

 absinthe

 v1.5.0-alpha.4

 [image: Logo]

 Table of contents

 	Introduction

 	Overview

 	Installation

 	Learning

 	Community

 	Tutorial

 	Getting Started

 	Our First Query

 	Query Arguments

 	Mutations

 	Complex Arguments

 	Conclusion

 	Topics

 	Writing Schemas

 	Plug and Phoenix Setup

 	Ecto Best Practices

 	Writing Middleware and Plugins

 	Returning Errors

 	Batching Resolution

 	Dataloader

 	The Context and Authentication

 	Understanding Subscriptions

 	Custom Scalar Types

 	Importing Types

 	Importing Fields

 	Using Document Variables

 	Schema Introspection

 	Schema Deprecation

 	Document Adapters

 	Complexity Analysis

 	File Uploads

 	Client Guides

 	Using with JavaScript

 	Using with Apollo Client

 	Using with Relay

 	Upgrade Guides

 	Upgrading to v1.4

 	Modules

 	Absinthe

 	Absinthe.Lexer

 	Absinthe.Phase.Document.Context

 	Absinthe.Phase.Schema.Decorate.Decorator

 	Absinthe.Phase.Schema.Validation.NoCircularFieldImports

 	Absinthe.Phase.Schema.Validation.ObjectInterfacesMustBeValid

 	Absinthe.Resolution.Helpers

 	Absinthe.Schema

 	Absinthe.Schema.Notation

 	Absinthe.Type.Argument

 	Absinthe.Type.Custom

 	Absinthe.Type.Directive

 	Absinthe.Type.Enum

 	Absinthe.Type.Enum.Value

 	Absinthe.Type.Field

 	Absinthe.Type.InputObject

 	Absinthe.Type.Interface

 	Absinthe.Type.List

 	Absinthe.Type.NonNull

 	Absinthe.Type.Object

 	Absinthe.Type.Scalar

 	Absinthe.Type.Union

 	Absinthe.Middleware

 	Absinthe.Middleware.Async

 	Absinthe.Middleware.Batch

 	Absinthe.Middleware.Dataloader

 	Absinthe.Middleware.MapGet

 	Absinthe.Middleware.PassParent

 	Absinthe.Plugin

 	Absinthe.Subscription

 	Absinthe.Subscription.Pubsub

 	Absinthe.Phase

 	Absinthe.Phase.Validation.Helpers

 	Absinthe.Pipeline

 	Absinthe.Pipeline.ErrorResult

 	Absinthe.Adapter

 	Absinthe.Adapter.LanguageConventions

 	Absinthe.Adapter.Passthrough

 	Absinthe.Adapter.Underscore

 	Absinthe.Blueprint

 	Absinthe.Blueprint.Execution

 	Absinthe.Complexity

 	Absinthe.Resolution

 	Absinthe.Introspection

 	Absinthe.Test

 	Absinthe.Logger

 	Absinthe.Utils

 	Absinthe.Utils.Suggestion

 	Exceptions

 	Absinthe.AnalysisError

 	Absinthe.ExecutionError

 	Absinthe.Schema.Error

 	Absinthe.Schema.Notation.Error

 	Mix Tasks

 	absinthe.schema.json

 Overview

Absinthe is the GraphQL toolkit for Elixir, an implementation of the GraphQL specification built to suit the language’s capabilities and idiomatic style.

The Absinthe project consists of several complementary packages. You can find the full listing on the absinthe-graphql GitHub organization page.

GraphQL Basics

If you’re new to GraphQL, we suggest you read up a bit on GraphQL’s foundational principles before you dive into Absinthe.

Here are a few resources that might be helpful:

	The official GraphQL website

	How to GraphQL, which includes a brief tutorial using Absinthe

Absinthe

Absinthe’s functionality generally falls into two broad areas. You can read more about the details in the guides provided as part of this documentation and in the related packages/projects:

	Defining Schemas. A schema:

	defines the structure of data entities and the relationships between, as well as the available queries, mutations, and subscriptions, using an elegant collection of declarative macros

	defines custom scalar types

	declares any deprecated definitions

	defines resolution functions to access data, using a flexible and extensible middleware/plugin system

	Executing Documents. A GraphQL document:

	can be any standard GraphQL query, mutation, or subscription

	may include reusable variable definitions

	can be analyzed for its complexity and be rejected if it’s unsafe/too expensive

	has a context that you can integrate with authentication and authorization strategies

	can contain standard GraphQL introspection fields

	can include multipart file uploads as GraphQL arguments (as part of the absinthe_plug package)

Integrations

Absinthe integrates with a number of other important projects, both on the backend and frontend, to provide a better experience for developers.

	Elixir

	Support for HTTP APIs using Plug and Phoenix via the absinthe_plug and absinthe_phoenix packages

	Support for Ecto via the dataloader package

	JavaScript (client-side)

	Support for Relay and Apollo Client

	Support for Absinthe’s channel-based subscriptions. See absinthe-socket.

Guides

To contribute to the guides, please submit a pull request to the absinthe project on GitHub.

You’ll find the content under guides/.

 Installation

To install Absinthe, just add an entry to your mix.exs:

def deps do
 [
 # ...
 {:absinthe, "~> 1.4"}
]
end

(Check Hex to make sure you’re using an up-to-date version number.)

Overriding Dependencies

Because the Absinthe project is made up of a large number of related packages to support integrations with other tools, sometimes you may want to update only part of your absinthe-related dependencies.

Don’t forget you can use the :override option for your Mix dependencies if you’d like to ensure a specific package is at a specific version number. For example, If you wanted to try a new version of Absinthe without updating something that depends on it (which is locked to an older version):

def deps do
 [
 # ...
 {:absinthe, "~> 1.4", override: true}
]
end

Plug, Phoenix, and GraphiQL

Most people use Absinthe to support an HTTP API.

You’ll want to read the Plug and Phoenix for specific installation and configuration options, including how you can run the handy, included GraphiQL tool directly from your application.

 Learning

The following are some Absinthe-specific educational resources that are available.

Books

	Craft GraphQL APIs in Elixir with Absinthe by the creators of Absinthe (ebook in beta, print version out in late 2017/early 2018)

Online Resources

	Website (mostly just links elsewhere)

	Documentation (current stable release)

	How to GraphQL (with Absinthe)

Videos

	Live APIs with GraphQL Subscriptions, ElixirConf 2017 (Bellevue)

	GraphQL in Practice, ElixirConf EU 2017 (Barcelona)

General GraphQL Information

There’s a ton of GraphQL resources on the web.

The official website and How to GraphQL are good places to start.

 Community

Twitter

Follow the project on Twitter as @absinthegraphql for news and additional resources.

Chat

You can find the maintainers and an active community of users and contributors in the #absinthe-graphql channel in the Elixir Slack.

Forum

Questions and suggestions can be submitted on the Elixir Forum. Please categorize/tag as Absinthe.

 Getting Started

We’ll be building a very basic GraphQL API for a blog, written in Elixir using
Absinthe.

Background

Before you start, it’s a good idea to have some background into GraphQL in general. Here are a few resources that might be helpful:

	The official GraphQL website

	How to GraphQL (this includes another brief tutorial using Absinthe)

The Example

 The tutorial expects you to have a properly set-up Phoenix application with absinthe and absinthe_plug added to the dependencies.

 If you’d like to cheat, you can find the finished code for the tutorial
 in the Absinthe Example
 project on GitHub.

First Step

Let’s get started with our first query!

 Our First Query

The first thing our viewers want is a list of our blog posts, so
that’s what we’re going to give them. Here’s the query we want to
support:

{
 posts {
 title
 body
 }
}

To do this we’re going to need a schema. Let’s create some basic types
for our schema, starting with a :post. GraphQL has several fundamental
types on top of which all of our types will be
built. The Object type is the right one
to use when representing a set of key value pairs.

Since our Post Ecto schema lives in the Blog.Content Phoenix
context, we’ll define its GraphQL counterpart type, :post, in a
matching BlogWeb.Schema.ContentTypes module:

In blog_web/schema/content_types.ex:

defmodule BlogWeb.Schema.ContentTypes do
 use Absinthe.Schema.Notation

 object :post do
 field :id, :id
 field :title, :string
 field :body, :string
 end
end

The GraphQL specification requires that type names be unique, TitleCased words.
Absinthe does this automatically for us, extrapolating from our type identifier
(in this case :post gives us "Post". If really needed, we could provide a
custom type name as a :name option to the object macro.

If you’re curious what the type :id is used by the :id field, see
the GraphQL spec. It’s
an opaque value, and in our case is just the regular Ecto id, but
serialized as a string.

With our type completed we can now write a basic schema that will let
us query a set of posts.

In blog_web/schema.ex:

defmodule BlogWeb.Schema do
 use Absinthe.Schema
 import_types BlogWeb.Schema.ContentTypes

 alias BlogWeb.Resolvers

 query do

 @desc "Get all posts"
 field :posts, list_of(:post) do
 resolve &Resolvers.Content.list_posts/3
 end

 end

end

For more information on the macros available to build a schema, see
their definitions in Absinthe.Schema and
Absinthe.Schema.Notation.

This uses a resolver module we’ve created (again, to match the Phoenix context naming)
at blog_web/resolvers/content.ex:

defmodule BlogWeb.Resolvers.Content do

 def list_posts(_parent, _args, _resolution) do
 {:ok, Blog.Content.list_posts()}
 end

end

Queries are defined as fields inside the GraphQL object returned by
our query function. We created a posts query that has a type
list_of(:post) and is resolved by our
BlogWeb.Resolvers.Content.list_posts/3 function. Later we’ll talk
more about the resolver function parameters; for now just remember
that resolver functions can take two forms:

	A function with an arity of 3 (taking a parent, arguments, and resolution struct)

	An alternate, short form with an arity of 2 (omitting the first parameter, the parent)

The job of the resolver function is to return the data for the
requested field. Our resolver calls out to the Blog.Content module,
which is where all the domain logic for posts lives, invoking its
list_posts/0 function, then returns the posts in an :ok tuple.

Resolvers can return a wide variety of results, to include errors and configuration
for advanced plugins that further process the data.

If you’re asking yourself what the implementation of the domain logic looks like, and exactly how
the related Ecto schemas are built, read through the code in the absinthe_tutorial
repository. The tutorial content here is intentionally focused on the Absinthe-specific code.

Now that we have the functional pieces in place, let’s configure our
Phoenix router to wire this into HTTP:

In blog_web/router.ex:

defmodule BlogWeb.Router do
 use BlogWeb, :router

 pipeline :api do
 plug :accepts, ["json"]
 end

 scope "/api" do
 pipe_through :api

 forward "/graphiql", Absinthe.Plug.GraphiQL,
 schema: BlogWeb.Schema

 forward "/", Absinthe.Plug,
 schema: BlogWeb.Schema

 end

end

In addition to our API, we’ve wired in a handy GraphiQL user interface to play with it. Absinthe integrates both the classic GraphiQL and more advanced GraphiQL Workspace interfaces as part of the absinthe_plug package.

Now let’s check to make sure everything is working. Start the server:

$ mix phx.server

Absinthe does a number of sanity checks during compilation, so if you misspell a type or make another schema-related gaffe, you’ll be notified.

Once it’s up-and-running, take a look at http://localhost:4000/api/graphiql:

[image:]Make sure that the URL is pointing to the correct place and press the play button. If everything goes according to plan, you should see something like this:

[image:]Next Step

Now let’s look at how we can add arguments to our queries.

 Query Arguments

Our GraphQL API would be pretty boring (and useless) if clients
couldn’t retrieve filtered data.

Let’s assume that our API needs to add the ability to look-up users by
their ID and get the posts that they’ve authored. Here’s what a basic query to do that
might look like:

{
 user(id: "1") {
 name
 posts {
 id
 title
 }
 }
}

The query includes a field argument, id, contained within the
parentheses after the user field name. To make this all work, we need to modify
our schema a bit.

Defining Arguments

First, let’s create a :user type and define its relationship to
:post while we’re at it. We’ll create a new module for the
account-related types and put it there; in
blog_web/schema/account_types.ex:

defmodule BlogWeb.Schema.AccountTypes do
 use Absinthe.Schema.Notation

 @desc "A user of the blog"
 object :user do
 field :id, :id
 field :name, :string
 field :email, :string
 field :posts, list_of(:post)
 end

end

The :posts field points to a list of :post results. (This matches
up with what we have on the Ecto side, where Blog.Accounts.User
defines a has_many association with Blog.Content.Post.)

We’ve already defined the :post type, but let’s go ahead and add an
:author field that points back to our :user type. In
blog_web/schema/content_types.ex:

object :post do

 # post fields we defined earlier...

 field :author, :user

end

Now let’s add the :user field to our query root object in our
schema, defining a mandatory :id argument and using the
Resolvers.Accounts.find_user/3 resolver function. We also need to
make sure we import the types from BlogWeb.Schema.AccountTypes so
that :user is available.

In blog_web/schema.ex:

defmodule BlogWeb.Schema do
 use Absinthe.Schema

 import_types Absinthe.Type.Custom

 # Add this `import_types`:
 import_types BlogWeb.Schema.AccountTypes

 import_types BlogWeb.Schema.ContentTypes

 alias BlogWeb.Resolvers

 query do

 @desc "Get all posts"
 field :posts, list_of(:post) do
 resolve &Resolvers.Content.list_posts/3
 end

 # Add this field:
 @desc "Get a user of the blog"
 field :user, :user do
 arg :id, non_null(:id)
 resolve &Resolvers.Accounts.find_user/3
 end

 end

end

Now lets use the argument in our resolver. In blog_web/resolvers/accounts.ex:

defmodule BlogWeb.Resolvers.Accounts do

 def find_user(_parent, %{id: id}, _resolution) do
 case Blog.Accounts.find_user(id) do
 nil ->
 {:error, "User ID #{id} not found"}
 user ->
 {:ok, user}
 end
 end

end

Our schema marks the :id argument as non_null, so we can be
certain we will receive it. If :id is left out of the query,
Absinthe will return an informative error to the user, and the resolve
function will not be called.

If you have experience writing Phoenix controller actions, you might
wonder why we can match incoming arguments with atoms instead of
having to use strings.

The answer is simple: you’ve defined the arguments in the schema
using atom identifiers, so Absinthe knows what arguments will be
used ahead of time, and will coerce as appropriate—-culling any
extraneous arguments given to a query. This means that all arguments
can be supplied to the resolve functions with atom keys.

Finally you’ll see that we can handle the possibility that the query,
while valid from GraphQL’s perspective, may still ask for a user that
does not exist. We’ve decided to return an error in that case.

There’s a valid argument for just returning {:ok, nil} when a
record can’t be found. Whether the absence of data constitutes an
error is a decision you get to make.

Arguments and Non-Root Fields

Let’s assume we want to query all posts from a user published within a
given time range. First, let’s add a new field to our :post object
type, :published_at.

The GraphQL specification doesn’t define any official date or time
types, but it does support custom scalar types (you can read more
about them in the related guide, and
Absinthe ships with several built-in scalar types. We’ll use
:naive_datetime (which doesn’t include timezone information) here.

Edit blog_web/schema/content_types.ex:

defmodule BlogWeb.Schema.ContentTypes do
 use Absinthe.Schema.Notation

 @desc "A blog post"
 object :post do
 field :id, :id
 field :title, :string
 field :body, :string
 field :author, :user
 # Add this:
 field :published_at, :naive_datetime
 end
end

To make the :naive_datetime type available, add an import_types line to
your blog_web/schema.ex:

import_types Absinthe.Type.Custom

For more information about how types are imported,
read the guide on the topic.

For now, just remember that import_types should only be
used in top-level schema module. (Think of it like a manifest.)

Here’s the query we’d like to be able to use, getting the posts for a user
on a given date:

{
 user(id: "1") {
 name
 posts(date: "2017-01-01") {
 title
 body
 publishedAt
 }
 }
}

To use the passed date, we need to update our :user object type and
make some changes to its :posts field; it needs to support a :date
argument and use a custom resolver. In blog_web/schema/account_types.ex:

defmodule BlogWeb.Schema.AccountTypes do
 use Absinthe.Schema.Notation

 alias BlogWeb.Resolvers

 object :user do
 field :id, :id
 field :name, :string
 field :email, :string
 # Add the block here:
 field :posts, list_of(:post) do
 arg :date, :date
 resolve &Resolvers.Content.list_posts/3
 end
 end

end

For the resolver, we’ve added another function head to
Resolvers.Content.list_posts/3. This illustrates how you can use the
first argument to a resolver to match the parent object of a field. In
this case, that parent object would be a Blog.Accounts.User Ecto
schema:

Add this:
def list_posts(%Blog.Accounts.User{} = author, args, _resolution) do
 {:ok, Blog.Content.list_posts(author, args)}
end
Before this:
def list_posts(_parent, _args, _resolution) do
 {:ok, Blog.Content.list_posts()}
end

Here we pass on the user and arguments to the domain logic function,
Blog.Content.list_posts/3, which will find the posts for the user
and date (if it’s provided; the :date argument is optional). The
resolver, just as when it’s used for the top level query :posts,
returns the posts in an :ok tuple.

Check out the full implementation of logic for
Blog.Content.list_posts/3—and some simple seed data—in
the
absinthe_tutorial repository.

If you’ve done everything correctly (and have some data handy), if you
start up your server with mix phx.server and head over
to http://localhost:4000/api/graphiql, you should be able to play
with the query.

It should look something like this:

[image:]Next Step

Next up, we look at how to modify our data using mutations.

 Mutations

A blog is no good without new content. We want to support a mutation
to create a blog post:

mutation CreatePost {
 createPost(title: "Second", body: "We're off to a great start!") {
 id
 }
}

Now we just need to define a mutation portion of our schema and
a :create_post field:

In blog_web/schema.ex:

mutation do

 @desc "Create a post"
 field :create_post, type: :post do
 arg :title, non_null(:string)
 arg :body, non_null(:string)
 arg :published_at, :naive_datetime

 resolve &Resolvers.Content.create_post/3
 end

end

The resolver in this case is responsible for making any changes and
returning an {:ok, post} tuple matching the :post type we defined
earlier:

In our blog_web/resolvers/content.ex module, we’ll add the
create_post/3 resolver function:

def create_post(_parent, args, %{context: %{current_user: user}}) do
 Blog.Content.create_post(user, args)
end
def create_post(_parent, _args, _resolution) do
 {:error, "Access denied"}
end

Obviously things can go wrong in a mutation. To learn more about the
types of error results that Absinthe supports, read the guide.

Authorization

This resolver adds a new concept: authorization. The resolution struct
(that is, an Absinthe.Resolution)
passed to the resolver as the third argument carries along with it the
Absinthe context, a data structure that serves as the integration
point with external mechanisms—-like a Plug that authenticates the
current user. You can learn more about how the context can be used in
the Context and Authentication
guide.

Going back to the resolver code:

	If the match for a current user is successful, the underlying
 Blog.Content.create_post/2 function is invoked. It will return a
 tuple suitable for return. (To read the Ecto-related nitty gritty,
 check out the absinthe_tutorial
 repository.)

	If the match for a current user isn’t successful, the fall-through
 match will return an error indicating that a post can’t be created.

Next Step

Now let’s take a look at more complex arguments.

 Complex Arguments

In preparation for supporting comments on our blog, let’s create users. We’re building
a modern mobile first blog of course, and thus want to support either a phone number
or an email as the contact method for a user.

We want to support the following mutations.

Support creation of a user with their email address:

mutation CreateEmailUser {
 createUser(contact: {type: EMAIL, value: "foo@bar.com"}, name: "Jane", password: "hunter1") {
 id
 contacts {
 type
 value
 }
 }
}

And by using their phone number:

mutation CreatePhoneUser {
 createUser(contact: {type: PHONE, value: "+1 123 5551212"}, name: "Joe", password: "hunter2") {
 id
 contacts {
 type
 value
 }
 }
}

To do this we need the ability to create nested arguments. GraphQL has input objects
for this purpose. Input objects, like regular object, contain key value pairs, but
they are intended for input only (you can’t do circular references with them for example).

Another notion we’ll look at here is an enumerable type. We only want to support contact
types "email" and "phone" at the moment, and GraphQL gives us the ability to
specify this in our schema.

Let’s start with our :contact_type Enum. In blog_web/schema/account_types.ex:

enum :contact_type do
 value :phone, as: "phone"
 value :email, as: "email"
end

We’re using the :as option here to make sure the parsed enum is represented by a string
when it’s passed to our controllers; this is to ease integration with our Ecto schema
(by default, the enum values are passed as atoms).

The standard convention for representing incoming enum values in
GraphQL documents are in all caps. For instance, given our settings
here, the accepted values would be PHONE and EMAIL (without
quotes). See the GraphQL document examples above for examples.

While the enum macro supports configuring this incoming format, we
highly recommend you just use the GraphQL convention.

Now if a user tries to send some other kind of contact type they’ll
get a nice error without any extra effort on your part. Enum types are
not a substitute for modeling layer validations however, be sure to
still enforce things like this on that layer too.

Now for our contact input object.

In blog_web/schema/account_types.ex:

input_object :contact_input do
 field :type, non_null(:contact_type)
 field :value, non_null(:string)
end

Note that we name this type :contact_input. Input object types have
their own names, and the _input suffix is common.

Important: It’s very important to remember that only input
types—-basically scalars and input objects—-can be used to model
input.

Finally our schema, in blog_web/schema.ex:

mutation do

 #... other mutations

 @desc "Create a user"
 field :create_user, :user do
 arg :name, non_null(:string)
 arg :contact, non_null(:contact_input)
 arg :password, non_null(:string)

 resolve &Resolvers.Accounts.create_user/3
 end

end

Suppose in our database that we store contact information in a different database
table. Our mutation would be used to create both records in this case.

There does not need to be a one to one correspondence between how data is structured
in your underlying data store and how things are presented by your GraphQL API.

Our resolver, blog_web/resolvers/accounts.ex might look something like this:

def create_user(_parent, args, %{context: %{current_user: %{admin: true}}}) do
 Blog.Accounts.create_user(args)
end
def create_user(_parent, args, _resolution) do
 {:error, "Access denied"}
end

You’ll notice we’re checking for :current_user again in our Absinthe
context, just as we did before for posts. In this case we’re taking
the authorization check a step further and verifying that only
administrators (in this simple example, an administrator is a user
account with :admin set to true) can create a user.

Everyone else gets an "Access denied" error for this field.

To see the Ecto-related implementation of the
Blog.Accounts.create_user/1 function and the (stubbed) authentication logic we’re
using for this example, see the absinthe_tutorial
repository.

Here’s our mutation in action in GraphiQL.

[image:]Note we’re sending a Authorization header to authenticate, which a
plug is handling. Make sure to read the
related guide for more
information on how to set-up authentication in your own
applications.

Our simple tutorial application is just using a simple stub: any
authorization token logs you in the first user. Obviously not what
you want in production!

Next Step

Now let’s wrap things up.

