mentioned (on
input, on clientMutationId, etc) don't apply. See the
documentation for Absinthe.Relay.Mutation.Notation.Modern for more
specific instructions.

Relay expects mutations to accept exactly one argument, input, an
InputObject. On the JavaScript side, it automatically populates a field on the
input, clientMutationId, and expects to get it back, unchanged, as part of the
result. Thankfully Absinthe.Relay abstracts these details away from the schema
designer, allowing them to focus on any other arguments needed or results
expected.

 Important: Remember that input fields (and arguments in
 general) cannot be of one of your object types. Use input_object to
 model complex argument types.

In this example, we accept a list of multiple :person_input_object values to
insert people into a database.

defmodule YourApp.Schema
 # ...

 input_object :person_input_object do
 field :first_name, non_null(:string)
 field :last_name, non_null(:string)
 field :age, :integer
 end

 mutation do

 @desc "A mutation that inserts a list of persons into the database"
 payload field :bulk_create_persons do
 input do
 field :persons, list_of(:person_input_object)
 end
 output do
 # fields in the result
 end
 resolve &Resolver.Person.bulk_create/2
 end

 # ... more mutations ...
 end
end

Note the payload macro introduces a Relay mutation, input defines the fields
(inside the input argument), and output defines the fields available as part
of the result.

See the module documentation for more information:

	Absinthe.Relay.Mutation.Notation.Classic

	Absinthe.Relay.Mutation.Notation.Modern

Referencing existing nodes in mutation inputs

Occasionally, your client may wish to make reference to an existing node in the
mutation input (this happens particularly when manipulating the connection edges
of a parent node).

Incoming IDs for node types may have to be converted to their internal
equivalents so you can persist changes to your backend. For this purpose, you
can use Absinthe.Relay.Node.from_global_id/2 to parse node (global) IDs
manually.

def bulk_create(%{persons: new_persons, group: global_group_id}, _) do
 {:ok, %{type: :group, id: internal_group_id}} = Absinthe.Relay.Node.from_global_id(global_group_id, YourApp.Schema)`
 # ... manipulate your DB using internal_group_id
end

If, of course, your client knows the internal IDs (in a peer field to :id, eg,
:internal_id), you can depends on that ID -- but we recommend that you use
node IDs as they are opaque values and it's the more conventional practice.

 Important: When using from_global_id, remember to always
 match the :type value to ensure the internal ID is for the type you expect,
 and a global ID for the wrong type of node hasn't been mistakenly sent to the
 server.

Connections

One of the more popular features of Relay is the rich pagination support provided by its
connections. This medium post
has a good explanation of the full feature set and nomenclature.

For example, you could define a connection for paginating :location objects with:

connection node_type: :location

This will automatically define two new types: :location_connection and :location_edge.

We define a field that uses these types to paginate associated records by using
connection field. Here, for instance, we su