 Conclusion

With this we have a basic GraphQL based API for a blog. Head on over
to the github page if
you want the final code.

We hope to expand this tutorial to include a comment system that will
acquaint you with Union types and Fragments in the coming days.

Head on over to the topic guides for further reading, and see
the community page for information
on how to get help, ask questions, or contribute!

Please Help!

This tutorial is a work in progress, and while it covers the basics of
using Absinthe, there is plenty more that can be added and improved
upon. It’s important that it’s kept up-to-date, too, so if you notice
something that’s slipped by us, please help us fix it!

Please contribute your GitHub issues (and pull requests!):

	The tutorial text is under guides/tutorial in the absinthe
 repository. It’s in Markdown and easy to edit!

	The tutorial code located in the absinthe_tutorial repository.

 Writing Schemas

A GraphQL API starts by building a schema. Using Absinthe, schemas are normal
modules that use Absinthe.Schema.

Here’s a schema that supports looking up an item by ID:

filename: myapp/schema.ex
defmodule MyAppWeb.Schema do

 use Absinthe.Schema

 # Example data
 @items %{
 "foo" => %{id: "foo", name: "Foo"},
 "bar" => %{id: "bar", name: "Bar"}
 }

 query do
 field :item, :item do
 arg :id, non_null(:id)
 resolve fn %{id: item_id}, _ ->
 {:ok, @items[item_id]}
 end
 end
 end

end

 You may want to refer to the Absinthe API
 documentation for more detailed information as you look this over..

Some macros and functions used here that are worth mentioning, pulled in automatically from
Absinthe.Schema.Notation by use Absinthe.Schema:

	query - Defines the root query object. It’s like using object but with
 nice defaults. There is a matching mutation macro as well.

	field - Defines a field in the enclosing object, input_object, or interface.

	arg - Defines an argument in the enclosing field or directive.

	resolve - Sets the resolve function for the enclosing field.

You’ll notice we mention some types being referenced: :item and :id. :id
is a built-in scalar type (like :string, :boolean, and others), but :item
we need to define ourselves.

We can do it in the same MyAppWeb.Schema module, using the object macro defined by Absinthe.Schema.Notation:

filename: myapp/schema.ex
@desc "An item"
object :item do
 field :id, :id
 field :name, :string
end

Now you can use Absinthe to execute a query document. Keep in mind that for
HTTP, you’ll probably want to use
Absinthe.Plug instead of executing
GraphQL query documents yourself. Absinthe doesn’t know or care about HTTP,
but the absinthe_plug project does: it handles the vagaries of interacting
with HTTP GraphQL clients so you don’t have to.

If you were executing query documents yourself (let’s assume for a local tool),
it would go something like this:

"""
{
 item(id: "foo") {
 name
 }
}
"""
|> Absinthe.run(MyAppWeb.Schema)

Result
{:ok, %{data: %{"item" => %{"name" => "Foo"}}}}

Your schemas can be further customized using the options available to
Absinthe.Schema.Notation.field/4 to help provide for a richer experience for
your users, customize the field names, or mark fields as deprecated.

filename: myapp/language_schema.ex
@desc "A Language"
object :language do
 field :id, :id
 field :iso_639_1, :string, description: "2 character ISO 639-1 code", name: "iso639"
 field :name, :string, description: "English name of the language"
end

Importing Types

We could also move our type definitions out into a different module, for instance, MyAppWeb.Schema.Types, and then use import_types in our MyAppWeb.Schema:

filename: myapp/schema.ex
defmodule MyAppWeb.Schema.Types do
 use Absinthe.Schema.Notation

 object :item do
 field :id, :id
 field :name, :string
 end

 # ...

end

filename: myapp/schema.ex
defmodule MyAppWeb.Schema do
 use Absinthe.Schema

 import_types MyAppWeb.Schema.Types

 # ...

end

It’s a nice way of separating the top-level query and mutation information,
which define the surface area of the API, with the actual types that it uses.

See Importing Types for a full guide to importing types.

 Plug and Phoenix Setup

First, install Absinthe.Plug and a JSON codec of your choice,
eg, Jason:

filename: mix.exs
def deps do
 [
 {:absinthe_plug, "~> 1.4"},
 {:jason, "~> 1.1.0"},
]
end

Plug

To use, simply plug Absinthe.Plug in your pipeline.

plug Absinthe.Plug,
 schema: MyAppWeb.Schema

If you are going to support content types other than simply application/graphql
you should plug Absinthe.Plug after Plug.Parsers.

plug Plug.Parsers,
 parsers: [:urlencoded, :multipart, :json, Absinthe.Plug.Parser],
 json_decoder: Jason

plug Absinthe.Plug,
 schema: MyAppWeb.Schema

For more information on how the content types work, see General Usage.

Phoenix

If your entire API is going to be based on GraphQL, we recommend simply plugging
Absinthe.Plug in at the bottom of your endpoint, and removing your router altogether.

defmodule MyApp.Endpoint do
 use Phoenix.Endpoint, otp_app: :my_app

 plug Plug.RequestId
 plug Plug.Logger

 plug Plug.Parsers,
 parsers: [:urlencoded, :multipart, :json],
 pass: ["*/*"],
 json_decoder: Jason

 plug Absinthe.Plug,
 schema: MyAppWeb.Schema
end

If you want only Absinthe.Plug to serve a particular route, configure your router
like:

defmodule MyAppWeb.Router do
 use Phoenix.Router

 resource "/pages", MyAppWeb.PagesController

 forward "/api", Absinthe.Plug,
 schema: MyAppWeb.Schema
end

Now Absinthe.Plug will only serve GraphQL from the /api url.

Absinthe Context

Absinthe.Plug will pass any values found inside conn.private[:absinthe][:context]
on to Absinthe.run as the context. This is how you should handle logic that
uses headers — most notably, Authentication.

For more information, see the Context guide.

GraphiQL

See the absinthe_plug
project and the GraphiQL portion of the Introspection guide to
learn how to use the built-in Absinthe.Plug.GraphiQL plug.

General Usage

This plug supports requests in a number of ways:

[bookmark: via-a-get]Via a GET

With a query string:

?query=query+GetItem($id:ID!){item(id:$id){name}}&variables={id:"foo"}

Due to varying limits on the maximum size of URLs,
we recommend using one of the POST options below instead, putting the query into the body of the request.

Via an application/json POST

With a POST body:

{
 "query": "query GetItem($id: ID!) { item(id: $id) { name } }",
 "variables": {
 "id": "foo"
 }
}

(We could also pull either query or variables out to the query string, just
as in the GET example.)

Via an application/graphql POST

With a query string:

?variables={id:"foo"}

And a POST body:

query GetItem($id: ID!) {
 item(id: $id) {
 name
 }
}

HTTP API

How clients interact with the plug over HTTP is designed to closely match that
of the official
express-graphql middleware.

In the example above, we went over the various ways to
make a request, but here are the details:

Once installed at a path, the plug will accept requests with the
following parameters:

	query - A string GraphQL document to be executed.

	variables - The runtime values to use for any GraphQL query variables
as a JSON object.

	operationName - If the provided query contains multiple named
operations, this specifies which operation should be executed. If not
provided, a 400 error will be returned if the query contains multiple
named operations.

The plug will first look for each parameter in the query string, eg:

/graphql?query=query+getUser($id:ID){user(id:$id){name}}&variables={"id":"4"}

If not found in the query string, it will look in the POST request body, using
a strategy based on the Content-Type header.

For content types application/json and application/x-www-form-urlencoded,
configure Plug.Parsers (or equivalent) to parse the request body before Absinthe.Plug, eg:

plug Plug.Parsers,
 parsers: [:urlencoded, :multipart, :json],
 pass: ["*/*"],
 json_decoder: Jason

For application/graphql, the POST body will be parsed as GraphQL query string,
which provides the query parameter. If variables or operationName are
needed, they should be passed as part of the

Configuration Notes

As a plug, Absinthe.Plug requires very little configuration. If you want to support
application/x-www-form-urlencoded or application/json you’ll need to plug
Plug.Parsers first.

plug Plug.Parsers,
 parsers: [:urlencoded, :multipart, :json],
 pass: ["*/*"],
 json_decoder: Jason

plug Absinthe.Plug,
 schema: MyApp.Linen.Schema

Absinthe.Plug requires a schema: config.

It also takes several options. See the documentation
for the full listing.

 Ecto Best Practices

Avoiding N+1 Queries

In general, you want to make sure that when accessing Ecto associations that you
preload the data in the top level resolver functions to avoid N+1 queries.

Imagine this scenario: You have posts and users. A Post has an author field, which
returns a user. You want to list all posts, and get the name of their author:

{
 posts {
 author {
 name
 }
 }
}

If you write your schema like this, you’re going to have a bad time due to issues with N + 1:

object :post do
 @desc "Author of the post"
 field :author, :user do
 resolve fn post, _, _ ->
 author =
 post
 |> Ecto.assoc(:author)
 |> Repo.one

 {:ok, author}
 end
 end
end

query do
 field :posts, list_of(:post) do
 resolve fn _, _ ->
 {:ok, Post |> Repo.all}
 end
 end
end

What this schema will do when presented with the GraphQL query is
run Post |> Repo.all, which will retrieve N posts. Then for each
post it will resolve child fields, which runs our Repo.one query
function, resulting in N+1 calls to the database.

One way to handle this issue is with Absinthe’s support for
batching. The idea with batching is that we’re gonna aggregate all the
author_ids from each post, and then make one call to the user.

Let’s first make a function to get a model by ids:

defmodule MyAppWeb.Schema.Helpers do
 def by_id(model, ids) do
 import Ecto.Query

 ids = ids |> Enum.uniq

 model
 |> where([m], m.id in ^ids)
 |> Repo.all
 |> Map.new(&{&1.id, &1})
 end
end

Now we can use this function to batch our author lookups:

object :post do

 @desc "Author of the post"
 field :author, :user do
 resolve fn post, _, _ ->
 batch({MyAppWeb.Schema.Helpers, :by_id, User}, post.author_id, fn batch_results ->
 {:ok, Map.get(batch_results, post.author_id)}
 end)
 end
 end

end

Now we make just two calls to the database. The first call loads all of the posts.
Then as Absinthe walks through each post and tries to get the author, it’s instead
told to aggregate its information.

That aggregate information is passed on to our by_id/2 function from earlier.
It grabs ALL the users in just one database call, and creates a map of user ids
to users.

Absinthe then does a second pass and calls the batch_results function with that
map, letting us retrieve the individual author for each post.

Not only is this a very efficient way to query the data, it’s also 100% dynamic.
If a query document asks for authors, they’re loaded efficiently. If it does not,
they aren’t loaded at all.

We’ve made it easier and more flexible, however, with
Elixir’s dataloader package.

Dataloader

Absinthe.Middleware.Batch achieves a lot and, with some helpers, was the
standard way to solve this problem for a long time. While batching still has a
place, it has a few limitations that have driven the development of Dataloader.
There are small scale annoyances like the limitation of only being able to batch
one thing at a time in a field, or the fact that the API can get very verbose.

There’s also some larger scale issues however. Ecto has a fair number of quirks
that make it a difficult library to abstract access to. If you want the
concurrent test system to work, you need to add self() to all the batch keys
and do Repo.all(caller: pid) in every batch function so that it knows which
sandbox to use. It gets very easy for your GraphQL functions to become full of
direct database access, inevitably going around important data access rules you
may want to enforce in your contexts. Alternatively, your context functions can
end up with dozens of little functions that only exist to support batching items
by ID.

In time, people involved in larger projects have been able to build some
abstractions, helpers, and conventions around the Absinthe.Middleware.Batch
plugin that have done a good job of addressing these issues. That effort has been
extracted into the Dataloader project, which also draws inspiration from similar
projects in the GraphQL world.

Getting Started

Let’s jump straight in to getting Dataloader working, and then we’ll expand on
what’s actually happening behind the scenes.

Using Dataloader is as simple as doing:

import Absinthe.Resolution.Helpers, only: [dataloader: 1]

object :author do
 @desc "Author of the post"
 field :posts, list_of(:post), resolve: dataloader(Blog)
end

To make this work we need to setup a dataloader, add the Blog source to it, and
make sure our schema knows it needs to run the dataloader.

First however make sure to include the dataloader dependency in your application:

{:dataloader, "~> 1.0.0"}

Latest install instructions found here: https://github.com/absinthe-graphql/dataloader

Let’s start with a data source. Dataloader data sources are just structs that encode
a way of retrieving data in batches. In a Phoenix application you’ll generally have one
source per context, so that each context can control how its data is loaded.

Here is a hypothetical Blog context and a dataloader ecto source:

defmodule MyApp.Blog do
 def data() do
 Dataloader.Ecto.new(MyApp.Repo, query: &query/2)
 end

 def query(queryable, _params) do
 queryable
 end
end

When integrating Dataloader with GraphQL, we want to place it in our context so
that we can access it in our resolvers. In your schema module add:

alias MyApp.{Blog, Foo}

def context(ctx) do
 loader =
 Dataloader.new
 |> Dataloader.add_source(Blog, Blog.data())
 |> Dataloader.add_source(Foo, Foo.data()) # Foo source could be a Redis source

 Map.put(ctx, :loader, loader)
end

def plugins do
 [Absinthe.Middleware.Dataloader] ++ Absinthe.Plugin.defaults()
end

The context/1 function is a callback specified by the Absinthe.Schema behaviour that gives
the schema itself an opportunity to set some values in the context that it may need in order to run.

The plugins/0 function has been around for a while, and specifies what plugins the schema needs to resolve.
See the documentation for more.

That’s it! If you run a GraphQL query that hits that field, it will be loaded efficiently without N+1.

Unpacking Dataloader

The data/0 function creates an Ecto data source, to which you pass your repo and a query function. This query function
is called every time you want to load something, and provides an opportunity to apply arguments or
set defaults. So for example if you always want to only load non-deleted posts you can do:

def query(Post, _) do
 from p in Post, where: is_nil(p.deleted_at)
end
def query(queryable, _) do
 queryable
end

Now any time you’re loading posts, you’ll just get posts that haven’t been
deleted. Helpfully, this rule is defined within your context, helping ensure
that it has the final say about data access.

To actually use this data source we need to add a loader to your Absinthe
Context:

defmodule MyAppWeb.Context do
 alias MyApp.Blog
 def dataloader() do
 Dataloader.new
 |> Dataloader.add_source(Blog, Blog.data())
 end
end

Deprecated in v1.4: Batching with Absinthe.Ecto

The batching helper functions present
in absinthe_ecto
provided some early support for making it easy to get data from Ecto.

These batching features are considered DEPRECATED in favor of
Dataloader, described above.

There are a number of useful features that may be added to absinthe_ecto in the
future to support other integration concerns (schema definition, error handling),
but the batching support will eventually be phased out. Please use Dataloader.

Here’s an example of use:

use Absinthe.Ecto, repo: MyApp.Repo

object :post do
 @desc "Author of the post"
 field :author, :user, resolve: assoc(:author)
end

You can pass a function to it so that you can handle query arguments:

use Absinthe.Ecto, repo: MyApp.Repo
import Ecto.Query

object :author do
 @desc "posts by an author"
 field :posts, list_of(:post) do
 arg :category_id, :id
 resolve assoc(:posts, fn query, args, _ctx ->
 query |> where(category_id ^args.category_id)
 end)
 end
end

The issue here is that the resolvers become full of lots of on off SQL queries,
without providing your domain logic any easy opportunity to apply general rules
about how data should be accessed or loaded.

Although Dataloader requires a little bit more setup, it is a lot more flexible
since it can handle non-Ecto data sources, and it lets each part of your code
focus on what it should be doing. Your resolvers handle translating GraphQL
specific concerns into function calls to your domain logic, and your domain
logic gets to focus on enforcing the rules you want, without getting cluttered
up with dozens and dozens of single purpose data loading functions.

Formatting Ecto.Changeset Errors

You may want to look at the errors guide and
the kronky package.

 Writing Middleware and Plugins

Middleware enables custom resolution behaviour on a field. You can use them to share common logic that needs to happen before or after resolving fields. Things like authentication and error handling.

Create a Middleware

In order to create a Middleware you need a module that implements Absinthe.Middleware behaviour . Your module needs to have a call/2 method which receives an %Absinthe.Resolution{} struct and some options as its parameters, and then returns a possibly altered resolution struct.

Here is an example of a middleware that handle Ecto.Changeset errors and makes sure we properly add error message to the errors in the response.

defmodule MyApp.Middlewares.HandleChangesetErrors do
 @behaviour Absinthe.Middleware
 def call(resolution, _) do
 %{resolution |
 errors: Enum.flat_map(resolution.errors, &handle_error/1)
 }
 end

 defp handle_error(%Ecto.Changeset{} = changeset) do
 changeset
 |> Ecto.Changeset.traverse_errors(fn {err, _opts} -> err end)
 |> Enum.map(fn({k,v}) -> "#{k}: #{v}" end)
 end
 defp handle_error(error), do: [error]
end

The resolution struct has all kinds of useful values inside of it. You can access the Absinthe context, the root value, information about the current field’s AST, and more. For more information on how the current user ends up in the context please see our full authentication guide.

Using Middlewares

Middleware can be placed on a field in few different ways:

1. Using the Absinthe.Schema.Notation.middleware/2 macro used inside a field definition

This option is good when you want to add your middleware on few specific fields. You can use middleware to add multiple Middlewares before or after resolve. In this example MyApp.Web.Authentication would run before resolution, and HandleError would run after.

field :hello, :string do
 middleware MyApp.Web.Authentication
 resolve &get_the_string/2
 middleware HandleError, :foo
end

2. Using the middleware/3 callback in your schema.

This option is good if you want to add your middleware on all or a group of fields based on the type of query. middleware/3 is a function callback on a schema. When you use Absinthe.Schema a default implementation of this function is placed in your schema. It is passed the existing middleware for a field, the field itself, and the object that the field is a part of.
You can override this callback to add your Middleware in the list of existing middlewares. In this example we add our HandleChangesetError Middleware only to mutations.

add this to your schema module

if it's a field for the mutation object, add this middleware to the end
def middleware(middleware, _field, %{identifier: :mutation}) do
 middleware ++ [MyApp.Middlewares.HandleChangesetErrors]
end
if it's any other object keep things as is
def middleware(middleware, _field, _object), do: middleware

3. Returning a {:middleware, middleware_spec, config} tuple from a resolution function.

You can update your resolution function to return {:middleware, MyApp.Middlewares.HandleChangesetErrors, config}, note that in this case the middleware can only be applied after the resolution.

 Returning Errors

This guide could use some improvement.

You can help! Please fork the absinthe repository, edit guides/errors.md, and submit a pull request.

One or more errors for a field can be returned in a single {:error, error_value} tuple.

error_value can be:

	A simple error message string.

	A map containing :message key, plus any additional serializable metadata.

	A keyword list containing a :message key, plus any additional serializable metadata.

	A list containing multiple of any/all of these.

	Any other value compatible with to_string/1.

Basic Errors

A simple error message:

{:error, "Something bad happened"}

Multiple error messages:

{:error, ["Something bad", "Even worse"]}

Single custom errors (note the required :message keys):

{:error, message: "Unknown user", code: 21}
{:error, %{message: "A database error occurred", details: format_db_error(some_value)}}

Three errors of mixed types:

{:error, ["Simple message", [message: "A keyword list error", code: 1], %{message: "A map error"}]}

Generic handler for interoperability with errors from other libraries:

{:error, :foo}
{:error, 1.0}
{:error, 2}

Ecto.Changeset Errors

You may want to look at the kronky package.

 Batching Resolution

We’re sorry, this guide hasn’t been written yet.

You can help! Please fork the absinthe repository, edit guides/batching.md, and submit a pull request.

See the documentation for Absinthe.Middleware.Batch for more information.

 Dataloader

Dataloader provides an easy way efficiently load data in batches.
It’s inspired by https://github.com/facebook/dataloader

Installation

def deps do
 [
 {:dataloader, "~> 1.0.0"}
]
end

Usage

The core concept of dataloader is a data source which is just a struct
that encodes a way of retrieving data. More info in the Sources section.

Schema

Absinthe provides some dataloader helpers out of the box that you can import into your schema

 import Absinthe.Resolution.Helpers, only: [dataloader: 1]

This is needed to use the various dataloader helpers to resolve a field:

field(:teams, list_of(:team), resolve: dataloader(Nhl))

It also provides a plugin you need to add to help with resolution:

def plugins do
 [Absinthe.Middleware.Dataloader] ++ Absinthe.Plugin.defaults()
end

Finally you need to make sure your loader is in your context:

def context(ctx) do
 loader =
 Dataloader.new()
 |> Dataloader.add_source(Nhl, Nhl.data())

 Map.put(ctx, :loader, loader)
end

Putting all that together looks like this:

defmodule MyProject.Schema do
 use Absinthe.Schema
 use Absinthe.Schema.Notation

 import Absinthe.Resolution.Helpers, only: [dataloader: 1]

 alias MyProject.Loaders.Nhl

 def context(ctx) do
 loader =
 Dataloader.new()
 |> Dataloader.add_source(Nhl, Nhl.data())

 Map.put(ctx, :loader, loader)
 end

 def plugins do
 [Absinthe.Middleware.Dataloader] ++ Absinthe.Plugin.defaults()
 end

 object :team do
 field(:id, non_null(:id))
 field(:name, non_null(:string))
 field(:city, non_null(:string))
 end

 query do
 field(:teams, list_of(:team), resolve: dataloader(Nhl))
 field :team, :team do
 arg(:id, non_null(:id))
 resolve(dataloader(Nhl))
 end
 end
end

Sources

Dataloader ships with two different built in sources:

	Ecto - for easily pulling out data with ecto

	KV - a simple KV key value source.

KV

Here is a simple example of a loader using the KV source in combination with absinthe:

defmodule MyProject.Loaders.Nhl do
 @teams [%{
 id: 1,
 name: "New Jersey Devils",
 abbreviation: "NJD"
 },
 %{
 id: 2,
 name: "New York Islanders",
 abbreviation: "NYI"
 }
 # etc.
]

 def data() do
 Dataloader.KV.new(&fetch/2)
 end

 def fetch(:teams, [%{}]) do
 %{
 %{} => @teams
 }
 end

 def fetch(:team, args) do
 # must return a map keyed by the args
 # args is a list of the args used to resolve your field
 # for example, if you have arg(:foo, non_null(:string))
 # args will look like: [%{foo: "value of foo here")}]

 args
 |> Enum.reduce(%{}, fn(%{id: id} = arg, result) ->
 Map.put(result, arg, find_team(id))
 end)
 end

 def fetch(_batch, args) do
 args |> Enum.reduce(%{}, fn(arg, accum) -> Map.put(accum, arg, nil) end)
 end

 defp find_team(id) do
 @teams |> Enum.find(fn(t) -> t |> Map.get(:id) == id end)
 end
end

Dataloader.KV requires a load function that accepts a batch and args. It must return a map of values keyed by the args.
This is the purpose of the fetch/2 function. The dataloader helper we imported above uses the field name as the batch, and a map where the argument name is the key. For example: fetch(:team, [%{ id: 1 }])

Pattern matching can be used to fetch differently depending on the batch. For example, when the :teams batch is requested, the args will actually be an empty map (i.e. %{}).

 The Context and Authentication

Absinthe context exists to provide shared values to a given document execution.
A common use would be to pass in the current user of a given request. The context
is set at the call to Absinthe.run, and cannot be modified over the course of
a given execution.

Basic Usage

As a basic example let’s think about a profile page, where we want the current user
to be able to access basic information about themselves, but not other users.

First we’ll need a very basic schema:

defmodule MyAppWeb.Schema do
 use Absinthe.Schema

 @fakedb %{
 "1" => %{name: "Bob", email: "bubba@foo.com"},
 "2" => %{name: "Fred", email: "fredmeister@foo.com"},
 }

 query do
 field :profile, :user do
 resolve fn _, _, _ ->
 # How could we get a current user here?
 end
 end
 end

 object :user do
 field :id, :id
 field :name, :string
 field :email, :string
 end
end

A query we might want could look like:

{
 profile {
 email
 }
}

If we’re signed in as user 1, we should get only user 1’s email, for example:

{
 "profile": {
 "email": "bubba@foo.com"
 }
}

In order to set the context, our call to Absinthe.run/3 should look like:

Absinthe.run(document, MyAppWeb.Schema, context: %{current_user: %{id: "1"}})

To access this, we need to update our query’s resolve function:

query do
 field :profile, :user do
 resolve fn _, _, %{context: %{current_user: current_user}} ->
 {:ok, Map.get(@fakedb, current_user.id)}
 end
 end
end

And now it works!

Context and Plugs

When using Absinthe.Plug you don’t have direct access to the Absinthe.run call.
Instead, we can use Absinthe.Plug.put_options/2 to set context values which
Absinthe.Plug will use to pass it along to Absinthe.run.

Setting up your GraphQL context is as simple as writing a plug that inserts the
appropriate values into the connection.

Let’s use this mechanism to set our current_user from the previous example via
an authentication header. We will use the same Schema as before.

First, our plug. We’ll be checking the for the authorization header, and calling
out to some unspecified authentication mechanism.

defmodule MyAppWeb.Context do
 @behaviour Plug

 import Plug.Conn
 import Ecto.Query, only: [where: 2]

 alias MyApp.{Repo, User}

 def init(opts), do: opts

 def call(conn, _) do
 context = build_context(conn)
 Absinthe.Plug.put_options(conn, context: context)
 end

 @doc """
 Return the current user context based on the authorization header
 """
 def build_context(conn) do
 with ["Bearer " <> token] <- get_req_header(conn, "authorization"),
 {:ok, current_user} <- authorize(token) do
 %{current_user: current_user}
 else
 _ -> %{}
 end
 end

 defp authorize(token) do
 User
 |> where(token: ^token)
 |> Repo.one
 |> case do
 nil -> {:error, "invalid authorization token"}
 user -> {:ok, user}
 end
 end

end

This plug will use the authorization header to lookup the current user. If one
is found, it correctly sets the absinthe context. If you’re using Guardian or
some other library that provides utilities for authenticating users you can use
those here too, and just add their output to the context.

If there is no current user it’s better to simply not have the :current_user
key inside the map, instead of doing %{current_user: nil}. This way you an
just pattern match for %{current_user: user} in your code and not need to
worry about the nil case.

Using this plug is very simple. If we’re just in a normal plug context we can
just make sure it’s plugged prior to Absinthe.Plug

plug MyAppWeb.Context

plug Absinthe.Plug,
 schema: MyAppWeb.Schema

If you’re using a Phoenix router, add the context plug to a pipeline.

defmodule MyAppWeb.Router do
 use Phoenix.Router

 resource "/pages", MyAppWeb.PagesController

 pipeline :graphql do
 plug MyAppWeb.Context
 end

 scope "/api" do
 pipe_through :graphql

 forward "/", Absinthe.Plug,
 schema: MyAppWeb.Schema
 end
end

 Understanding Subscriptions

GraphQL subscriptions are a way to have events in the server push data out to clients in real time. The client submits a subscription document that asks for particular data, and then when events happen that document is run against that event and the resulting data is pushed out.

Like queries and mutations, subscriptions are not intrinsically tied to any particular transport, and they’re built within Absinthe itself to be able to operate on many different platforms.

At the moment however the most common and fully featured platform that you can run them on with Elixir is via Phoenix channels, so this guide will walk you through the basics of getting them hooked up to a phoenix application.

Absinthe.Phoenix Setup

Libraries you’ll need:

{:absinthe, "~> 1.4.0"},
{:absinthe_phoenix, "~> 1.4.0"},

You need to have a working phoenix pubsub configured. Here is what the default looks like if you create a new phoenix project:

config :my_app, MyAppWeb.Endpoint,
 # ... other config
 pubsub: [name: MyApp.PubSub,
 adapter: Phoenix.PubSub.PG2]

In your application supervisor add a line AFTER your existing endpoint supervision
line:

[
 # other children ...
 supervisor(MyAppWeb.Endpoint, []), # this line should already exist
 supervisor(Absinthe.Subscription, [MyAppWeb.Endpoint]), # add this line
 # other children ...
]

Where MyAppWeb.Endpoint is the name of your application’s phoenix endpoint.

In your MyApp.Web.Endpoint module add:

use Absinthe.Phoenix.Endpoint

In your socket add:

Phoenix 1.3

use Absinthe.Phoenix.Socket,
 schema: MyAppWeb.Schema

Phoenix 1.2

 use Absinthe.Phoenix.Socket
 def connect(_params, socket) do
 socket = Absinthe.Phoenix.Socket.put_schema(socket, MyAppWeb.Schema)
 {:ok, socket}
 end

Where MyAppWeb.Schema is the name of your Absinthe schema module.

That is all that’s required for setup on the server.

Setting Options

Options like the context can be configured in the def connect callback of your
socket

defmodule GitHunt.Web.UserSocket do
 use Phoenix.Socket
 use Absinthe.Phoenix.Socket,
 schema: MyApp.Web.Schema

 transport :websocket, Phoenix.Transports.WebSocket

 def connect(params, socket) do
 current_user = current_user(params)
 socket = Absinthe.Phoenix.Socket.put_opts(socket, context: %{
 current_user: current_user
 })
 {:ok, socket}
 end

 defp current_user(%{"user_id" => id}) do
 MyApp.Repo.get(User, id)
 end

 def id(_socket), do: nil
end

Schema

Example schema that lets you use subscriptions to get notified when a comment
is submitted to a github repo.

mutation do
 field :submit_comment, :comment do
 arg :repo_name, non_null(:string)
 arg :content, non_null(:string)

 resolve &Github.submit_comment/3
 end
end

subscription do
 field :comment_added, :comment do
 arg :repo_name, non_null(:string)

 # The topic function is used to determine what topic a given subscription
 # cares about based on its arguments. You can think of it as a way to tell the
 # difference between
 # subscription {
 # commentAdded(repoName: "absinthe-graphql/absinthe") { content }
 # }
 #
 # and
 #
 # subscription {
 # commentAdded(repoName: "elixir-lang/elixir") { content }
 # }
 #
 # If needed, you can also provide a list of topics:
 # {:ok, topic: ["absinthe-graphql/absinthe", "elixir-lang/elixir"]}
 config fn args, _ ->
 {:ok, topic: args.repo_name}
 end

 # this tells Absinthe to run any subscriptions with this field every time
 # the :submit_comment mutation happens.
 # It also has a topic function used to find what subscriptions care about
 # this particular comment
 trigger :submit_comment, topic: fn comment ->
 comment.repository_name
 end

 resolve fn comment, _, _ ->
 # this function is often not actually necessary, as the default resolver
 # for subscription functions will just do what we're doing here.
 # The point is, subscription resolvers receive whatever value triggers
 # the subscription, in our case a comment.
 {:ok, comment}
 end

 end
end

Concretely, if client A submits a subscription doc:

subscription {
 commentAdded(repoName: "absinthe-graphql/absinthe") {
 content
 }
}

this tells Absinthe to subscribe client A in the :comment_added field on the "absinthe-graphql/absinthe" topic, because that’s what comes back from the setup function.

Then if client B submits a mutation:

mutation {
 submitComment(repoName: "absinthe-graphql/absinthe", content: "Great library!") {
 id
 }
}

Client B will get the normal response to their mutation, and since they just ask for the id that’s what they’ll get.

Additionally, the :submit_comment mutation is configured as a trigger on the :commented_added subscription field, so the trigger function is called. That function returns "absinthe-graphql/absinthe" because that’s the repository name the comment was on, and now Absinthe knows it needs to get all subscriptions on the :comment_added field that have the "absinthe-graphql/absinthe" topic, so client A gets back

{"data":{"commentAdded":{"content":"Great library!"}}}

If you want to publish to this subscription manually (not using triggers in the schema) you can do:

Absinthe.Subscription.publish(MyAppWeb.Endpoint, comment, comment_added: "absinthe-graphql/absinthe")

If you want to subscribe to mutations from within your application, you can do:

{:ok, %{"subscribed" => topic}} = Absinthe.run(subscription_query, MyAppWeb.Schema, context: %{pubsub: MyAppWeb.Endpoint})
MyAppWeb.Endpoint.subscribe(topic)

This guide is up to date, but incomplete. Stay tuned for more content!

 Custom Scalar Types

One of the strengths of GraphQL is its extensibility—-which doesn’t end with
its object types, but is present all the way down to the scalar value level.

Sometimes it makes sense to build custom scalar types to better model your
domain. Here’s how to do it.

The GraphQL Specification doesn’t define date and datetime types, but Absinthe ships with several pre-built for use via import_types. In this example we’ll look at how :datetime is defined.

Defining a scalar

Supporting additional scalar types is as easy as using the scalar macro and
providing parse and serialize functions.

Here’s the definition for :datetime from Absinthe.Type.Custom:

@desc """
The [`DateTime`](https://hexdocs.pm/elixir/DateTime.html) scalar type represents a date and time in the UTC
timezone. The DateTime appears in a JSON response as an ISO8601 formatted
string, including UTC timezone ("Z"). The parsed date and time string will
be converted to UTC and any UTC offset other than 0 will be rejected.
"""
scalar :datetime, name: "DateTime" do
 serialize &DateTime.to_iso8601/1
 parse &parse_datetime/1
end

@spec parse_datetime(Absinthe.Blueprint.Input.String.t) :: {:ok, DateTime.t} | :error
@spec parse_datetime(Absinthe.Blueprint.Input.Null.t) :: {:ok, nil}
defp parse_datetime(%Absinthe.Blueprint.Input.String{value: value}) do
 case DateTime.from_iso8601(value) do
 {:ok, datetime, 0} -> {:ok, datetime}
 {:ok, _datetime, _offset} -> :error
 _error -> :error
 end
end
defp parse_datetime(%Absinthe.Blueprint.Input.Null{}) do
 {:ok, nil}
end
defp parse_datetime(_) do
 :error
end

Scalar definitions, created using the scalar macro from
Absinthe.Schema.Notation, are made up of two major elements:

	A function provided to parse that defines how input is converted
 from an AST
 value (an Absinthe.Blueprint.Input.t) to a value that’s suitable
 for use in an argument and passed to a resolver.

	A function provided to serialize that defines how input is
 serialized back out when used as a result that should be sent back
 to the user.

In this example:

mutation CreatePost {
 post(title: "Second", body: "We're off to a great start!", publishedAt: "2017-11-01T12:00:00Z") {
 id
 publishedAt
 }
}

If our schema defines a :published_at argument with the :datetime type:

field :post, :post do
 arg :published_at, :datetime
 resolve fn _, args, _ ->
 # If the arg is provided, `args.published_at` will be a DateTime struct
 # ...
 end
end

Then, the value of the publishedAt GraphQL field ends up being
parsed by the parse_datetime/1 function; it’s been defined as the
parse function for the :datetime type using the parse macro.

The value, "2017-11-01T12:00:00Z", will come into the function as an %Absinthe.Blueprint.Input.String{}, thanks to the hard work of the Absinthe parser and processing pipeline.

The parse_datetime/1 function pulls the string value out of the
input, parses it with DateTime.from_iso8601/1, then returns the
correct result. That result will be used as the value of the
:published_at argument when it’s passed to the :post field
resolver.

It’s important to note that—-currently—-the correct result from a
scalar’s parse function in the event of the error is a lone atom,
:error, not an error tuple with a reason. In a future version of
Absinthe, custom parse errors may be supported.

The serializer of :datetime is a pretty simple affair; it uses the
DateTime.to_iso8601/1 utility function. It would be called to
serialize the %DateTime{} struct for the requested :published_at
field in the result.

More custom scalar examples can be found under Absinthe Wiki - Scalar Recipes.

 Importing Types

It doesn’t take long for a schema module to become crowded with types,
resolvers, and other customizations.

A good first step in cleaning up your schema is extracting your types,
organizing them into other modules, and then using Absinthe.Schema.Notation.import_types/1
to make them available to your schema.

Example

Let’s say you have a schema that looks something like this:

defmodule MyAppWeb.Schema do
 use Absinthe.Schema

 object :user do
 field :name, :string
 end

 # Rest of the schema...

end

You could extract your :user type into a module, MyAppWeb.Schema.AccountTypes:

defmodule MyAppWeb.Schema.AccountTypes do
 use Absinthe.Schema.Notation

 object :user do
 field :name, :string
 end
end

Note that, unlike your schema module, type modules should use
Absinthe.Schema.Notation, not Absinthe.Schema.

Now, you need to make sure you use import_types to tell your schema
where to find additional types:

defmodule MyAppWeb.Schema do
 use Absinthe.Schema

 import_types MyAppWeb.Schema.AccountTypes

 # Rest of the schema...
end

Important: You should only use import_types from your schema
module; think of it like a manifest.

Now, your schema will be able to resolve any references to your :user type
during compilation.

What about root types?

Root types (which are defined using the query, mutation, and
subscription macros), can only be defined on the schema module—-you
can’t extract them, but you can use the import_fields mechanism to
extract their contents.

Here’s an example:

query do
 import_fields :account_queries
end

This will look for a matching object type :account_queries, and pull
its fields into the root query type.

For more information, see the guide.

 Importing Fields

Sometimes an object type becomes too large and needs to be broken into
pieces. This is especially true of the root query, mutation, and
subscription types that are defined in the schema module itself.

Absinthe provides a mechanism,
Absinthe.Schema.Notation.import_fields/1, to support objects being
able to import fields from other object types.

An Example

Let’s say you’re building a content management system. Your root query
type has become unwieldy over time, and your schema looks something
like this:

defmodule MyAppWeb.Schema do
 use Absinthe.Schema

 query do

 @desc "Get all the users, optionally filtering"
 field :users, list_of(:user) do
 # ...
 end

 @desc "Get a user using criteria"
 field :user, :user do
 # ...
 end

 # More account-related fields..

 @desc "Get all the articles, optionally filtering"
 field :articles, list_of(:article) do
 # ...
 end

 @desc "Get an article using criteria"
 field :article, :article do
 # ...
 end

 # More content-related fields...

 end

 # Other types...

end

This could be cleaned up to look something like this:

defmodule MyAppWeb.Schema do
 use Absinthe.Schema

 import_types MyAppWeb.Schema.AccountTypes
 import_types MyAppWeb.Schema.ContentTypes

 query do

 # Using :account_queries from MyAppWeb.Schema.AccountTypes
 import_fields :account_queries

 # Using :content_queries from MyAppWeb.Schema.ContentTypes
 import_fields :content_queries

 end

 # Other types...

end

import_fields here is pulling fields in from separate object types.

Before you can import fields from another object type, make sure
that the type in question is available to your schema. See
the guide on importing types for information
on how that’s done.

Here’s how those object types are defined.

First, AccountTypes:

defmodule MyAppWeb.Schema.AccountTypes do
 use Absinthe.Schema.Notation

 object :account_queries do

 @desc "Get all the users, optionally filtering"
 field :users, list_of(:user) do
 # ...
 end

 @desc "Get a user using criteria"
 field :user, :user do
 # ...
 end

 # More account-related fields...

 end

 # More account-related types...

end

And ContentTypes:

defmodule MyAppWeb.Schema.ContentTypes do
 use Absinthe.Schema.Notation

 object :content_queries do

 @desc "Get all the articles, optionally filtering"
 field :articles, list_of(:article) do
 # ...
 end

 @desc "Get an article using criteria"
 field :article, :article do
 # ...
 end

 # More content-related fields

 end

 # More content-related types...

end

For more information on import_types, see the guide.

 Using Document Variables

GraphQL supports query documents that declare variables that can be accepted to fill-in values. This is a useful mechanism for reusing GraphQL documents—-instead of attempting to interpolate values yourself.

	To support variables, simply define them for your query document as the specification expects, and pass in a variables option to Absinthe.run.

	If you’re using absinthe_plug, variables are passed in for you automatically after being parsed
from the query parameters or POST body.

Here’s an example of defining a non-nullable variable, id, in a document and then executing the document with a value for the variable:

"""
query GetItem($id: ID!) {
 item(id: $id) {
 name
 }
}
"""
|> Absinthe.run(MyAppWeb.Schema, variables: %{"id" => "bar"})

Result
{:ok, %{data: %{"item" => %{"name" => "Bar"}}}}

 Schema Introspection

You can introspect your schema using __schema, __type, and __typename,
as described in the specification.

Examples

Seeing the names of the types in the schema:

"""
{
 __schema {
 types {
 name
 }
 }
}
""" |> Absinthe.run(MyAppWeb.Schema)
{:ok,
 %{data: %{
 "__schema" => %{
 "types" => [
 %{"name" => "Boolean"},
 %{"name" => "Float"},
 %{"name" => "ID"},
 %{"name" => "Int"},
 %{"name" => "String"},
 ...
]
 }
 }}
}

Getting the name of the queried type:

"""
{
 profile {
 name
 __typename
 }
}
""" |> Absinthe.run(MyAppWeb.Schema)
{:ok,
 %{data: %{
 "profile" => %{
 "name" => "Joe",
 "__typename" => "Person"
 }
 }}
}

Getting the name of the fields for a named type:

"""
{
 __type(name: "Person") {
 fields {
 name
 type {
 kind
 name
 }
 }
 }
}
""" |> Absinthe.run(MyAppWeb.Schema)
{:ok,
 %{data: %{
 "__type" => %{
 "fields" => [
 %{
 "name" => "name",
 "type" => %{"kind" => "SCALAR", "name" => "String"}
 },
 %{
 "name" => "age",
 "type" => %{"kind" => "SCALAR", "name" => "Int"}
 },
]
 }
 }}
}

Note that you may have to nest several depths of type/ofType, as
type information includes any wrapping layers of List
and/or NonNull.

Using GraphiQL

The GraphiQL project is
“an in-browser IDE for exploring GraphQL.”

Absinthe provides GraphiQL via a plug in absinthe_plug. See the Plug and Phoenix Guide
for how to install that library. Once installed, usage is simple as:

plug Absinthe.Plug.GraphiQL, schema: MyAppWeb.Schema

If you want to use it at a particular path (in this case graphiql in your Phoenix
router, simply do:

filename: router.ex
forward "/graphiql", Absinthe.Plug.GraphiQL, schema: MyAppWeb.Schema

This can be trivially reserved to just the :dev elixir environment by doing:

filename: router.ex
if Mix.env == :dev do
 forward "/graphiql", Absinthe.Plug.GraphiQL, schema: MyAppWeb.Schema
end

If you’d prefer to use a desktop application, we recommend using the pre-built
Electron-based wrapper application,
GraphiQL.app.

GraphQL Hub

GraphQL Hub is an interesting website that you
can use to introspect a number of public GraphQL servers, using GraphiQL in the
browser and providing useful examples.

 Schema Deprecation

Use the deprecate option when defining any field or enum value.

	Provide a binary value to give a deprecation reason

	Provide true to just mark it as deprecated

An example:

query do
 field :old_item, :item, deprecate: true
 field :another_old_item, :item, deprecate: "still too old"
end

You can also use the deprecate as a macro inside a block, for instance:

field :age, :integer do
 deprecate
 arg :user_id, non_null(:id)
end

With a reason:

field :ssn, :string do
 deprecate "Privacy concerns"
end

Warning: Deprecated fields and enum values are not reported by default during introspection.

 Document Adapters

Absinthe supports an adapter mechanism that allows developers to define their
schema using one code convention (eg, snake_cased fields and arguments), but
accept query documents and return results (including names in errors) in
another (eg, camelCase). This is useful in allowing both client and server to
use conventions most natural to them.

Absinthe ships with two adapters:

	Absinthe.Adapter.LanguageConventions, which expects schemas to be defined
 in snake_case (the standard Elixir convention), translating to/from camelCase
 for incoming query documents and outgoing results. This is the default as of v0.3,
 and it is highly recommended that it’s the adapter you use, as introspection
 currently makes certain assumptions about how to return results.

	Absinthe.Adapter.Underscore, which is similar to the LanguageConventions
 adapter but converts all incoming identifiers to underscores and does not
 modify outgoing identifiers (since those are already expected to be
 underscores). Unlike Absinthe.Adapter.Passthrough this does not break
 introspection.

	Absinthe.Adapter.Passthrough, which is a no-op adapter and makes no
 modifications.

To set the adapter, you can set an application configuration value:

config :absinthe,
 adapter: Absinthe.Adapter.TheAdapterName

Or, you can provide it as an option to Absinthe.run/3:

Absinthe.run(query, MyAppWeb.Schema,
 adapter: Absinthe.Adapter.TheAdapterName)

Notably, this means you’re able to switch adapters on case-by-case basis.
In a Phoenix application, this means you could even support using different
adapters for different clients.

A custom adapter module must merely implement the Absinthe.Adapter protocol,
in many cases with use Absinthe.Adapter and only overriding the desired
functions.

Note that types that are defined external to your application (including
the introspection types) may not be compatible if you’re using a different
adapter.

 Complexity Analysis

A misbehaving client might send a very complex GraphQL query that would require
considerable resources to handle. In order to protect against this scenario, the
complexity of a query can be estimated before it is resolved and limited to a
specified maximum.

For example, to enable complexity analysis and limit the complexity to a value
of 50 — if we were using Absinthe.run/3 directly — we would do this:

Absinthe.run(doc, MyAppWeb.Schema, analyze_complexity: true, max_complexity: 50)

That would translate to the following configuration when using
absinthe_plug (>= v1.2.3):

plug Absinthe.Plug,
 schema: MyAppWeb.Schema,
 analyze_complexity: true,
 max_complexity: 50

The maximum value, 50, is compared to complexity values calculated for each request.

Complexity Analysis

Here’s how the complexity value is calculated:

By default each field in a query will increase the complexity by 1. However it
can be useful to customize how the complexity value for a field. This is done in your schema using the
complexity/1 macro, which can accept a function or an explicit integer value.

As an example, when a field is a list, the complexity is often correlated to the
size of the list. To prevent large selections, a field can use a limit argument
with a suitable default (think, for instance, of page sizes during pagination),
and complexity can be calculated keeping that in mind. Here is a schema that
supports analyzing (and limiting) complexity using that approach:

defmodule MyAppWeb.Schema do

 use Absinthe.Schema

 query do
 field :people, list_of(:person) do
 arg :limit, :integer, default_value: 10
 complexity fn %{limit: limit}, child_complexity ->
 # set complexity based on maximum number of items in the list and
 # complexity of a child.
 limit * child_complexity
 end
 end
 end

 object :person do
 field :name, :string
 field :age, :integer
 # constant complexity for this object
 complexity 3
 end

end

For a field, the first argument to the function you supply to complexity/1 is the user arguments
— just as a field’s resolver can use user arguments to resolve its value, the complexity
function that you provide can use the same arguments to calculate the field’s complexity.

The second argument passed to your complexity function is the child (that is,
the result of the field); in the example above, child_complexity would be 3,
as the field returns a list of :person objects, and the complexity of
:person is explicitly set to 3.

(If a complexity function accepts three arguments, the third will be an
%Absinthe.Resolution{} struct, just as with resolvers.)

If the value of a document’s :limit argument was 10, the complexity of a single
:people field would be calculated as 30; 10, the value of :limit, times 3, the complexity of
the :person type.

So this would be okay:

{
 people(limit: 10) {
 name
 }
}

But this, at a complexity of 60, wouldn’t:

{
 people(limit: 20) {
 name
 }
}

Complexity limiting

If a document’s calculated complexity exceeds the configured limit, resolution
will be skipped and an error will be returned in the result detailing the
calculated and maximum complexities.

 File Uploads

Absinthe provides a unique pattern to support file uploads in conjunction with normal GraphQL field arguments as part of the absinthe_plug package.

Example

The following schema includes a mutation field that accepts multiple uploaded files as arguments (:users and :metadata):

defmodule MyAppWeb.Schema do
 use Absinthe.Schema

 # Important: Needed to use the `:upload` type
 import_types Absinthe.Plug.Types

 mutation do
 field :upload_file, :string do
 arg :users, non_null(:upload)
 arg :metadata, :upload

 resolve fn args, _ ->
 args.users # this is a `%Plug.Upload{}` struct.

 {:ok, "success"}
 end
 end
 end
end

To send a mutation that includes a file upload, you need to
use the multipart/form-data content type. For example, using cURL:

$ curl -X POST \\
-F query="mutation { uploadFile(users: \"users_csv\", metadata: \"metadata_json\")}" \\
-F users_csv=@users.csv \\
-F metadata_json=@metadata.json \\
localhost:4000/graphql

Note how there is a correspondence between the value of the :users argument
and the -F option indicating the associated file.

By treating uploads as regular arguments we get all the usual GraphQL argument
benefits (such as validation and documentation)—-which we wouldn’t get if
we were merely putting them in the context as in other implementations.

Integration with Client-side GraphQL Frameworks

	Apollo: apollo-absinthe-upload-link

	Apollo (v1): apollo-absinthe-upload-client (Note: does not support Relay Native as of v1.0.1)

	Relay: (None known. Please submit a pull request updating this information.)

 Using with JavaScript

You can interact with an Absinthe GraphQL server via HTTP (thanks to
absinthe_plug) and websockets (thanks to absinthe_phoenix):

We also have special support for configuring and working with specific
JavaScript frameworks. You can see the guides here:

	Apollo Client

	Relay

Over HTTP

To integrate a JavaScript application via HTTP, any standard GraphQL
HTTP request (GET/POST) will do.

Here’s an example using
isomorphic-fetch:

require('isomorphic-fetch');

fetch('http://localhost:4000/graphql', {
 method: 'POST',
 headers: { 'Content-Type': 'application/json' },
 body: JSON.stringify({ query: '{ posts { title } }' }),
})
 .then(res => res.json())
 .then(res => console.log(res.data));

Over Websockets

See the @absinthe/socket NPM package
for special support for Absinthe’s use of Phoenix channels for GraphQL over websockets, including support for
subscriptions.

 Using with Apollo Client

We’re sorry, this guide hasn’t been written yet.

You can help! Please fork the absinthe repository, edit guides/client/apollo.md, and submit a pull request.

For now, see the @absinthe/socket-apollo-link package README, which includes examples showing how to configure Apollo to connect to an Absinthe GraphQL server over HTTP, Websockets, or using a hybrid configuration.

 Using with Relay

While GraphQL specifies what queries, mutations, and object types should look
like, Relay is a client-side implementation of an efficient data storage and
(re-)fetching system that is designed to work with a GraphQL server.

To allow Relay to work its magic on the client side, all GraphQL queries and
mutations need to follow certain conventions. Absinthe.Relay provides
utilities to help you make your server-side schemas Relay-compatible while
requiring only minimal changes to your existing code.

Absinthe.Relay supports three fundamental pieces of the Relay puzzle: nodes,
which are normal GraphQL objects with a unique global ID scheme; mutations,
which in Relay Classic conform to a certain input and output structure; and
connections, which provide enhanced functionality around many-to-one lists
(most notably pagination).

Using Absinthe.Relay

Make sure you have the absinthe_relay
package configured
as a dependency for your application.

To add Relay support schemas should start with use Absinthe.Relay.Schema, eg:

defmodule Schema do
 use Absinthe.Schema
 use Absinthe.Relay.Schema, :classic

 # ...

end

Note that this schema is being prepared to support Relay Classic; if
you do not provide either a :classic or :modern option,
:classic is currently selected as the default, but a warning is
output; :modern will be the default option in v1.5.

If you’re defining your types in a separate type module that you’re using via
import_types in your schema, use the Notation module instead:

defmodule Schema.Types do
 use Absinthe.Schema.Notation
 use Absinthe.Relay.Schema.Notation, :classic

 # ...

end

Now you’re ready to implement the Relay features you need.

Nodes

To enable Relay to be clever about caching and (re-)fetching data objects, your
server must assign a globally unique ID to each object before sending it down
the wire. Absinthe will take care of this for you if you provide some additional
information in your schema.

First of all, you must define a :node interface in your schema. Rather than
do this manually, Absinthe.Relay provides a macro so most of the configuration
is handled for you.

Use node interface in your schema:

node interface do
 resolve_type fn
 %YourApp.Model.Person{}, _ ->
 :person
 %YourApp.Model.Business{}, _ ->
 :business
 _, _ ->
 nil
 end
end

... mutations, queries ...

For instance, if your query or mutation resolver returns:

{:ok, %YourApp.Model.Business{id: 19, business_name: "ACME Corp.", employee_count: 52}}

Absinthe will pattern-match the value to determine that the object type is
:business. This becomes important when you configure your :business type as a node:

node object :business do # <-- notice the macro prefix "node"
 field :business_name, non_null(:string)
 field :employee_count, :integer
end

(Note the macro name, node, looks like a prefix to the object macro.)

While it may appear that your :business object type only has two fields,
:business_name and :employee_count, it actually has three. An :id field
is configured for you because you used the node object macro, and because the
:node interface knows how to identify the values returned from your resolvers,
that :id field is automatically set-up to convert internal (in this case,
numeric) IDs to the global ID scheme — an opaque string (like "UWxf59AcjK=")
will be returned instead.

Important: the global ID is generated based on the object's
unique identifier, which by default is the value of its existing :id
field. This is convenient, because if you are using Ecto, the
primary key :id database field is typically enough to uniquely identify an
object of a given type. It also means, however, that the internal :id of a
node object will not be available to be queried as :id.

	If you wish to generate your global IDs based on something other than the
 existing :id field (if, for instance, your internal IDs are returned as _id),
 provide the :id_fetcher option (see the documentation).

	If you wish to make your internal ID queryable, you must return it as a
 different field (eg, you could define an :internal_id field whose resolver
 extracts the raw, internal :id value from the source map/struct).

Node query field

Ok, so your node objects provide a global :id. How does Relay use it?

Relay expects you to provide a query field called node that accepts a global
ID (as arg :id) and returns the corresponding node object. Absinthe makes it
easy to set this up — use the node field macro inside your query.

query do
 # ...
 node field do
 resolve fn
 %{type: :person, id: id}, _ ->
 # Get the person from the DB somehow, returning a tuple
 YourApp.Resolver.Person.find(%{id: id}, %{})
 %{type: :business, id: id}, _ ->
 # Get the business from @businesses
 {:ok, Map.get(@businesses, id)}
 # etc.
 end
 end
 # ... more queries ...
end

Notice that the resolver for node field expects the first (args) argument to
contain a :type and :id. These are the node object type identifier and the
internal (non-global) ID, automatically parsed from the global ID. The resolver
looks up the correct value using the internal ID and returns a tuple, as usual.

For more information, see the documentation.

Converting node IDs to internal IDs for resolvers

If you need to parse a node (global) ID for use in a resolver, there is a
helpful utility, parsing_node_ids/2 that is automatically imported for you.
Here’s an example of how it works.

Let’s assume we have a field, :employees, that returns a list of :person
objects for a given :business_id — a node ID:

query do
 field :employees, list_of(:people) do
 arg :business_id, :id
 resolve &resolve_employees/2
 end
end

def resolve_employees(%{business_id: global_id}, _) do
 # But I need an internal ID to look-up the employees!
end

In resolve_employees/2, we could certainly parse out the internal ID manually.
Here’s how that would look:

def resolve_employees(%{business_id: global_id}, _) do
 {:ok, %{type: :business, id: internal_id}} =
 Absinthe.Relay.Node.from_global_id(global_id, YourApp.Schema)
 # TODO: find employees using internal_id, return tuple
end

Obviously this can get a bit tedious if we have to do it often. Instead, we can
use parsing_node_ids/2 to wrap our resolver function to do the parsing for
us, invoking our function with the internal ID instead. We just have to tell the
parsing_node_ids/2 what ID field arguments to parse and what the associated
types should be:

query do
 field :employees, list_of(:people) do
 arg :business_id, :id
 resolve parsing_node_ids(&resolve_employees/2, business_id: :business)
 end
end

def resolve_employees(%{business_id: internal_id}, _) do
 # We have an internal ID!
end

This leaves our resolver function virtually unchanged, and keeps our code much
cleaner.

Mutations

Relay Classic sets some specific constraints around the way arguments and results for
mutations are structured.

In Relay Modern (if you’re using the :modern option when defining
the schema), you’ll have access to a similar set of macros as
discussed here, but be aware that the constraints mentioned (on
input, on clientMutationId, etc) don’t apply. See the
documentation for Absinthe.Relay.Mutation.Notation.Modern for more
specific instructions.

Relay expects mutations to accept exactly one argument, input, an
InputObject. On the JavaScript side, it automatically populates a field on the
input, clientMutationId, and expects to get it back, unchanged, as part of the
result. Thankfully Absinthe.Relay abstracts these details away from the schema
designer, allowing them to focus on any other arguments needed or results
expected.

 Important: Remember that input fields (and arguments in
 general) cannot be of one of your object types. Use input_object to
 model complex argument types.

In this example, we accept a list of multiple :person_input_object values to
insert people into a database.

defmodule YourApp.Schema
 # ...

 input_object :person_input_object do
 field :first_name, non_null(:string)
 field :last_name, non_null(:string)
 field :age, :integer
 end

 mutation do

 @desc "A mutation that inserts a list of persons into the database"
 payload field :bulk_create_persons do
 input do
 field :persons, list_of(:person_input_object)
 end
 output do
 # fields in the result
 end
 resolve &Resolver.Person.bulk_create/2
 end

 # ... more mutations ...
 end
end

Note the payload macro introduces a Relay mutation, input defines the fields
(inside the input argument), and output defines the fields available as part
of the result.

See the module documentation for more information:

	Absinthe.Relay.Mutation.Notation.Classic

	Absinthe.Relay.Mutation.Notation.Modern

Referencing existing nodes in mutation inputs

Occasionally, your client may wish to make reference to an existing node in the
mutation input (this happens particularly when manipulating the connection edges
of a parent node).

Incoming IDs for node types may have to be converted to their internal
equivalents so you can persist changes to your backend. For this purpose, you
can use Absinthe.Relay.Node.from_global_id/2 to parse node (global) IDs
manually.

def bulk_create(%{persons: new_persons, group: global_group_id}, _) do
 {:ok, %{type: :group, id: internal_group_id}} = Absinthe.Relay.Node.from_global_id(global_group_id, YourApp.Schema)`
 # ... manipulate your DB using internal_group_id
end

If, of course, your client knows the internal IDs (in a peer field to :id, eg,
:internal_id), you can depends on that ID — but we recommend that you use
node IDs as they are opaque values and it’s the more conventional practice.

 Important: When using from_global_id, remember to always
 match the :type value to ensure the internal ID is for the type you expect,
 and a global ID for the wrong type of node hasn't been mistakenly sent to the
 server.

Connections

One of the more popular features of Relay is the rich pagination support provided by its
connections. This medium post
has a good explanation of the full feature set and nomenclature.

For example, you could define a connection for paginating :location objects with:

connection node_type: :location

This will automatically define two new types: :location_connection and :location_edge.

We define a field that uses these types to paginate associated records by using
connection field. Here, for instance, we support paginating a business’s locations:

object :business do
 field :short_name, :string
 connection field :locations, node_type: :location do
 resolve fn
 pagination_args, %{source: business} ->
 Location
 |> where(business_id: ^business.id)
 |> order_by(:inserted_at)
 |> Connection.from_query(&Repo.all/1, pagination_args)
 end
 end
end

We are piping a query for the associated locations into from_query/3 along with the default
relay pagination arguments that allow for pagination. For example, to get just the first 10
locations, use the first argument:

query {
 business(id:"9ea6605e-e6c8-44ea-98d0-1fe6276e193d") {
 shortName
 locations(first:10) {
 edges
 node {
 address1
 city
 }
 }
 }
 }
}

Check the documentation
for more details on connections.

 Note: These features do not require using Relay on the client as Apollo
 and other client implementations generally support Relay connection configuration.

 Upgrading to v1.4

This information is extracted and expanded from the CHANGELOG.

This version included subscriptions, and also came packaged with a number of improvements that required breaking changes.

The breaking changes primarily affect middleware and plugin authors, but some changes (like null handling and changes to error messages) warrant review by all Absinthe users.

Middleware: Watch Out for Eager Default

Default middleware are now applied eagerly. Although a small change, this will affect anyone who is currently changing the default middleware.

Before v1.4

Before v1.4, the default middleware was applied “lazily”. What this means is if you had a simple field like:

object :user
 field :name, :string
end

then when it is passed to the middleware/3 callback on a schema, the middleware is an empty list:

def middleware(middleware, %{identifier: :name}, %{identifier: :user}) do
 middleware |> IO.inspect
 #=> []
end

The nice thing about this was that it made it easy to pattern match for the “no middleware supplied” case; you could just match against [].

The problem, however, is that if you wanted to add a simple tracing middleware that runs on every field for example, the “obvious” way to do it seemed like it could be this:

def middleware(middleware, _field, _object) do
 [YourTracer | middleware]
end

… and we just broke our field :name, :string field, and all others like it. No longer did it come back from def middleware as [], and thus our lazy default wasn’t applied.

This has tripped up an unreasonable number of people, and it violated the common sense meaning of “default value.” It also made it hard for users to determine what default middleware might run on a field. Checking the value passed to middleware/3 didn’t help.

In v1.4

The default middleware is now eager:

def middleware(middleware, %{identifier: :name}, %{identifier: :user}) do
 middleware |> IO.inspect
 #=> [{Absinthe.Middleware.MapGet, :name}]
end

Every field has at least one middleware specified, and the middleware/3 callback has full access to it. Conceptually, it’s a lot simpler than the previous approach, in that there isn’t some hidden action after the fact that you can’t see.

Changing the default is a bit more work now, because you have to explicitly match against the Absinthe default to put something else in its place. However it isn’t very difficult (moreover a helper function could be added later to make it even easier).

Plugins: Change Arguments

Plugins now receive an %Absinthe.Blueprint.Execution{} struct instead of the bare accumulator. This makes it possible for plugins to set or operate on context values. Upgrade your plugins! Change this:

def before_resolution(acc) do
 acc = # doing stuff to the acc here
end
def after_resolution(acc) do
 acc = # doing stuff to the acc here
end
def pipeline(pipeline, acc) do
 case acc do
 # checking on the acc here
 end
end

to:

def before_resolution(%{acc: acc} = exec) do
 acc = # doing stuff to the acc here
 %{exec | acc: acc}
end
def after_resolution(%{acc: acc} = exec) do
 acc = # doing stuff to the acc here
 %{exec | acc: acc}
end
def pipeline(pipeline, exec) do
 case exec.acc do
 # checking on the acc here
 end
end

The reason for this is that you can also access the context within the exec value. When using something like Dataloader, it’s important to have easy to the context

Calling All Resolvers: The Null Literal Has Arrived

Absinthe now supports GraphQL null literals.

null values, when provided as arguments, are passed on to Absinthe resolvers as nil (provided they don’t run afoul of a non_null/1 argument constraint).

The concrete effect of this is that your resolvers may need to be updated to take into account that nil is a possible value; in the past arguments would never be passed as nil.

Let’s take a look at this example schema snippet.

Before v1.4

field :avatar_url, :string do
 arg :size, :integer, default_value: 64
 # ... resolver here
end

Before v1.4, you could write a resolver that could always assume a :size would be provided:

resolve fn _, %{size: size}, _ ->
 {:ok, "http://example.com/avatars/test_#{size}x#{size}.png"}
end

If the user doesn’t provide a value for :size, it would default to 64:

{
 avatarUrl(size: 32) # => http://example.com/avatars/test_32x32.png
 avatarUrl # => http://example.com/avatars/test_64x64.png
 # This is invalid in v1.3, as there's no `null` literal:
 avatarUrl(size: null)
}

In v1.4

In v1.4, users can freely send null, and that value will override any default:

{
 # This didn't change:
 avatarUrl(size: 32) # => http://example.com/avatars/test_32x32.png
 # Neither did this (default value applied as expected)
 avatarUrl # => http://example.com/avatars/test_64x64.png
 # But `nil` gets interpolated here, as it overrode the default value of `64`:
 avatarUrl(size: null) # => http://example.com/avatars/test_x.png
}

You may want to change your resolvers to use the default value if nil is received:

resolve fn _, %{size: size}, _ ->
 px = size || 64
 {:ok, "http://example.com/avatars/test_#{px}x#{px}.png"}
end

Or handle it as an explicit match (especially if you want to assign a special semantic value to the now-available null value):

resolve fn
 _, %{size: nil}, _ ->
 {:ok, "http://example.com/avatars/test_default.png"}
 _, %{size: size}, _ ->
 {:ok, "http://example.com/avatars/test_#{size}x#{size}.png"}
end

Some other options to think about:

	Shore up your schema by adding more uses of non_null/1 constraints where it makes sense.

	Add piece of middleware to strip out nil argument values, universally or focused on a specific set of fields.

Expect Shorter Error Messages

Errors returned from resolvers no longer say "In field #{field_name}:". The inclusion of the path information obviates the need for this data, and it makes error messages a lot easier to deal with on the frontend.

If you expect certain error messages in your clients, you may need to update your code.

Absinthe

Documentation for the Absinthe package, a toolkit for building GraphQL
APIs with Elixir.

For usage information, see the documentation, which
includes guides, API information for important modules, and links to useful resources.

 Anchor for this section

 Summary

 Types

 result_error_t()

 result_selection_t()

 result_t()

 run_opts()

 run_result()

 Functions

 run!(input, schema, options \\ [])

 Evaluates a query document against a schema, without options

 run(document, schema, options \\ [])

 Evaluates a query document against a schema, with options

 Anchor for this section

 Types

 Link to this type

 result_error_t()

 View Source

 result_error_t() ::
 %{message: String.t()}
 | %{
 message: String.t(),
 locations: [%{line: pos_integer(), column: integer()}]
 }

 Link to this type

 result_selection_t()

 View Source

 result_selection_t() :: %{
 optional(String.t()) =>
 nil
 | integer()
 | float()
 | boolean()
 | binary()
 | atom()
 | [result_selection_t()]
}

 Link to this type

 result_t()

 View Source

 result_t() ::
 %{data: nil | result_selection_t()}
 | %{data: nil | result_selection_t(), errors: [result_error_t()]}
 | %{errors: [result_error_t()]}

 Link to this type

 run_opts()

 View Source

 run_opts() :: [
 context: %{},
 adapter: Absinthe.Adapter.t(),
 root_value: term(),
 operation_name: String.t(),
 analyze_complexity: boolean(),
 variables: %{optional(String.t()) => any()},
 max_complexity: non_neg_integer() | :infinity
]

 Link to this type

 run_result()

 View Source

 run_result() :: {:ok, result_t()} | {:error, String.t()}

 Anchor for this section

 Functions

 Link to this function

 run!(input, schema, options \\ [])

 View Source

 run!(
 binary() | Absinthe.Language.Source.t() | Absinthe.Language.Document.t(),
 Absinthe.Schema.t(),
 Keyword.t()
) :: result_t() | no_return()

Evaluates a query document against a schema, without options.

 Options

See run/3 for the available options.

 Link to this function

 run(document, schema, options \\ [])

 View Source

 run(
 binary() | Absinthe.Language.Source.t() | Absinthe.Language.Document.t(),
 Absinthe.Schema.t(),
 run_opts()
) :: run_result()

Evaluates a query document against a schema, with options.

 Options

	:adapter - The name of the adapter to use. See the Absinthe.Adapter
 behaviour and the Absinthe.Adapter.Passthrough and
 Absinthe.Adapter.LanguageConventions modules that implement it.
 (Absinthe.Adapter.LanguageConventions is the default value for this option.)

	:operation_name - If more than one operation is present in the provided
 query document, this must be provided to select which operation to execute.

	:variables - A map of provided variable values to be used when filling in
 arguments in the provided query document.

	:context -> A map of the execution context.

	:root_value -> A root value to use as the source for toplevel fields.

	:analyze_complexity -> Whether to analyze the complexity before
executing an operation.

	:max_complexity -> An integer (or :infinity) for the maximum allowed
complexity for the operation being executed.

 Examples

"""
query GetItemById($id: ID) {
 item(id: $id) {
 name
 }
}
"""
|> Absinthe.run(App.Schema, variables: %{"id" => params[:item_id]})

See the Absinthe module documentation for more examples.

Absinthe.Lexer

 Anchor for this section

 Summary

 Functions

 do_tokenize(binary, opts \\ [])

 Parses the given binary as do_tokenize

 line_and_column(arg, byte_offset, column_correction)

 tokenize(input)

 Anchor for this section

 Functions

 Link to this function

 do_tokenize(binary, opts \\ [])

 View Source

 do_tokenize(binary(), keyword()) ::
 {:ok, [term()], rest, context, line, byte_offset}
 | {:error, reason, rest, context, line, byte_offset}
when line: {pos_integer(), byte_offset},
 byte_offset: pos_integer(),
 rest: binary(),
 reason: String.t(),
 context: map()

Parses the given binary as do_tokenize.

Returns {:ok, [token], rest, context, line, byte_offset} or
{:error, reason, rest, context, line, byte_offset}.

 Options

	:line - the initial line, defaults to 1

	:byte_offset - the initial byte offset, defaults to 0

	:context - the initial context value. It will be converted
to a map

 Link to this function

 line_and_column(arg, byte_offset, column_correction)

 View Source

 Link to this function

 tokenize(input)

 View Source

Absinthe.Phase.Document.Context

Pass on context and root value to document.

 Anchor for this section

 Summary

 Functions

 flag_invalid(node)

 flag_invalid(node, flag)

 inherit_invalid(node, children, add_flag)

 put_flag(node, flag)

 run(blueprint, options \\ [])

 Callback implementation for Absinthe.Phase.run/2

 Anchor for this section

 Functions

 Link to this function

 flag_invalid(node)

 View Source

 flag_invalid(Absinthe.Blueprint.node_t()) :: Absinthe.Blueprint.node_t()

 Link to this function

 flag_invalid(node, flag)

 View Source

 flag_invalid(Absinthe.Blueprint.node_t(), atom()) :: Absinthe.Blueprint.node_t()

 Link to this function

 inherit_invalid(node, children, add_flag)

 View Source

 Link to this function

 put_flag(node, flag)

 View Source

 Link to this function

 run(blueprint, options \\ [])

 View Source

 run(Absinthe.Blueprint.t(), Keyword.t()) :: {:ok, Absinthe.Blueprint.t()}

Callback implementation for Absinthe.Phase.run/2.

Absinthe.Phase.Schema.Decorate.Decorator behaviour

 Anchor for this section

 Summary

 Callbacks

 apply_decoration(node, decoration)

 Anchor for this section

 Callbacks

 Link to this callback

 apply_decoration(node, decoration)

 View Source

 apply_decoration(node :: Absinthe.Blueprint.Schema.t(), decoration :: any()) ::
 Absinthe.Blueprint.Schema.t()

Absinthe.Phase.Schema.Validation.NoCircularFieldImports

 Anchor for this section

 Summary

 Functions

 flag_invalid(node)

 flag_invalid(node, flag)

 inherit_invalid(node, children, add_flag)

 put_flag(node, flag)

 run(blueprint, opts)

 Callback implementation for Absinthe.Phase.run/2

 sort_and_validate_types(types)

 validate_schema(schema)

 Anchor for this section

 Functions

 Link to this function

 flag_invalid(node)

 View Source

 flag_invalid(Absinthe.Blueprint.node_t()) :: Absinthe.Blueprint.node_t()

 Link to this function

 flag_invalid(node, flag)

 View Source

 flag_invalid(Absinthe.Blueprint.node_t(), atom()) :: Absinthe.Blueprint.node_t()

 Link to this function

 inherit_invalid(node, children, add_flag)

 View Source

 Link to this function

 put_flag(node, flag)

 View Source

 Link to this function

 run(blueprint, opts)

 View Source

Callback implementation for Absinthe.Phase.run/2.

 Link to this function

 sort_and_validate_types(types)

 View Source

 Link to this function

 validate_schema(schema)

 View Source

Absinthe.Phase.Schema.Validation.ObjectInterfacesMustBeValid

 Anchor for this section

 Summary

 Functions

 explanation(map)

 flag_invalid(node)

 flag_invalid(node, flag)

 inherit_invalid(node, children, add_flag)

 put_flag(node, flag)

 run(bp, _)

 Callback implementation for Absinthe.Phase.run/2

 Anchor for this section

 Functions

 Link to this function

 explanation(map)

 View Source

 Link to this function

 flag_invalid(node)

 View Source

 flag_invalid(Absinthe.Blueprint.node_t()) :: Absinthe.Blueprint.node_t()

 Link to this function

 flag_invalid(node, flag)

 View Source

 flag_invalid(Absinthe.Blueprint.node_t(), atom()) :: Absinthe.Blueprint.node_t()

 Link to this function

 inherit_invalid(node, children, add_flag)

 View Source

 Link to this function

 put_flag(node, flag)

 View Source

 Link to this function

 run(bp, _)

 View Source

Callback implementation for Absinthe.Phase.run/2.

Absinthe.Resolution.Helpers

Handy functions for returning async or batched resolution functions

Using Absinthe.Schema.Notation or (by extension) Absinthe.Schema will
automatically import the batch and async helpers. Dataloader helpers
require an explicit import Absinthe.Resolution.Helpers invocation, since
dataloader is an optional dependency.

 Anchor for this section

 Summary

 Types

 dataloader_key_fun()

 dataloader_opt()

 dataloader_tuple()

 Functions

 async(fun, opts \\ [])

 Execute resolution field asynchronously

 batch(batch_fun, batch_data, post_batch_fun, opts \\ [])

 Batch the resolution of several functions together

 dataloader(source)

 Resolve a field with a dataloader source

 dataloader(source, fun, opts \\ [])

 Resolve a field with Dataloader

 on_load(loader, fun)

 Dataloader helper function

 Anchor for this section

 Types

 Link to this type

 dataloader_key_fun()

 View Source

 dataloader_key_fun() ::
 (Absinthe.Resolution.source(),
 Absinthe.Resolution.arguments(),
 Absinthe.Resolution.t() ->
 {any(), map()})

 Link to this type

 dataloader_opt()

 View Source

 dataloader_opt() :: {:args, map()} | {:use_parent, true | false}

 Link to this type

 dataloader_tuple()

 View Source

 dataloader_tuple() :: {:middleware, Absinthe.Middleware.Dataloader, term()}

 Anchor for this section

 Functions

 Link to this function

 async(fun, opts \\ [])

 View Source

 async((() -> term()), opts :: [{:timeout, pos_integer()}]) ::
 {:middleware, Absinthe.Middleware.Async, term()}

Execute resolution field asynchronously.

This is a helper function for using the Absinthe.Middleware.Async.

Forbidden in mutation fields. (TODO: actually enforce this)

 Options

	:timeout default: 30_000. The maximum timeout to wait for running
 the task.

 Example

Using the Absinthe.Resolution.Helpers.async/1 helper function:

field :time_consuming, :thing do
 resolve fn _, _, _ ->
 async(fn ->
 {:ok, long_time_consuming_function()}
 end)
 end
end

 Link to this function

 batch(batch_fun, batch_data, post_batch_fun, opts \\ [])

 View Source

 batch(
 Absinthe.Middleware.Batch.batch_fun(),
 term(),
 Absinthe.Middleware.Batch.post_batch_fun(),
 opts :: [{:timeout, pos_integer()}]
) :: {:plugin, Absinthe.Middleware.Batch, term()}

Batch the resolution of several functions together.

Helper function for creating Absinthe.Middleware.Batch

 Options

	:timeout default: 5_000. The maximum timeout to wait for running
 a batch.

 Example

Raw usage:

object :post do
 field :name, :string
 field :author, :user do
 resolve fn post, _, _ ->
 batch({__MODULE__, :users_by_id}, post.author_id, fn batch_results ->
 {:ok, Map.get(batch_results, post.author_id)}
 end)
 end
 end
end

def users_by_id(_, user_ids) do
 users = Repo.all from u in User, where: u.id in ^user_ids
 Map.new(users, fn user -> {user.id, user} end)
end

 Link to this function

 dataloader(source)

 View Source

 dataloader(Dataloader.source_name()) :: dataloader_tuple()

Resolve a field with a dataloader source.

This function is not imported by default. To make it available in your module do

import Absinthe.Resolution.Helpers

Same as dataloader/3, but it infers the resource name from the field name.

 Examples

field :author, :user, resolve: dataloader(Blog)

This is identical to doing the following.

field :author, :user, resolve: dataloader(Blog, :author, [])

 Link to this function

 dataloader(source, fun, opts \\ [])

 View Source

 dataloader(Dataloader.source_name(), dataloader_key_fun() | any(), [
 dataloader_opt()
]) :: dataloader_tuple()

Resolve a field with Dataloader

This function is not imported by default. To make it available in your module do

import Absinthe.Resolution.Helpers

While on_load/2 makes using dataloader directly easy within a resolver function,
it is often unnecessary to need this level of direct control.

The dataloader/3 function exists to provide a simple API for using dataloader.
It takes the name of a data source, the name of the resource you want to load,
and then a variety of options.

 Basic Usage

object :user do
 field :posts, list_of(:post),
 resolve: dataloader(Blog, :posts, args: %{deleted: false})

 field :organization, :organization do
 resolve dataloader(Accounts, :organization, use_parent: false)
 end

 field(:account_active, non_null(:boolean), resolve: dataloader(
 Accounts, :account, callback: fn account, _parent, _args ->
 {:ok, account.active}
 end
)
)
end

 Key Functions

Instead of passing in a literal like :posts or :organization in as the resource,
it is also possible pass in a function:

object :user do
 field :posts, list_of(:post) do
 arg :limit, non_null(:integer)
 resolve dataloader(Blog, fn user, args, info ->
 args = Map.update!(args, :limit, fn val ->
 max(min(val, 20), 0)
 end)
 {:posts, args}
 end)
 end
end

In this case we want to make sure that the limit value cannot be larger than
20. By passing a callback function to dataloader/2 we can ensure that
the value will fall nicely between 0 and 20.

 Options

	:args default: %{}. Any arguments you want to always pass into the
Dataloader.load/4 call. Resolver arguments are merged into this value and,
in the event of a conflict, the resolver arguments win.

	:callback default: default_callback/3. Callback that is run with result
of dataloader. It receives the result as the first argument, and the parent
and args as second and third. Can be used to e.g. compute fields on the return
value of the loader. Should return an ok or error tuple.

	:use_parent default: true. This option affects whether or not the dataloader/2
helper will use any pre-existing value on the parent. IE if you return
%{author: %User{...}} from a blog post the helper will by default simply use
the pre-existing author. Set it to false if you always want it to load it fresh.

Ultimately, this helper calls Dataloader.load/4
using the loader in your context, the source you provide, the tuple {resource, args}
as the batch key, and then the parent value of the field

def dataloader(source_name, resource) do
 fn parent, args, %{context: %{loader: loader}} ->
 args = Map.merge(opts[:args] || %{}, args)
 loader
 |> Dataloader.load(source_name, {resource, args}, parent)
 |> on_load(fn loader ->
 {:ok, Dataloader.get(loader, source_name, {resource, args}, parent)}
 end)
 end

 Link to this function

 on_load(loader, fun)

 View Source

Dataloader helper function

This function is not imported by default. To make it available in your module do

import Absinthe.Resolution.Helpers

This function helps you use data loader in a direct way within your schema.
While normally the dataloader/1,2,3 helpers are enough, on_load/2 is useful
when you want to load multiple things in a single resolver, or when you need
fine grained control over the dataloader cache.

 Examples

field :reports, list_of(:report) do
 resolve fn shipment, _, %{context: %{loader: loader}} ->
 loader
 |> Dataloader.load(SourceName, :automatic_reports, shipment)
 |> Dataloader.load(SourceName, :manual_reports, shipment)
 |> on_load(fn loader ->
 reports =
 loader
 |> Dataloader.get(SourceName, :automatic_reports, shipment)
 |> Enum.concat(Dataloader.load(loader, SourceName, :manual_reports, shipment))
 |> Enum.sort_by(&reported_at/1)
 {:ok, reports}
 end)
 end
end

Absinthe.Schema

Build GraphQL Schemas

Custom Schema Manipulation (in progress)

In Absinthe 1.5 schemas are built using the same process by which queries are
executed. All the fancy macros build up an intermediary tree of structs in the
%Absinthe.Blueprint{} namespace, which we generally call “Blueprint structs”.

At the top you’ve got a %Blueprint{} struct which holds onto some schema
definitions that look a bit like this:

%Blueprint.Schema.SchemaDefinition{
 type_definitions: [
 %Blueprint.Schema.ObjectTypeDefinition{identifier: :query, ...},
 %Blueprint.Schema.ObjectTypeDefinition{identifier: :mutation, ...},
 %Blueprint.Schema.ObjectTypeDefinition{identifier: :user, ...},
 %Blueprint.Schema.EnumTypeDefinition{identifier: :sort_order, ...},
]
}

You can see what your schema’s blueprint looks like by calling
__absinthe_blueprint__ on any schema or type definition module.

defmodule MyAppWeb.Schema do
 use Absinthe.Schema

 query do

 end
end

> MyAppWeb.Schema.__absinthe_blueprint__
#=> %Absinthe.Blueprint{...}

These blueprints are manipulated by phases, which validate and ultimately
construct a schema. This pipeline of phases you can hook into like you do for
queries.

defmodule MyAppWeb.Schema do
 use Absinthe.Schema

 @pipeline_modifier MyAppWeb.CustomSchemaPhase

 query do

 end

end

defmodule MyAppWeb.CustomSchemaPhase do
 alias Absinthe.{Phase, Pipeline, Blueprint}

 # Add this module to the pipeline of phases
 # to run on the schema
 def pipeline(pipeline) do
 Pipeline.insert_after(pipeline, Phase.Schema.TypeImports, __MODULE__)
 end

 # Here's the blueprint of the schema, let's do whatever we want with it.
 def run(blueprint, _) do
 {:ok, blueprint}
 end
end

The blueprint structs are pretty complex, but if you ever want to figure out
how to construct something in blueprints you can always just create the thing
in the normal AST and then look at the output. Let’s see what interfaces look
like for example:

defmodule Foo do
 use Absinthe.Schema.Notation

 interface :named do
 field :name, :string
 end
end

Foo.__absinthe_blueprint__ #=> ...

 Anchor for this section

 Summary

 Types

 t()

 Functions

 concrete_types(schema, type)

 Get all concrete types for union, interface, or object

 directives(schema)

 List all directives on a schema

 implementors(schema, ident)

 List all implementors of an interface on a schema

 introspect(schema, opts \\ [])

 Run the introspection query on a schema

 introspection_types(schema)

 Get all introspection types

 lookup_directive(schema, name)

 lookup_type(schema, type, options \\ [unwrap: true])

 mutation(raw_attrs \\ [name: "RootMutationType"], list)

 Defines a root Mutation object

 query(raw_attrs \\ [name: "RootQueryType"], list)

 Defines a root Query object

 replace_default(middleware_list, new_middleware, map, object)

 Replace the default middleware

 subscription(raw_attrs \\ [name: "RootSubscriptionType"], list)

 Defines a root Subscription object

 types(schema)

 List all types on a schema

 used_types(schema)

 Get all types that are used by an operation

 Anchor for this section

 Types

 Link to this type

 t()

 View Source

 t() :: module()

 Anchor for this section

 Functions

 Link to this function

 concrete_types(schema, type)

 View Source

 concrete_types(t(), Absinthe.Type.t()) :: [Absinthe.Type.t()]

Get all concrete types for union, interface, or object

 Link to this function

 directives(schema)

 View Source

 directives(t()) :: [Absinthe.Type.Directive.t()]

List all directives on a schema

 Link to this function

 implementors(schema, ident)

 View Source

 implementors(t(), Absinthe.Type.identifier_t() | Absinthe.Type.Interface.t()) ::
 [Absinthe.Type.Object.t()]

List all implementors of an interface on a schema

 Link to this function

 introspect(schema, opts \\ [])

 View Source

 introspect(schema :: t(), opts :: Absinthe.run_opts()) ::
 Absinthe.run_result()

Run the introspection query on a schema.

Convenience function.

 Link to this function

 introspection_types(schema)

 View Source

 introspection_types(t()) :: [Absinthe.Type.t()]

Get all introspection types

 Link to this function

 lookup_directive(schema, name)

 View Source

 Link to this function

 lookup_type(schema, type, options \\ [unwrap: true])

 View Source

 Link to this macro

 mutation(raw_attrs \\ [name: "RootMutationType"], list)

 View Source

 (macro)

Defines a root Mutation object

mutation do
 field :create_user, :user do
 arg :name, non_null(:string)
 arg :email, non_null(:string)

 resolve &MyApp.Web.BlogResolvers.create_user/2
 end
end

 Link to this macro

 query(raw_attrs \\ [name: "RootQueryType"], list)

 View Source

 (macro)

Defines a root Query object

 Link to this function

 replace_default(middleware_list, new_middleware, map, object)

 View Source

Replace the default middleware

 Examples

Replace the default for all fields with a string lookup instead of an atom lookup:

def middleware(middleware, field, object) do
 new_middleware = {Absinthe.Middleware.MapGet, to_string(field.identifier)}
 middleware
 |> Absinthe.Schema.replace_default(new_middleware, field, object)
end

 Link to this macro

 subscription(raw_attrs \\ [name: "RootSubscriptionType"], list)

 View Source

 (macro)

Defines a root Subscription object

Subscriptions in GraphQL let a client submit a document to the server that
outlines what data they want to receive in the event of particular updates.

For a full walk through of how to setup your project with subscriptions and
Phoenix see the Absinthe.Phoenix project moduledoc.

When you push a mutation, you can have selections on that mutation result
to get back data you need, IE

mutation {
 createUser(accountId: 1, name: "bob") {
 id
 account { name }
 }
}

However, what if you want to know when OTHER people create a new user, so that
your UI can update as well. This is the point of subscriptions.

subscription {
 newUsers {
 id
 account { name }
 }
}

The job of the subscription macros then is to give you the tools to connect
subscription documents with the values that will drive them. In the last example
we would get all users for all accounts, but you could imagine wanting just
newUsers(accountId: 2).

In your schema you articulate the interests of a subscription via the config
macro:

subscription do
 field :new_users, :user do
 arg :account_id, non_null(:id)

 config fn args,_info ->
 {:ok, topic: args.account_id}
 end
 end
end

The topic can be any term. You can broadcast a value manually to this subscription
by doing

Absinthe.Subscription.publish(pubsub, user, [new_users: user.account_id])

It’s pretty common to want to associate particular mutations as the triggers
for one or more subscriptions, so Absinthe provides some macros to help with
that too.

subscription do
 field :new_users, :user do
 arg :account_id, non_null(:id)

 config fn args, _info ->
 {:ok, topic: args.account_id}
 end

 trigger :create_user, topic: fn user ->
 user.account_id
 end
 end
end

The idea with a trigger is that it takes either a single mutation :create_user
or a list of mutations [:create_user, :blah_user, ...] and a topic function.
This function returns a value that is used to lookup documents on the basis of
the topic they returned from the config macro.

Note that a subscription field can have trigger as many trigger blocks as you
need, in the event that different groups of mutations return different results
that require different topic functions.

 Link to this function

 types(schema)

 View Source

 types(t()) :: [Absinthe.Type.t()]

List all types on a schema

 Link to this function

 used_types(schema)

 View Source

 used_types(t()) :: [Absinthe.Type.t()]

Get all types that are used by an operation

Absinthe.Schema.Notation

 Anchor for this section

 Summary

 Types

 import_sdl_option()

 Functions

 arg(identifier, attrs)

 Add an argument

 arg(identifier, type, attrs)

 Add an argument

 build_reference(env)

 complexity(func_ast)

 config(config_fun)

 Configure a subscription field

 deprecate(msg)

 Mark a field as deprecated

 description(text)

 Defines a description

 directive(identifier, attrs \\ [], list)

 Defines a directive

 enum(identifier, attrs)

 Defines an enum type

 enum(identifier, attrs, list)

 Defines an enum type

 expand(func_ast)

 Define the expansion for a directive

 field(identifier, attrs)

 Defines a GraphQL field

 field(identifier, attrs, attrs)

 Defines a GraphQL field

 field(identifier, type, attrs, list)

 Defines a GraphQL field

 grab_functions(origin, type, identifier, attrs)

 handle_enum_value_attrs(identifier, raw_attrs)

 import_fields(source_criteria, opts \\ [])

 Import fields from another object

 import_sdl(opts)

 Import types defined using the Schema Definition Language (SDL)

 import_sdl(sdl, opts \\ [])

 import_types(type_module_ast, opts \\ [])

 Import types from another module

 input_object(identifier, attrs \\ [], list)

 Defines an input object

 interface(identifier)

 Declare an implemented interface for an object

 interface(identifier, attrs \\ [], list)

 Define an interface type

 interfaces(ifaces)

 Declare implemented interfaces for an object

 is_type_of(func_ast)

 Placement

 lift_functions(schema, origin)

 lift_functions(node, acc, origin)

 list_of(type)

 Marks a type reference as a list of the given type

 meta(keyword_list)

 Defines list of metadata’s key/value pair for a custom type

 meta(key, value)

 Defines a metadata key/value pair for a custom type

 middleware(new_middleware, opts \\ [])

 non_null(type)

 Marks a type reference as non null

 noop(desc)

 object(identifier, attrs \\ [], block)

 Define an object type

 on(ast_node)

 Declare a directive as operating an a AST node type

 parse(func_ast)

 Defines a parse function for a scalar type

 put_attr(module, thing)

 put_desc(module, ref)

 put_reference(attrs, env)

 record!(env, type, identifier, attrs, block)

 record_arg!(env, identifier, attrs)

 record_config!(env, fun_ast)

 record_middleware!(env, new_middleware, opts)

 record_trigger!(env, mutations, attrs)

 recordable!(env, usage, kw_rules, opts \\ [])

 resolve(func_ast)

 Defines a resolve function for a field

 resolve_type(func_ast)

 Define a type resolver for a union or interface

 scalar(identifier, attrs)

 Defines a scalar type

 scalar(identifier, attrs, list)

 Define a scalar type

 serialize(func_ast)

 Defines a serialization function for a scalar type

 trigger(mutations, attrs)

 Set a trigger for a subscription field

 types(types)

 Defines the types possible under a union type

 union(identifier, attrs \\ [], list)

 Defines a union type

 value(identifier, raw_attrs \\ [])

 Defines a value possible under an enum type

 values(values)

 Anchor for this section

 Types

 Link to this type

 import_sdl_option()

 View Source

 import_sdl_option() :: {:path, String.t() | Macro.t()}

 Anchor for this section

 Functions

 Link to this macro

 arg(identifier, attrs)

 View Source

 (macro)

Add an argument.

See arg/3

 Link to this macro

 arg(identifier, type, attrs)

 View Source

 (macro)

Add an argument.

 Placement

Allowed under: directive field

 Examples

field do
 arg :size, :integer
 arg :name, :string, description: "The desired name"
end

 Link to this function

 build_reference(env)

 View Source

 Link to this macro

 complexity(func_ast)

 View Source

 (macro)

 Link to this macro

 config(config_fun)

 View Source

 (macro)

Configure a subscription field.

The returned topic can be single topic, or a list of topics

 Examples

config fn args, %{context: context} ->
 if authorized?(context) do
 {:ok, topic: args.client_id}
 else
 {:error, "unauthorized"}
 end
end

Alternatively can provide a list of topics:

config fn _, _ ->
 {:ok, topic: ["topic_one", "topic_two", "topic_three"]}
end

See Absinthe.Schema.subscription/1 for details

 Link to this macro

 deprecate(msg)

 View Source

 (macro)

Mark a field as deprecated

In most cases you can simply pass the deprecate: “message” attribute. However
when using the block form of a field it can be nice to also use this macro.

 Placement

Allowed under: field

 Examples

field :foo, :string do
 deprecate "Foo will no longer be supported"
end

This is how to deprecate other things

field :foo, :string do
 arg :bar, :integer, deprecate: "This isn't supported either"
end

enum :colors do
 value :red
 value :blue, deprecate: "This isn't supported"
end

 Link to this macro

 description(text)

 View Source

 (macro)

Defines a description

This macro adds a description to any other macro which takes a block.

Note that you can also specify a description by using @desc above any item
that can take a description attribute.

 Placement

Allowed under any block. Not allowed to be top level

 Link to this macro

 directive(identifier, attrs \\ [], list)

 View Source

 (macro)

Defines a directive

 Placement

Top level in module.

 Examples

directive :mydirective do

 arg :if, non_null(:boolean), description: "Skipped when true."

 on [:field, :fragment_spread, :inline_fragment]

 expand fn
 %{if: true}, node ->
 Blueprint.put_flag(node, :skip, __MODULE__)
 _, node ->
 node
 end

end

 Link to this macro

 enum(identifier, attrs)

 View Source

 (macro)

Defines an enum type

See enum/3

 Link to this macro

 enum(identifier, attrs, list)

 View Source

 (macro)

Defines an enum type

 Placement

Top level in module.

 Examples

Handling RED, GREEN, BLUE values from the query document:

enum :color do
 value :red
 value :green
 value :blue
end

A given query document might look like:

{
 foo(color: RED)
}

Internally you would get an argument in elixir that looks like:

%{color: :red}

If your return value is an enum, it will get serialized out as:

{"color": "RED"}

You can provide custom value mappings. Here we use r, g, b values:

enum :color do
 value :red, as: "r"
 value :green, as: "g"
 value :blue, as: "b"
end

 Link to this macro

 expand(func_ast)

 View Source

 (macro)

Define the expansion for a directive

 Placement

Allowed under: directive

 Link to this macro

 field(identifier, attrs)

 View Source

 (macro)

Defines a GraphQL field

See field/4

 Link to this macro

 field(identifier, attrs, attrs)

 View Source

 (macro)

Defines a GraphQL field

See field/4

 Link to this macro

 field(identifier, type, attrs, list)

 View Source

 (macro)

Defines a GraphQL field.

 Placement

Allowed under: input_object interface object

query, mutation, and subscription are
all objects under the covers, and thus you’ll find field definitions under
those as well.

 Examples

field :id, :id
field :age, :integer, description: "How old the item is"
field :name, :string do
 description "The name of the item"
end
field :location, type: :location

 Link to this function

 grab_functions(origin, type, identifier, attrs)

 View Source

 Link to this function

 handle_enum_value_attrs(identifier, raw_attrs)

 View Source

 Link to this macro

 import_fields(source_criteria, opts \\ [])

 View Source

 (macro)

Import fields from another object

 Example

object :news_queries do
 field :all_links, list_of(:link)
 field :main_story, :link
end

object :admin_queries do
 field :users, list_of(:user)
 field :pending_posts, list_of(:post)
end

query do
 import_fields :news_queries
 import_fields :admin_queries
end

Import fields can also be used on objects created inside other modules that you
have used import_types on.

defmodule MyApp.Schema.NewsTypes do
 use Absinthe.Schema.Notation

 object :news_queries do
 field :all_links, list_of(:link)
 field :main_story, :link
 end
end
defmodule MyApp.Schema.Schema do
 use Absinthe.Schema

 import_types MyApp.Schema.NewsTypes

 query do
 import_fields :news_queries
 # ...
 end
end

 Link to this macro

 import_sdl(opts)

 View Source

 (macro)

 import_sdl([import_sdl_option(), ...]) :: Macro.t()

Import types defined using the Schema Definition Language (SDL).

TODO: Explain handlers

 Placement

Top level in module.

 Examples

Directly embedded SDL:

import_sdl """
type Query {
 posts: [Post]
}

type Post {
 title: String!
 body: String!
}
"""

Loaded from a file location (supporting recompilation on change):

import_sdl path: "/path/to/sdl.graphql"

TODO: Example for dynamic loading during init

 Link to this macro

 import_sdl(sdl, opts \\ [])

 View Source

 (macro)

 import_sdl(String.t() | Macro.t(), [import_sdl_option()]) :: Macro.t()

 Link to this macro

 import_types(type_module_ast, opts \\ [])

 View Source

 (macro)

Import types from another module

Very frequently your schema module will simply have the query and mutation
blocks, and you’ll want to break out your other types into other modules. This
macro imports those types for use the current module

 Placement

Top level in module.

 Examples

import_types MyApp.Schema.Types

import_types MyApp.Schema.Types.{TypesA, TypesB}

 Link to this macro

 input_object(identifier, attrs \\ [], list)

 View Source

 (macro)

Defines an input object

See Absinthe.Type.InputObject

 Placement

Top level in module.

 Examples

input_object :contact_input do
 field :email, non_null(:string)
end

 Link to this macro

 interface(identifier)

 View Source

 (macro)

Declare an implemented interface for an object.

Adds an Absinthe.Type.Interface to your schema.

See also interfaces/1, which can be used for multiple interfaces,
and interface/3, used to define interfaces themselves.

 Examples

object :car do
 interface :vehicle
 # ...
end

 Link to this macro

 interface(identifier, attrs \\ [], list)

 View Source

 (macro)

Define an interface type.

Adds an Absinthe.Type.Interface to your schema.

Also see interface/1 and interfaces/1, which declare
that an object implements one or more interfaces.

 Placement

Top level in module.

 Examples

interface :vehicle do
 field :wheel_count, :integer
end

object :rally_car do
 field :wheel_count, :integer
 interface :vehicle
end

 Link to this macro

 interfaces(ifaces)

 View Source

 (macro)

Declare implemented interfaces for an object.

See also interface/1, which can be used for one interface,
and interface/3, used to define interfaces themselves.

 Placement

Allowed under: object

 Examples

object :car do
 interfaces [:vehicle, :branded]
 # ...
end

 Link to this macro

 is_type_of(func_ast)

 View Source

 (macro)

 Placement

Allowed under: object

 Link to this function

 lift_functions(schema, origin)

 View Source

 Link to this function

 lift_functions(node, acc, origin)

 View Source

 Link to this macro

 list_of(type)

 View Source

 (macro)

Marks a type reference as a list of the given type

See field/3 for examples

 Link to this macro

 meta(keyword_list)

 View Source

 (macro)

Defines list of metadata’s key/value pair for a custom type.

This is generally used to facilitate libraries that want to augment Absinthe
functionality

 Examples

object :user do
 meta cache: true, ttl: 22_000
end

object :user, meta: [cache: true, ttl: 22_000] do
 # ...
end

The meta can be accessed via the Absinthe.Type.meta/2 function.

user_type = Absinthe.Schema.lookup_type(MyApp.Schema, :user)

Absinthe.Type.meta(user_type, :cache)
#=> true

Absinthe.Type.meta(user_type)
#=> [cache: true, ttl: 22_000]

 Placement

Allowed under: enum field input_object interface object scalar union

 Link to this macro

 meta(key, value)

 View Source

 (macro)

Defines a metadata key/value pair for a custom type.

For more info see meta/1

 Examples

meta :cache, false

 Placement

Allowed under: enum field input_object interface object scalar union

 Link to this macro

 middleware(new_middleware, opts \\ [])

 View Source

 (macro)

 Link to this macro

 non_null(type)

 View Source

 (macro)

Marks a type reference as non null

See field/3 for examples

 Link to this function

 noop(desc)

 View Source

 Link to this macro

 object(identifier, attrs \\ [], block)

 View Source

 (macro)

Define an object type.

Adds an Absinthe.Type.Object to your schema.

 Placement

Top level in module.

 Examples

Basic definition:

object :car do
 # ...
end

Providing a custom name:

object :car, name: "CarType" do
 # ...
end

 Link to this macro

 on(ast_node)

 View Source

 (macro)

Declare a directive as operating an a AST node type

See directive/2

 Placement

Allowed under: directive

 Link to this macro

 parse(func_ast)

 View Source

 (macro)

Defines a parse function for a scalar type

The specified parse function is used on incoming data to transform it into
an elixir datastructure.

It should return {:ok, value} or :error

 Placement

Allowed under: scalar

 Link to this function

 put_attr(module, thing)

 View Source

 Link to this function

 put_desc(module, ref)

 View Source

 Link to this function

 put_reference(attrs, env)

 View Source

 Link to this function

 record!(env, type, identifier, attrs, block)

 View Source

 Link to this function

 record_arg!(env, identifier, attrs)

 View Source

 Link to this function

 record_config!(env, fun_ast)

 View Source

 Link to this function

 record_middleware!(env, new_middleware, opts)

 View Source

 Link to this function

 record_trigger!(env, mutations, attrs)

 View Source

 Link to this function

 recordable!(env, usage, kw_rules, opts \\ [])

 View Source

 Link to this macro

 resolve(func_ast)

 View Source

 (macro)

Defines a resolve function for a field

Specify a 2 or 3 arity function to call when resolving a field.

You can either hard code a particular anonymous function, or have a function
call that returns a 2 or 3 arity anonymous function. See examples for more information.

Note that when using a hard coded anonymous function, the function will not
capture local variables.

 3 Arity Functions

The first argument to the function is the parent entity.

{
 user(id: 1) {
 name
 }
}

A resolution function on the name field would have the result of the user(id: 1) field
as its first argument. Top level fields have the root_value as their first argument.
Unless otherwise specified, this defaults to an empty map.

The second argument to the resolution function is the field arguments. The final
argument is an Absinthe.Resolution struct, which includes information like
the context and other execution data.

 2 Arity Function

Exactly the same as the 3 arity version, but without the first argument (the parent entity)

 Placement

Allowed under: field

 Examples

query do
 field :person, :person do
 resolve &Person.resolve/2
 end
end

query do
 field :person, :person do
 resolve fn %{id: id}, _ ->
 {:ok, Person.find(id)}
 end
 end
end

query do
 field :person, :person do
 resolve lookup(:person)
 end
end

def lookup(:person) do
 fn %{id: id}, _ ->
 {:ok, Person.find(id)}
 end
end

 Link to this macro

 resolve_type(func_ast)

 View Source

 (macro)

Define a type resolver for a union or interface.

See also:

	Absinthe.Type.Interface

	Absinthe.Type.Union

 Placement

Allowed under: interface union

 Examples

interface :entity do
 # ...
 resolve_type fn
 %{employee_count: _}, _ ->
 :business
 %{age: _}, _ ->
 :person
 end
end

 Link to this macro

 scalar(identifier, attrs)

 View Source

 (macro)

Defines a scalar type

See scalar/3

 Link to this macro

 scalar(identifier, attrs, list)

 View Source

 (macro)

Define a scalar type

A scalar type requires parse/1 and serialize/1 functions.

 Placement

Top level in module.

 Examples

scalar :time, description: "ISOz time" do
 parse &Timex.parse(&1.value, "{ISOz}")
 serialize &Timex.format!(&1, "{ISOz}")
end

 Link to this macro

 serialize(func_ast)

 View Source

 (macro)

Defines a serialization function for a scalar type

The specified serialize function is used on outgoing data. It should simply
return the desired external representation.

 Placement

Allowed under: scalar

 Link to this macro

 trigger(mutations, attrs)

 View Source

 (macro)

Set a trigger for a subscription field.

It accepts one or more mutation field names, and can be called more than once.

mutation do
 field :gps_event, :gps_event
 field :user_checkin, :user
end
subscription do
 field :location_update, :user do
 arg :user_id, non_null(:id)

 config fn args, _ ->
 {:ok, topic: args.user_id}
 end

 trigger :gps_event, topic: fn event ->
 event.user_id
 end

 trigger :user_checkin, topic: fn user ->
 [user.id, user.parent_id]
 end
 end
end

Trigger functions are only called once per event, so database calls within
them do not present a significant burden.

See the subscription/2 macro docs for additional details

 Link to this macro

 types(types)

 View Source

 (macro)

Defines the types possible under a union type

See union/3

 Placement

Allowed under: union

 Link to this macro

 union(identifier, attrs \\ [], list)

 View Source

 (macro)

Defines a union type

See Absinthe.Type.Union

 Placement

Top level in module.

 Examples

union :search_result do
 description "A search result"

 types [:person, :business]
 resolve_type fn
 %Person{}, _ -> :person
 %Business{}, _ -> :business
 end
end

 Link to this macro

 value(identifier, raw_attrs \\ [])

 View Source

 (macro)

Defines a value possible under an enum type

See enum/3

 Placement

Allowed under: enum

 Link to this macro

 values(values)

 View Source

 (macro)

Absinthe.Type.Argument

Used to define an argument.

Usually these are defined using Absinthe.Schema.Notation.arg/2

 Anchor for this section

 Summary

 Types

 t()

 Argument configuration

 Functions

 fetch(container, key)

 Anchor for this section

 Types

 Link to this type

 t()

 View Source

 t() :: %Absinthe.Type.Argument{
 __reference__: Absinthe.Type.Reference.t(),
 default_value: any(),
 definition: Module.t(),
 deprecation: Absinthe.Type.Deprecation.t() | nil,
 description: binary() | nil,
 identifier: term(),
 name: binary(),
 type: Absinthe.Type.identifier_t()
}

Argument configuration

	:name - The name of the argument, usually assigned automatically using Absinthe.Schema.Notation.arg/2.

	:type - The type values the argument accepts/will coerce to.

	:deprecation - Deprecation information for an argument, usually
 set-up using Absinthe.Schema.Notation.deprecate/1.

	:description - Description of an argument, useful for introspection.

 Anchor for this section

 Functions

 Link to this function

 fetch(container, key)

 View Source

Absinthe.Type.Custom

This module contains the following additional data types:

	datetime (UTC)

	naive_datetime

	date

	time

	decimal (only if Decimal is available)

Further description of these types can be found in the source code.

To use: import_types Absinthe.Type.Custom.

Absinthe.Type.Directive

Used by the GraphQL runtime as a way of modifying execution
behavior.

Type system creators will usually not create these directly.

 Anchor for this section

 Summary

 Types

 location()

 t()

 A defined directive

 Functions

 kind()

 Callback implementation for c:Absinthe.Introspection.Kind.kind/0

 Anchor for this section

 Types

 Link to this type

 location()

 View Source

 location() ::
 :query
 | :mutation
 | :field
 | :fragment_definition
 | :fragment_spread
 | :inline_fragment

 Link to this type

 t()

 View Source

 t() :: %{
 name: binary(),
 description: binary(),
 identifier: atom(),
 args: map(),
 locations: [location()],
 expand: (map(), Absinthe.Blueprint.node_t() -> atom()),
 definition: Module.t(),
 __private__: Keyword.t(),
 __reference__: Absinthe.Type.Reference.t()
}

A defined directive.

	:name - The name of the directivee. Should be a lowercase binary. Set automatically.

	:description - A nice description for introspection.

	:args - A map of Absinthe.Type.Argument structs. See Absinthe.Schema.Notation.arg/1.

	:locations - A list of places the directives can be used.

The :__reference__ key is for internal use.

 Anchor for this section

 Functions

 Link to this function

 kind()

 View Source

Callback implementation for c:Absinthe.Introspection.Kind.kind/0.

Absinthe.Type.Enum

Used to define an enum type, a special scalar that can only have a defined set
of values.

See the t type below for details and examples.

Examples

Given a type defined as the following (see Absinthe.Schema.Notation):

@desc "The selected color channel"
enum :color_channel do
 value :red, as: :r, description: "Color Red"
 value :green, as: :g, description: "Color Green"
 value :blue, as: :b, description: "Color Blue"
 value :alpha, as: :a, deprecate: "We no longer support opacity settings", description: "Alpha Channel"
end

The “ColorChannel” type (referred inside Absinthe as :color_channel) is an
Enum type, with values with names “red”, “green”, “blue”, and “alpha” that map
to internal, raw values :r, :g, :b, and :a. The alpha color channel
is deprecated, just as fields and arguments can be.

You can omit the raw value if you’d like it to be the same as the
identifier. For instance, in this example the value is automatically set to
:red:

enum :color_channel do
 description "The selected color channel"

 value :red, description: "Color Red"
 value :green, description: "Color Green"
 value :blue, description: "Color Blue"
 value :alpha, deprecate: "We no longer support opacity settings", description: "Alpha Channel"
end

If you really want to use a shorthand, skipping support for descriptions,
custom raw values, and deprecation, you can just provide a list of atoms:

enum :color_channel, values: [:red, :green, :blue, :alpha]

Keep in mind that writing a terse definition that skips descriptions and
deprecations today may hamper tooling that relies on introspection tomorrow.

 Anchor for this section

 Summary

 Types

 t()

 A defined enum type

 Functions

 kind()

 Callback implementation for c:Absinthe.Introspection.Kind.kind/0

 Anchor for this section

 Types

 Link to this type

 t()

 View Source

 t() :: %Absinthe.Type.Enum{
 __private__: Keyword.t(),
 __reference__: Absinthe.Type.Reference.t(),
 definition: Module.t(),
 description: binary(),
 identifier: atom(),
 name: binary(),
 values: %{optional(binary()) => Absinthe.Type.Enum.Value.t()},
 values_by_internal_value: term(),
 values_by_name: term()
}

A defined enum type.

Should be defined using Absinthe.Schema.Notation.enum/2.

	:name - The name of the enum type. Should be a TitleCased binary. Set automatically.

	:description - A nice description for introspection.

	:values - The enum values, usually provided using the Absinthe.Schema.Notation.values/1 or Absinthe.Schema.Notation.value/1 macro.

The __private__ and :__reference__ fields are for internal use.

 Anchor for this section

 Functions

 Link to this function

 kind()

 View Source

Callback implementation for c:Absinthe.Introspection.Kind.kind/0.

Absinthe.Type.Enum.Value

A possible value for an enum.

See Absinthe.Type.Enum and Absinthe.Schema.Notation.value/1.

 Anchor for this section

 Summary

 Types

 t()

 A defined enum value entry

 Anchor for this section

 Types

 Link to this type

 t()

 View Source

 t() :: %{
 name: binary(),
 description: binary(),
 value: any(),
 deprecation: Absinthe.Type.Deprecation.t() | nil,
 __reference__: Absinthe.Type.Reference.t()
}

A defined enum value entry.

Generally defined using Absinthe.Schema.Notation.value/2 as
part of a schema.

	:name - The name of the value. This is also the incoming, external
 value that will be provided by query documents.

	:description - A nice description for introspection.

	:value - The raw, internal value that :name map to. This will be
 provided as the argument value to resolve functions.

	:deprecation - Deprecation information for a value, usually
 set-up using the Absinthe.Schema.Notation.deprecate/2 convenience
 function.

Absinthe.Type.Field

Used to define a field.

Usually these are defined using Absinthe.Schema.Notation.field/4

See the t type below for details and examples of how to define a field.

 Anchor for this section

 Summary

 Types

 complexity_t()

 A complexity function

 custom_error()

 A custom error may be a map or a Keyword.t, but must contain a :message key

 error_message()

 An error message is a human-readable string describing the error that occurred

 error_result()

 error_value()

 An error value is a simple error message, a custom error, or a list of either/both of them

 middleware_result()

 ok_result()

 resolver_t()

 A resolver function

 result()

 The result of a resolver

 serializable()

 Any serializable value

 t()

 The configuration for a field

 Functions

 fetch(container, key)

 Anchor for this section

 Types

 Link to this type

 complexity_t()

 View Source

 complexity_t() ::
 (%{optional(atom()) => any()}, non_neg_integer() -> non_neg_integer())
 | (%{optional(atom()) => any()},
 non_neg_integer(),
 Absinthe.Complexity.t() ->
 non_neg_integer())
 | {module(), atom()}
 | non_neg_integer()

A complexity function.

See the Absinthe.Type.Field/t explanation of :complexity for more
information.

 Link to this type

 custom_error()

 View Source

 custom_error() ::
 %{:message => error_message(), optional(atom()) => serializable()}
 | Keyword.t()

A custom error may be a map or a Keyword.t, but must contain a :message key.

Note that the values that make up a custom error must be serializable.

 Link to this type

 error_message()

 View Source

 error_message() :: String.t()

An error message is a human-readable string describing the error that occurred.

 Link to this type

 error_result()

 View Source

 error_result() :: {:error, error_value()}

 Link to this type

 error_value()

 View Source

 error_value() ::
 error_message()
 | custom_error()
 | [error_message() | custom_error()]
 | serializable()

An error value is a simple error message, a custom error, or a list of either/both of them.

 Link to this type

 middleware_result()

 View Source

 middleware_result() :: {:middleware, Absinthe.Middleware.spec(), term()}

 Link to this type

 ok_result()

 View Source

 ok_result() :: {:ok, any()}

 Link to this type

 resolver_t()

 View Source

 resolver_t() ::
 (%{optional(atom()) => any()}, Absinthe.Resolution.t() -> result())

A resolver function.

See the Absinthe.Type.Field.t explanation of :resolve for more information.

 Link to this type

 result()

 View Source

 result() :: ok_result() | error_result() | middleware_result()

The result of a resolver.

 Link to this type

 serializable()

 View Source

 serializable() :: any()

Any serializable value.

 Link to this type

 t()

 View Source

 t() :: %Absinthe.Type.Field{
 __private__: Keyword.t(),
 __reference__: Absinthe.Type.Reference.t(),
 args: %{optional(binary() | atom()) => Absinthe.Type.Argument.t()} | nil,
 complexity: complexity_t() | nil,
 config: term(),
 default_value: any(),
 definition: Module.t(),
 deprecation: Absinthe.Type.Deprecation.t() | nil,
 description: binary() | nil,
 identifier: atom(),
 middleware: [],
 name: binary(),
 triggers: term(),
 type: Absinthe.Type.identifier_t()
}

The configuration for a field.

	:name - The name of the field, usually assigned automatically by
 the Absinthe.Schema.Notation.field/1. Including this option will bypass the snake_case to camelCase conversion.

	:description - Description of a field, useful for introspection.

	:deprecation - Deprecation information for a field, usually
 set-up using Absinthe.Schema.Notation.deprecate/1.

	:type - The type the value of the field should resolve to

	:args - The arguments of the field, usually created by using Absinthe.Schema.Notation.arg/2.

	:resolve - The resolution function. See below for more information.

	:complexity - The complexity function. See below for more information.

	:default_value - The default value of a field. Note this is not used during resolution; only fields that are part of an Absinthe.Type.InputObject should set this value.

 Resolution Functions

 Default

If no resolution function is given, the default resolution function is used,
which is roughly equivalent to this:

{:ok, Map.get(parent_object, field_name)}

This is commonly use when listing the available fields on a
Absinthe.Type.Object that models a data record. For instance:

object :person do
 description "A person"

 field :first_name, :string
 field :last_name, :string
end

 Custom Resolution

When accepting arguments, however, you probably need to use them for
something. Here’s an example of defining a field that looks up a list of
users for a given location_id:

query do
 field :users, :person do
 arg :location_id, non_null(:id)

 resolve fn %{location_id: id}, _ ->
 {:ok, MyApp.users_for_location_id(id)}
 end
 end
end

Custom resolution functions are passed two arguments:

	A map of the arguments for the field, filled in with values from the
 provided query document/variables.

	An Absinthe.Resolution struct, containing the execution environment
 for the field (and useful for complex resolutions using the resolved source
 object, etc)

 Complexity function

 Default

If no complexity function is given, the default complexity function is used,
which is equivalent to:

fn(_, child_complexity) -> 1 + child_complexity end

 Custom Complexity

When accepting arguments, however, you probably need to use them for
something. Here’s an example of defining a field that looks up at most
limit users:

query do
 field :users, :person do
 arg :limit, :integer

 complexity fn %{limit: limit}, child_complexity ->
 10 + limit * child_complexity
 end
 end
end

An optional third argument, Absinthe.Complexity struct, provides extra
information. Here’s an example of changing the complexity using the context:

query do
 field :users, :person do
 arg :limit, :integer

 complexity fn _, child_complexity, %{context: %{admin: admin?}} ->
 if admin?, do: 0, else: 10 + limit * child_complexity
 end
 end
end

Custom complexity functions are passed two or three arguments:

	A map of the arguments for the field, filled in with values from the
 provided query document/variables.

	A non negative integer, which is total complexity of the child fields.

	An Absinthe.Complexity struct with information about the context of the
 field. This argument is optional when using an anonymous function.

Alternatively complexity can be an integer greater than or equal to 0:

query do
 field :users, :person do
 complexity 10
 end
end

 Anchor for this section

 Functions

 Link to this function

 fetch(container, key)

 View Source

Absinthe.Type.InputObject

Defines a GraphQL input object

Input objects enable nested arguments to queries and mutations.

Example

mutation do
 field :user, :user do
 arg :name, :string
 arg :contact, non_null(:contact)

 resolve &User.create/2
 end
end

input_object :contact do
 field :email, :string
end

This supports the following mutation:

mutation CreateUser {
 user(contact: {email: "foo@bar.com"}) {
 id
 }
}

 Anchor for this section

 Summary

 Types

 t()

 Note new input object types should be defined using
Absinthe.Schema.Notation.input_object/3

 Functions

 fetch(container, key)

 kind()

 Callback implementation for c:Absinthe.Introspection.Kind.kind/0

 Anchor for this section

 Types

 Link to this type

 t()

 View Source

 t() :: %Absinthe.Type.InputObject{
 __private__: Keyword.t(),
 __reference__: Absinthe.Type.Reference.t(),
 definition: Module.t(),
 description: binary(),
 fields: map(),
 identifier: atom(),
 name: binary()
}

Note new input object types should be defined using
Absinthe.Schema.Notation.input_object/3.

	:name - The name of the input object type. Should be a TitleCased binary. Set automatically.

	:description - A nice description for introspection.

	:fields - A map of Absinthe.Type.Field structs. Usually built via Absinthe.Schema.Notation.field/1.

The __private__ and :__reference__ fields are for internal use.

 Anchor for this section

 Functions

 Link to this function

 fetch(container, key)

 View Source

 Link to this function

 kind()

 View Source

Callback implementation for c:Absinthe.Introspection.Kind.kind/0.

Absinthe.Type.Interface

A defined interface type that represent a list of named fields and their
arguments.

Fields on an interface have the same rules as fields on an
Absinthe.Type.Object.

If an Absinthe.Type.Object lists an interface in its :interfaces entry,
it guarantees that it defines the same fields and arguments that the
interface does.

Because sometimes it’s for the interface to determine the implementing type of
a resolved object, you must either:

	Provide a :resolve_type function on the interface

	Provide a :is_type_of function on each implementing type

interface :named_entity do
 field :name, :string
 resolve_type fn
 %{age: _}, _ -> :person
 %{employee_count: _}, _ -> :business
 _, _ -> nil
 end
end

object :person do
 field :name, :string
 field :age, :string

 interface :named_entity
end

object :business do
 field :name, :string
 field :employee_count, :integer

 interface :named_entity
end

 Anchor for this section

 Summary

 Types

 t()

	:name - The name of the interface type. Should be a TitleCased binary. Set automatically.

	:description - A nice description for introspection.

	:fields - A map of Absinthe.Type.Field structs. See Absinthe.Schema.Notation.field/1 and

	:args - A map of Absinthe.Type.Argument structs. See Absinthe.Schema.Notation.arg/2.

	:resolve_type - A function used to determine the implementing type of a resolved object. See also Absinthe.Type.Object’s :is_type_of

 Functions

 kind()

 Callback implementation for c:Absinthe.Introspection.Kind.kind/0

 resolve_type(type, obj, env, opts \\ [lookup: true])

 type_resolvable?(schema, iface)

 Whether the interface (or implementors) are correctly configured to resolve
objects

 Anchor for this section

 Types

 Link to this type

 t()

 View Source

 t() :: %Absinthe.Type.Interface{
 __private__: Keyword.t(),
 __reference__: Absinthe.Type.Reference.t(),
 definition: Module.t(),
 description: binary(),
 fields: map(),
 identifier: atom(),
 name: binary(),
 resolve_type: term()
}

	:name - The name of the interface type. Should be a TitleCased binary. Set automatically.

	:description - A nice description for introspection.

	:fields - A map of Absinthe.Type.Field structs. See Absinthe.Schema.Notation.field/1 and

	:args - A map of Absinthe.Type.Argument structs. See Absinthe.Schema.Notation.arg/2.

	:resolve_type - A function used to determine the implementing type of a resolved object. See also Absinthe.Type.Object’s :is_type_of.

The :resolve_type function will be passed two arguments; the object whose type needs to be identified, and the Absinthe.Execution struct providing the full execution context.

The __private__ and :__reference__ keys are for internal use.

 Anchor for this section

 Functions

 Link to this function

 kind()

 View Source

Callback implementation for c:Absinthe.Introspection.Kind.kind/0.

 Link to this function

 resolve_type(type, obj, env, opts \\ [lookup: true])

 View Source

 Link to this function

 type_resolvable?(schema, iface)

 View Source

 type_resolvable?(Absinthe.Schema.t(), t()) :: boolean()

Whether the interface (or implementors) are correctly configured to resolve
objects.

Absinthe.Type.List

A wrapping type which declares the type of each item in the list.

Examples

Given a type, :item, to declare the type of a field/argument as a list of
:item-typed values, you could do:

type: %Absinthe.Type.List{of_type: :item}

But normally this would be done using Absinthe.Schema.Notation.list_of/1.

type: list_of(:item)

 Anchor for this section

 Summary

 Types

 t()

 A defined list type

 Functions

 fetch(container, key)

 kind()

 Callback implementation for c:Absinthe.Introspection.Kind.kind/0

 Anchor for this section

 Types

 Link to this type

 t()

 View Source

 t() :: %Absinthe.Type.List{of_type: Absinthe.Type.t()}

 A defined list type.

 ## Options

	:of_type - The underlying, wrapped type.

 Anchor for this section

 Functions

 Link to this function

 fetch(container, key)

 View Source

 Link to this function

 kind()

 View Source

Callback implementation for c:Absinthe.Introspection.Kind.kind/0.

Absinthe.Type.NonNull

A type that wraps an underlying type, acting identically to that type but
adding a non-null constraint.

By default, all types in GraphQL are nullable. To declare a type that
disallows null, wrap it in a Absinthe.Type.NonNull struct.

Examples

Given a type, :item, to declare it as non-null, you could do the following:

type: %Absinthe.Type.NonNull{of_type: :item}

But normally this would be done using Absinthe.Schema.Notation.non_null/1.

type: non_null(:item)

 Anchor for this section

 Summary

 Types

 t()

 A defined non-null type

 t(x)

 Functions

 fetch(container, key)

 kind()

 Callback implementation for c:Absinthe.Introspection.Kind.kind/0

 Anchor for this section

 Types

 Link to this type

 t()

 View Source

 t() :: %Absinthe.Type.NonNull{of_type: Absinthe.Type.nullable_t()}

A defined non-null type.

 Options

	:of_type — the underlying type to wrap

 Link to this type

 t(x)

 View Source

 t(x) :: %Absinthe.Type.NonNull{of_type: x}

 Anchor for this section

 Functions

 Link to this function

 fetch(container, key)

 View Source

 Link to this function

 kind()

 View Source

Callback implementation for c:Absinthe.Introspection.Kind.kind/0.

Absinthe.Type.Object

Represents a non-leaf node in a GraphQL tree of information.

Objects represent a list of named fields, each of which yield a value of a
specific type. Object values are serialized as unordered maps, where the
queried field names (or aliases) are the keys and the result of evaluating the
field is the value.

Also see Absinthe.Type.Scalar.

Examples

Given a type defined as the following (see Absinthe.Schema.Notation.object/3):

@desc "A person"
object :person do
 field :name, :string
 field :age, :integer
 field :best_friend, :person
 field :pets, list_of(:pet)
end

The “Person” type (referred inside Absinthe as :person) is an object, with
fields that use Absinthe.Type.Scalar types (namely :name and :age), and
other Absinthe.Type.Object types (:best_friend and :pets, assuming
:pet is an object).

Given we have a query that supports getting a person by name
(see Absinthe.Schema), and a query document like the following:

{
 person(name: "Joe") {
 name
 best_friend {
 name
 age
 }
 pets {
 breed
 }
 }
}

We could get a result like this:

%{
 data: %{
 "person" => %{
 "best_friend" => %{
 "name" => "Jill",
 "age" => 29
 },
 "pets" => [
 %{"breed" => "Wyvern"},
 %{"breed" => "Royal Griffon"}
]
 }
 }
}

 Anchor for this section

 Summary

 Types

 t()

 A defined object type

 Functions

 kind()

 Callback implementation for c:Absinthe.Introspection.Kind.kind/0

 Anchor for this section

 Types

 Link to this type

 t()

 View Source

 t() :: %Absinthe.Type.Object{
 __private__: Keyword.t(),
 __reference__: Absinthe.Type.Reference.t(),
 definition: Module.t(),
 description: binary(),
 fields: map(),
 identifier: atom(),
 interfaces: [Absinthe.Type.Interface.t()],
 is_type_of: term(),
 name: binary()
}

A defined object type.

Note new object types (with the exception of the root-level query, mutation, and subscription)
should be defined using Absinthe.Schema.Notation.object/3.

	:name - The name of the object type. Should be a TitleCased binary. Set automatically.

	:description - A nice description for introspection.

	:fields - A map of Absinthe.Type.Field structs. Usually built via Absinthe.Schema.Notation.field/1.

	:interfaces - A list of interfaces that this type guarantees to implement. See Absinthe.Type.Interface.

	:is_type_of - A function used to identify whether a resolved object belongs to this defined type. For use with :interfaces entry and Absinthe.Type.Interface.

The __private__ and :__reference__ keys are for internal use.

 Anchor for this section

 Functions

 Link to this function

 kind()

 View Source

Callback implementation for c:Absinthe.Introspection.Kind.kind/0.

Absinthe.Type.Scalar

Represents a primitive value.

GraphQL responses take the form of a hierarchical tree; the leaves on these
trees are scalars.

Also see Absinthe.Type.Object.

Built-In Scalars

The following built-in scalar types are defined:

	:boolean - Represents true or false. See the GraphQL Specification.

	:float - Represents signed double‐precision fractional values as specified by IEEE 754. See the GraphQL Specification.

	:id - Represents a unique identifier, often used to refetch an object or as key for a cache. The ID type is serialized in the same way as a String; however, it is not intended to be human‐readable. See the GraphQL Specification.

	:integer - Represents a signed 32‐bit numeric non‐fractional value, greater than or equal to -2^31 and less than 2^31. Note that Absinthe uses the full word :integer to identify this type, but its name (used by variables, for instance), is "Int". See the GraphQL Specification.

	:string - Represents textual data, represented as UTF‐8 character sequences. The String type is most often used by GraphQL to represent free‐form human‐readable text. See the GraphQL Specification.

Examples

Supporting a time format in ISOz format, using Timex:

scalar :time do
 description "Time (in ISOz format)"
 parse &Timex.DateFormat.parse(&1, "{ISOz}")
 serialize &Timex.DateFormat.format!(&1, "{ISOz}")
end

 Anchor for this section

 Summary

 Types

 t()

 A defined scalar type

 value_t()

 The internal, canonical representation of a scalar value

 Functions

 kind()

 Callback implementation for c:Absinthe.Introspection.Kind.kind/0

 parse(type, value, context \\ %{})

 serialize(type, value)

 Anchor for this section

 Types

 Link to this type

 t()

 View Source

 t() :: %Absinthe.Type.Scalar{
 __private__: Keyword.t(),
 __reference__: Absinthe.Type.Reference.t(),
 definition: Module.t(),
 description: binary(),
 identifier: atom(),
 name: binary(),
 parse: term(),
 serialize: term()
}

A defined scalar type.

Note new scalars should be defined using Absinthe.Schema.Notation.scalar.

	:name - The name of scalar. Should be a TitleCased binary. Set Automatically by Absinthe.Schema.Notation.scalar.

	:description - A nice description for introspection.

	:serialize - A function used to convert a value to a form suitable for JSON serialization

	:parse - A function used to convert the raw, incoming form of a scalar to the canonical internal format.

The :__private__ and :__reference__ keys are for internal use.

 Link to this type

 value_t()

 View Source

 value_t() :: any()

The internal, canonical representation of a scalar value

 Anchor for this section

 Functions

 Link to this function

 kind()

 View Source

Callback implementation for c:Absinthe.Introspection.Kind.kind/0.

 Link to this function

 parse(type, value, context \\ %{})

 View Source

 Link to this function

 serialize(type, value)

 View Source

Absinthe.Type.Union

A unions is an abstract type made up of multiple possible concrete types.

No common fields are declared in a union. Compare to Absinthe.Type.Interface.

Because it’s necessary for the union to determine the concrete type of a
resolved object, you must either:

	Provide a :resolve_type function on the union

	Provide a :is_type_of function on each possible concrete type

union :search_result do
 description "A search result"

 types [:person, :business]
 resolve_type fn
 %Person{}, _ -> :person
 %Business{}, _ -> :business
 end
end

 Anchor for this section

 Summary

 Types

 t()

	:name - The name of the union type. Should be a TitleCased binary. Set automatically.

	:description - A nice description for introspection.

	:types - The list of possible types.

	:resolve_type - A function used to determine the concrete type of a resolved object. See also Absinthe.Type.Object’s :is_type_of. Either resolve_type is specified in the union type, or every object type in the union must specify is_type_of

 Functions

 kind()

 Callback implementation for c:Absinthe.Introspection.Kind.kind/0

 Anchor for this section

 Types

 Link to this type

 t()

 View Source

 t() :: %Absinthe.Type.Union{
 __private__: Keyword.t(),
 __reference__: Absinthe.Type.Reference.t(),
 definition: Module.t(),
 description: binary(),
 identifier: atom(),
 name: binary(),
 resolve_type: term(),
 types: [Absinthe.Type.identifier_t()]
}

	:name - The name of the union type. Should be a TitleCased binary. Set automatically.

	:description - A nice description for introspection.

	:types - The list of possible types.

	:resolve_type - A function used to determine the concrete type of a resolved object. See also Absinthe.Type.Object’s :is_type_of. Either resolve_type is specified in the union type, or every object type in the union must specify is_type_of

The :resolve_type function will be passed two arguments; the object whose type needs to be identified, and the Absinthe.Execution struct providing the full execution context.

The __private__ and :__reference__ keys are for internal use.

 Anchor for this section

 Functions

 Link to this function

 kind()

 View Source

Callback implementation for c:Absinthe.Introspection.Kind.kind/0.

Absinthe.Middleware behaviour

Middleware enables custom resolution behaviour on a field.

All resolution happens through middleware. Even resolve functions are
middleware, as the resolve macro is just

quote do
 middleware Absinthe.Resolution, unquote(function_ast)
end

Resolution happens by reducing a list of middleware spec onto an
%Absinthe.Resolution{} struct.

Example

defmodule MyApp.Web.Authentication do
 @behaviour Absinthe.Middleware

 def call(resolution, _config) do
 case resolution.context do
 %{current_user: _} ->
 resolution
 _ ->
 resolution
 |> Absinthe.Resolution.put_result({:error, "unauthenticated"})
 end
 end
end

By specifying @behaviour Absinthe.Middleware the compiler will ensure that
we provide a def call callback. This function takes an
%Absinthe.Resolution{} struct and will also need to return one such struct.

On that struct there is a context key which holds the absinthe context. This
is generally where things like the current user are placed. For more
information on how the current user ends up in the context please see our full
authentication guide on the website.

Our call/2 function simply checks the context to see if there is a current
user. If there is, we pass the resolution onward. If there is not, we update
the resolution state to :resolved and place an error result.

Middleware can be placed on a field in three different ways:

	Using the Absinthe.Schema.Notation.middleware/2
macro used inside a field definition

	Using the middleware/3 callback in your schema.

	Returning a {:middleware, middleware_spec, config}
tuple from a resolution function.

The middleware/2 macro

For placing middleware on a particular field, it’s handy to use
the middleware/2 macro.

Middleware will be run in the order in which they are specified.
The middleware/3 callback has final say on what middleware get
set.

Examples

MyApp.Web.Authentication would run before resolution, and HandleError would run after.

field :hello, :string do
 middleware MyApp.Web.Authentication
 resolve &get_the_string/2
 middleware HandleError, :foo
end

Anonymous functions are a valid middleware spec. A nice use case
is altering the context in a logout mutation. Mutations are the
only time the context should be altered. This is not enforced.

field :logout, :query do
 middleware fn res, _ ->
 %{res |
 context: Map.delete(res.context, :current_user),
 value: "logged out",
 state: :resolved
 }
 end
end

middleware/2 even accepts local public function names. Note
that middleware/2 is the only thing that can take local function
names without an associated module. If not using macros, use
{{__MODULE__, :function_name}, []}

def auth(res, _config) do
 # auth logic here
end

query do
 field :hello, :string do
 middleware :auth
 resolve &get_the_string/2
 end
end

The middleware/3 callback.

middleware/3 is a function callback on a schema. When you use
Absinthe.Schema a default implementation of this function is placed in your
schema. It is passed the existing middleware for a field, the field itself,
and the object that the field is a part of.

So for example if your schema contained:

object :user do
 field :name, :string
 field :age, :integer
end

query do
 field :lookup_user, :user do
 resolve fn _, _ ->
 {:ok, %{name: "Bob"}}
 end
 end
end

def middleware(middleware, field, object) do
 middleware |> IO.inspect
 field |> IO.inspect
 object |> IO.inspect

 middleware
end

Given a document like:

{ lookupUser { name }}

object is each object that is accessed while executing the document. In our
case that is the :user object and the :query object. field is every
field on that object, and middleware is a list of whatever middleware
spec have been configured by the schema on that field. Concretely
then, the function will be called , with the following arguments:

YourSchema.middleware([{Absinthe.Resolution, #Function<20.52032458/0>}], lookup_user_field_of_root_query_object, root_query_object)
YourSchema.middleware([{Absinthe.Middleware.Map.Get, :name}], name_field_of_user, user_object)
YourSchema.middleware([{Absinthe.Middleware.Map.Get, :age}], age_field_of_user, user_object)

In the latter two cases we see that the middleware list is empty. In the first
case we see one middleware spec, which is placed by the resolve macro used in the
:lookup_user field.

Default Middleware

One use of middleware/3 is setting the default middleware on a field
By default middleware is placed on a
field that looks up a field by its snake case identifier, ie :resource_name
Here is an example of how to change the default to use a camel cased string,
IE, “resourceName”.

def middleware(middleware, %{identifier: identifier} = field, object) do
 camelized =
 identifier
 |> Atom.to_string
 |> Macro.camelize

 new_middleware_spec = {{__MODULE__, :get_camelized_key}, camelized}

 Absinthe.Schema.replace_default(middleware, new_middleware_spec, field, object)
end

def get_camelized_key(%{source: source} = res, key) do
 %{res | state: :resolved, value: Map.get(source, key)}
end

There’s a lot going on here so let’s unpack it. We need to define a
specification to tell Absinthe what middleware to run. The form we’re using is
{{MODULE, :function_to_call}, options_of_middleware}. For our purposes we’re
simply going to use a function in the schema module itself
get_camelized_key.

We then use the Absinthe.Schema.replace_default/4 function to swap out the
default middleware already present in the middleware list with the new one we
want to use. It handles going through the existing list of middleware and
seeing if it’s using the default or if it has custom resolvers on it. If it’s
using the default, the function applies our newly defined middleware spec.

Like all middleware functions, :get_camelized_key takes a resolution struct,
and options. The options is the camelized key we generated. We get the
camelized string from the parent map, and set it as the value of the
resolution struct. Finally we mark the resolution state :resolved.

Side note: This middleware/3 function is called whenever we pull the type
out of the schema. The middleware itself is run every time we get a field on
an object. If we have 1000 objects and we were doing the camelization logic
INSIDE the middleware, we would compute the camelized string 1000 times. By
doing it in the def middleware callback we do it just once.

Changes Since 1.3

In Absinthe 1.3, fields without any middleware/2 or resolve/1 calls would
show up with an empty list [] as its middleware in the middleware/3
function. If no middleware was applied in the function and it also returned [],
THEN Absinthe would apply the default.

This made it very easy to accidently break your schema if you weren’t
particularly careful with your pattern matching. Now the defaults are applied
FIRST by absinthe, and THEN passed to middleware/3. Consequently, the
middleware list argument should always have at least one value. This is also
why there is now the replace_default/4 function, because it handles telling
the difference between a field with a resolver and a field with the default.

Object Wide Authentication

Let’s use our authentication middleware from earlier, and place it on every
field in the query object.

defmodule MyApp.Web.Schema do
 use Absinthe.Schema

 query do
 field :private_field, :string do
 resolve fn _, _ ->
 {:ok, "this can only be viewed if authenticated"}
 end
 end
 end

 def middleware(middleware, _field, %Absinthe.Type.Object{identifier: identifier})
 when identifier in [:query, :subscription, :mutation] do
 [MyApp.Web.Authentication | middleware]
 end
 def middleware(middleware, _field, _object) do
 middleware
 end
end

It is important to note that we are matching for the :query, :subscription
or :mutation identifier types. We do this because the middleware function
will be called for each field in the schema. If we didn’t limit it to those
types, we would be applying authentication to every field in the entire
schema, even stuff like :name or :age. This generally isn’t necessary
provided you authenticate at the entrypoints.

Main Points

	Middleware functions take a %Absinthe.Resolution{} struct, and return one.

	All middleware on a field are always run, make sure to pattern match on the
 state if you care.

 Anchor for this section

 Summary

 Types

 function_name()

 spec()

 Functions

 unshim(list, schema)

 For testing and inspection purposes

 Callbacks

 call(arg0, term)

 This is the main middleware callback

 Anchor for this section

 Types

 Link to this type

 function_name()

 View Source

 function_name() :: atom()

 Link to this type

 spec()

 View Source

 spec() ::
 module()
 | {module(), term()}
 | {{module(), function_name()}, term()}
 | (Absinthe.Resolution.t(), term() -> Absinthe.Resolution.t())

 Anchor for this section

 Functions

 Link to this function

 unshim(list, schema)

 View Source

For testing and inspection purposes

 Anchor for this section

 Callbacks

 Link to this callback

 call(arg0, term)

 View Source

 call(Absinthe.Resolution.t(), term()) :: Absinthe.Resolution.t()

This is the main middleware callback.

It receives an %Absinthe.Resolution{} struct and it needs to return an
%Absinthe.Resolution{} struct. The second argument will be whatever value
was passed to the middleware call that setup the middleware.

Absinthe.Middleware.Async

This plugin enables asynchronous execution of a field.

See also Absinthe.Resolution.Helpers.async/1

Example Usage:

Using the Absinthe.Resolution.Helpers.async/1 helper function:

field :time_consuming, :thing do
 resolve fn _, _, _ ->
 async(fn ->
 {:ok, long_time_consuming_function()}
 end)
 end
end

Using the bare plugin API

field :time_consuming, :thing do
 resolve fn _, _, _ ->
 task = Task.async(fn ->
 {:ok, long_time_consuming_function()}
 end)
 {:middleware, Elixir.Absinthe.Middleware.Async, task}
 end
end

This module also serves as an example for how to build middleware that uses the
resolution callbacks.

See the source code and associated comments for further details.

 Anchor for this section

 Summary

 Functions

 after_resolution(exec)

 callback to do something with the resolution accumulator after
resolution

 before_resolution(exec)

 callback to setup the resolution accumulator prior to resolution

 call(res, task)

 This is the main middleware callback

 pipeline(pipeline, exec)

 callback used to specify additional phases to run

 Anchor for this section

 Functions

 Link to this function

 after_resolution(exec)

 View Source

callback to do something with the resolution accumulator after
resolution.

NOTE: This function is given the full accumulator. Namespacing is suggested to
avoid conflicts.

Callback implementation for Absinthe.Plugin.after_resolution/1.

 Link to this function

 before_resolution(exec)

 View Source

callback to setup the resolution accumulator prior to resolution.

NOTE: This function is given the full accumulator. Namespacing is suggested to
avoid conflicts.

Callback implementation for Absinthe.Plugin.before_resolution/1.

 Link to this function

 call(res, task)

 View Source

This is the main middleware callback.

It receives an %Absinthe.Resolution{} struct and it needs to return an
%Absinthe.Resolution{} struct. The second argument will be whatever value
was passed to the middleware call that setup the middleware.

Callback implementation for Absinthe.Middleware.call/2.

 Link to this function

 pipeline(pipeline, exec)

 View Source

callback used to specify additional phases to run.

Plugins may require additional resolution phases to be run. This function should
use values set in the resolution accumulator to determine
whether or not additional phases are required.

NOTE: This function is given the whole pipeline to be inserted after the current
phase completes.

Callback implementation for Absinthe.Plugin.pipeline/2.

Absinthe.Middleware.Batch

Batch the resolution of multiple fields.

Motivation

Consider the following graphql query:

{
 posts {
 author {
 name
 }
 }
}

posts returns a list of post objects, which has an associated author field.
If the author field makes a call to the database we have the classic N + 1 problem.
What we want is a way to load all authors for all posts in one database request.

This plugin provides this, without any eager loading at the parent level. That is,
the code for the posts field does not need to do anything to facilitate the
efficient loading of its children.

Example Usage

The API for this plugin is a little on the verbose side because it is not specific
to any particular batching mechanism. That is, this API is just as useful for an Ecto
based DB as it is for talking to S3 or the File System. Thus we anticipate people
(including ourselves) will be creating additional functions more tailored to each
of those specific use cases.

Here is an example using the Absinthe.Resolution.Helpers.batch/3 helper.

object :post do
 field :name, :string
 field :author, :user do
 resolve fn post, _, _ ->
 batch({__MODULE__, :users_by_id}, post.author_id, fn batch_results ->
 {:ok, Map.get(batch_results, post.author_id)}
 end)
 end
 end
end

def users_by_id(_, user_ids) do
 users = Repo.all from u in User, where: u.id in ^user_ids
 Map.new(users, fn user -> {user.id, user} end)
end

Let’s look at this piece by piece:

	{__MODULE__, :users_by_id}: is the batching function which will be used. It must
be a 2 arity function. For details see the batch_fun typedoc.

	post.author_id: This is the information to be aggregated. The aggregated values
are the second argument to the batching function.

	fn batch_results: This function takes the results from the batching function.
it should return one of the resolution function values.

Clearly some of this could be derived for ecto functions. Check out the Absinthe.Ecto
library for something that provides this:

field :author, :user, resolve: assoc(:author)

Such a function could be easily built upon the API of this module.

 Anchor for this section

 Summary

 Types

 batch_fun()

 The function to be called with the aggregate batch information

 post_batch_fun()

 Functions

 after_resolution(exec)

 callback to do something with the resolution accumulator after
resolution

 before_resolution(exec)

 callback to setup the resolution accumulator prior to resolution

 call(res, arg)

 This is the main middleware callback

 pipeline(pipeline, exec)

 callback used to specify additional phases to run

 Anchor for this section

 Types

 Link to this type

 batch_fun()

 View Source

 batch_fun() :: {module(), atom()} | {module(), atom(), term()}

The function to be called with the aggregate batch information.

It comes in both a 2 tuple and 3 tuple form. The first two elements are the module
and function name. The third element is an arbitrary parameter that is passed
as the first argument to the batch function.

For example, one could parameterize the users_by_id function from the moduledoc
to make it more generic. Instead of doing {__MODULE__, :users_by_id} you could do
{__MODULE__, :by_id, User}. Then the function would be:

def by_id(model, ids) do
 model
 |> where([m], m.id in ^ids)
 |> Repo.all()
 |> Map.new(&{&1.id, &1})
end

It could also be used to set options unique to the execution of a particular
batching function.

 Link to this type

 post_batch_fun()

 View Source

 post_batch_fun() :: (term() -> Absinthe.Type.Field.result())

 Anchor for this section

 Functions

 Link to this function

 after_resolution(exec)

 View Source

callback to do something with the resolution accumulator after
resolution.

NOTE: This function is given the full accumulator. Namespacing is suggested to
avoid conflicts.

Callback implementation for Absinthe.Plugin.after_resolution/1.

 Link to this function

 before_resolution(exec)

 View Source

callback to setup the resolution accumulator prior to resolution.

NOTE: This function is given the full accumulator. Namespacing is suggested to
avoid conflicts.

Callback implementation for Absinthe.Plugin.before_resolution/1.

 Link to this function

 call(res, arg)

 View Source

This is the main middleware callback.

It receives an %Absinthe.Resolution{} struct and it needs to return an
%Absinthe.Resolution{} struct. The second argument will be whatever value
was passed to the middleware call that setup the middleware.

Callback implementation for Absinthe.Middleware.call/2.

 Link to this function

 pipeline(pipeline, exec)

 View Source

callback used to specify additional phases to run.

Plugins may require additional resolution phases to be run. This function should
use values set in the resolution accumulator to determine
whether or not additional phases are required.

NOTE: This function is given the whole pipeline to be inserted after the current
phase completes.

Callback implementation for Absinthe.Plugin.pipeline/2.

Absinthe.Middleware.Dataloader

 Anchor for this section

 Summary

 Functions

 after_resolution(exec)

 callback to do something with the resolution accumulator after
resolution

 before_resolution(exec)

 callback to setup the resolution accumulator prior to resolution

 call(resolution, callback)

 This is the main middleware callback

 pipeline(pipeline, exec)

 callback used to specify additional phases to run

 Anchor for this section

 Functions

 Link to this function

 after_resolution(exec)

 View Source

callback to do something with the resolution accumulator after
resolution.

NOTE: This function is given the full accumulator. Namespacing is suggested to
avoid conflicts.

Callback implementation for Absinthe.Plugin.after_resolution/1.

 Link to this function

 before_resolution(exec)

 View Source

callback to setup the resolution accumulator prior to resolution.

NOTE: This function is given the full accumulator. Namespacing is suggested to
avoid conflicts.

Callback implementation for Absinthe.Plugin.before_resolution/1.

 Link to this function

 call(resolution, callback)

 View Source

This is the main middleware callback.

It receives an %Absinthe.Resolution{} struct and it needs to return an
%Absinthe.Resolution{} struct. The second argument will be whatever value
was passed to the middleware call that setup the middleware.

Callback implementation for Absinthe.Middleware.call/2.

 Link to this function

 pipeline(pipeline, exec)

 View Source

callback used to specify additional phases to run.

Plugins may require additional resolution phases to be run. This function should
use values set in the resolution accumulator to determine
whether or not additional phases are required.

NOTE: This function is given the whole pipeline to be inserted after the current
phase completes.

Callback implementation for Absinthe.Plugin.pipeline/2.

Absinthe.Middleware.MapGet

This is the default middleware. It assumes the the object it receives is a map
and uses Map.get/2 to get the value for this field. If this field is already
marked as resolved, then this middleware does not touch it.

If you want to replace this middleware you should use
Absinthe.Schema.replace_default/4

 Anchor for this section

 Summary

 Functions

 call(res, key)

 This is the main middleware callback

 Anchor for this section

 Functions

 Link to this function

 call(res, key)

 View Source

This is the main middleware callback.

It receives an %Absinthe.Resolution{} struct and it needs to return an
%Absinthe.Resolution{} struct. The second argument will be whatever value
was passed to the middleware call that setup the middleware.

Callback implementation for Absinthe.Middleware.call/2.

Absinthe.Middleware.PassParent

Middleware that just passes the parent down to the children.

This is the default resolver for subscription fields.

 Anchor for this section

 Summary

 Functions

 call(res, _)

 This is the main middleware callback

 Anchor for this section

 Functions

 Link to this function

 call(res, _)

 View Source

This is the main middleware callback.

It receives an %Absinthe.Resolution{} struct and it needs to return an
%Absinthe.Resolution{} struct. The second argument will be whatever value
was passed to the middleware call that setup the middleware.

Callback implementation for Absinthe.Middleware.call/2.

Absinthe.Plugin behaviour

Plugin Behaviour

Plugins are an additional set of callbacks that can be used by module based
middleware to run actions before and after resolution, as well as add additional
phases to run after resolution

 Anchor for this section

 Summary

 Types

 t()

 Functions

 defaults()

 Returns the list of default plugins

 Callbacks

 after_resolution(execution)

 callback to do something with the resolution accumulator after
resolution

 before_resolution(execution)

 callback to setup the resolution accumulator prior to resolution

 pipeline(next_pipeline, execution)

 callback used to specify additional phases to run

 Anchor for this section

 Types

 Link to this type

 t()

 View Source

 t() :: module()

 Anchor for this section

 Functions

 Link to this function

 defaults()

 View Source

Returns the list of default plugins.

 Anchor for this section

 Callbacks

 Link to this callback

 after_resolution(execution)

 View Source

 after_resolution(execution :: Document.Execution.t()) :: Document.Execution.t()

callback to do something with the resolution accumulator after
resolution.

NOTE: This function is given the full accumulator. Namespacing is suggested to
avoid conflicts.

 Link to this callback

 before_resolution(execution)

 View Source

 before_resolution(execution :: Document.Execution.t()) :: Document.Execution.t()

callback to setup the resolution accumulator prior to resolution.

NOTE: This function is given the full accumulator. Namespacing is suggested to
avoid conflicts.

 Link to this callback

 pipeline(next_pipeline, execution)

 View Source

 pipeline(
 next_pipeline :: Absinthe.Pipeline.t(),
 execution :: Document.Execution.t()
) :: Absinthe.Pipeline.t()

callback used to specify additional phases to run.

Plugins may require additional resolution phases to be run. This function should
use values set in the resolution accumulator to determine
whether or not additional phases are required.

NOTE: This function is given the whole pipeline to be inserted after the current
phase completes.

Absinthe.Subscription

Real time updates via GraphQL

For a how to guide on getting started with Absinthe.Subscriptions in your phoenix
project see the Absinthe.Phoenix package.

Define in your schema via Absinthe.Schema.subscription/2

Basic Usage

Performance Characteristics

There are a couple of limitations to the beta release of subscriptions that
are worth keeping in mind if you want to use this in production:

By design, all subscription docs triggered by a mutation are run inside the
mutation process as a form of back pressure.

At the moment however database batching does not happen across the set of
subscription docs. Thus if you have a lot of subscription docs and they each
do a lot of extra DB lookups you’re going to delay incoming mutation responses
by however long it takes to do all that work.

Before the final version of 1.4.0 we want

	Batching across subscriptions

	More user control over back pressure / async balance.

 Anchor for this section

 Summary

 Types

 subscription_field_spec()

 Functions

 child_spec(pubsub)

 publish(pubsub, mutation_result, info)

 Publish a mutation

 start_link(pubsub)

 Add Absinthe.Subscription to your process tree

 Anchor for this section

 Types

 Link to this type

 subscription_field_spec()

 View Source

 subscription_field_spec() :: {atom(), term() | (term() -> term())}

 Anchor for this section

 Functions

 Link to this function

 child_spec(pubsub)

 View Source

 Link to this function

 publish(pubsub, mutation_result, info)

 View Source

 publish(
 Absinthe.Subscription.Pubsub.t(),
 term(),
 Absinthe.Resolution.t() | [subscription_field_spec()]
) :: :ok

Publish a mutation

This function is generally used when trying to publish to one or more subscription
fields “out of band” from any particular mutation.

 Examples

Note: As with all subscription examples if you’re using Absinthe.Phoenix pubsub
will be MyApp.Web.Endpoint.

Absinthe.Subscription.publish(pubsub, user, [new_users: user.account_id])

publish to two subscription fields
Absinthe.Subscription.publish(pubsub, user, [
 new_users: user.account_id,
 other_user_subscription_field: user.id,
])

 Link to this function

 start_link(pubsub)

 View Source

Add Absinthe.Subscription to your process tree.

Absinthe.Subscription.Pubsub behaviour

Pubsub behaviour expected by Absinthe to power subscriptions

A subscription includes a GraphQL query document that resolves to a set of
objects and fields. When the subscription is triggered, Absinthe will run the
document and publish the resolved objects to subscribers through a module that
implements the behaviour defined here.

Each application is free to implement the PubSub behavior in its own way.
For example, the absinthe_phoenix project implements the subscription pubsub
using Phoenix.PubSub by way of the application’s Endpoint. Regardless
of the underlying mechanisms, the implementation should maintain the type
signatures and expected behaviors of the callbacks below.

 Anchor for this section

 Summary

 Types

 t()

 Callbacks

 node_name()

 An Absinthe.Subscription.Pubsub system may extend across multiple nodes
connected by some mechanism. Regardless of this mechanism, all nodes should
have unique names

 publish_mutation(proxy_topic, mutation_result, subscribed_fields)

 An Absinthe.Subscription.Pubsub system may extend across multiple nodes.
Processes need only subscribe to the pubsub process that
is running on their own node

 publish_subscription(topic, data)

 After a mutation is published, and Absinthe has re-run the necessary GraphQL
subscriptions to generate a new set of resolved data, it calls
publish_subscription

 subscribe(topic)

 Subscribe the current process for messages about the given topic

 Anchor for this section

 Types

 Link to this type

 t()

 View Source

 t() :: module()

 Anchor for this section

 Callbacks

 Link to this callback

 node_name()

 View Source

 node_name() :: binary()

An Absinthe.Subscription.Pubsub system may extend across multiple nodes
connected by some mechanism. Regardless of this mechanism, all nodes should
have unique names.

Absinthe invokes node_name function to get current node’s name. If you
are running inside erlang cluster, you can use Kernel.node/0 as a node
name.

 Link to this callback

 publish_mutation(proxy_topic, mutation_result, subscribed_fields)

 View Source

 publish_mutation(
 proxy_topic :: binary(),
 mutation_result :: term(),
 subscribed_fields :: list()
) :: term()

An Absinthe.Subscription.Pubsub system may extend across multiple nodes.
Processes need only subscribe to the pubsub process that
is running on their own node.

However, mutations can happen on any node in the custer and must to be
broadcast to other nodes so that they can also reevaluate their GraphQL
subscriptions and notify subscribers on that node.

When told of a mutation, Absinthe invokes the publish_mutation function
on the node in which the mutation is processed first. The function should
publish a message to the given proxy_topic, with the identity of node
on which the mutation occurred included in the broadcast message.

The message broadcast should be a map that contains, at least

%{
 node: node_name, # should be equal to `node_name/0`
 mutation_result: …, # from arguments
 subscribed_fields: … # from arguments

 # other fields as needed
}

 Link to this callback

 publish_subscription(topic, data)

 View Source

 publish_subscription(topic :: binary(), data :: map()) :: term()

After a mutation is published, and Absinthe has re-run the necessary GraphQL
subscriptions to generate a new set of resolved data, it calls
publish_subscription.

Your pubsub implementation should publish a message to the given topic, with
the newly resolved data. The broadcast should be limited to the current node
only.

 Link to this callback

 subscribe(topic)

 View Source

 subscribe(topic :: binary()) :: term()

Subscribe the current process for messages about the given topic.

Absinthe.Phase behaviour

Behaviour for Absinthe Phases.

A phase takes an Absinthe.Blueprint document and returns another blueprint document.
All validation, resolution, and result building happens via phases. See
Absinthe.Pipeline for information on how to run phases. See the code under
this namespace for information on individual phases.

 Anchor for this section

 Summary

 Types

 result_t()

 t()

 Functions

 any_invalid?(nodes)

 put_error(node, error)

 Callbacks

 run(any, any)

 Anchor for this section

 Types

 Link to this type

 result_t()

 View Source

 result_t() ::
 {:ok, any()}
 | {:jump, any(), t()}
 | {:insert, any(), t() | [t()]}
 | {:replace, any(), t() | [t()]}
 | {:error, any()}

 Link to this type

 t()

 View Source

 t() :: module()

 Anchor for this section

 Functions

 Link to this function

 any_invalid?(nodes)

 View Source

 Link to this function

 put_error(node, error)

 View Source

 put_error(Absinthe.Blueprint.node_t(), Absinthe.Phase.Error.t()) ::
 Absinthe.Blueprint.node_t()

 Anchor for this section

 Callbacks

 Link to this callback

 run(any, any)

 View Source

 run(any(), any()) :: result_t()

Absinthe.Phase.Validation.Helpers

 Anchor for this section

 Summary

 Functions

 any_invalid?(nodes)

 Anchor for this section

 Functions

 Link to this function

 any_invalid?(nodes)

 View Source

 any_invalid?([Absinthe.Blueprint.node_t()]) :: boolean()

Absinthe.Pipeline

Execute a pipeline of phases.

A pipeline is merely a list of phases. This module contains functions for building,
modifying, and executing pipelines of phases.

 Anchor for this section

 Summary

 Types

 data_t()

 phase_config_t()

 t()

 Functions

 before(pipeline, phase)

 Return the part of a pipeline before a specific phase

 for_document(schema, options \\ [])

 for_schema(schema, options \\ [])

 from(pipeline, phase)

 Return the part of a pipeline after (and including) a specific phase

 insert_after(pipeline, phase, additional)

 Return the pipeline with the phase/list of phases inserted after
the supplied phase

 insert_before(pipeline, phase, additional)

 Return the pipeline with the phase/list of phases inserted before
the supplied phase

 options(overrides \\ [])

 reject(pipeline, pattern)

 Return the pipeline with the phases matching the regex removed

 replace(pipeline, phase, replacement)

 Replace a phase in a pipeline with another, supporting reusing the same
options

 run(input, pipeline)

 run_phase(pipeline, input, done \\ [])

 upto(pipeline, phase)

 Return the part of a pipeline up to and including a specific phase

 without(pipeline, phase)

 Return the pipeline with the supplied phase removed

 Anchor for this section

 Types

 Link to this type

 data_t()

 View Source

 data_t() :: any()

 Link to this type

 phase_config_t()

 View Source

 phase_config_t() :: Absinthe.Phase.t() | {Absinthe.Phase.t(), Keyword.t()}

 Link to this type

 t()

 View Source

 t() :: [phase_config_t() | [phase_config_t()]]

 Anchor for this section

 Functions

 Link to this function

 before(pipeline, phase)

 View Source

 before(t(), atom()) :: t()

Return the part of a pipeline before a specific phase.

 Examples

iex> Pipeline.before([A, B, C], B)
[A]

 Link to this function

 for_document(schema, options \\ [])

 View Source

 for_document(Absinthe.Schema.t(), Keyword.t()) :: t()

 Link to this function

 for_schema(schema, options \\ [])

 View Source

 for_schema(nil | Absinthe.Schema.t(), Keyword.t()) :: t()

 Link to this function

 from(pipeline, phase)

 View Source

 from(t(), atom()) :: t()

Return the part of a pipeline after (and including) a specific phase.

 Examples

iex> Pipeline.from([A, B, C], B)
[B, C]

 Link to this function

 insert_after(pipeline, phase, additional)

 View Source

 insert_after(t(), Absinthe.Phase.t(), phase_config_t() | [phase_config_t()]) ::
 t()

Return the pipeline with the phase/list of phases inserted after
the supplied phase.

 Examples

Add one phase after another:

iex> Pipeline.insert_after([A, C, D], A, B)
[A, B, C, D]

Add list of phases after another:

iex> Pipeline.insert_after([A, D, E], A, [B, C])
[A, B, C, D, E]

 Link to this function

 insert_before(pipeline, phase, additional)

 View Source

 insert_before(t(), Absinthe.Phase.t(), phase_config_t() | [phase_config_t()]) ::
 t()

Return the pipeline with the phase/list of phases inserted before
the supplied phase.

 Examples

Add one phase before another:

iex> Pipeline.insert_before([A, C, D], C, B)
[A, B, C, D]

Add list of phase before another:

iex> Pipeline.insert_before([A, D, E], D, [B, C])
[A, B, C, D, E]

 Link to this function

 options(overrides \\ [])

 View Source

 Link to this function

 reject(pipeline, pattern)

 View Source

 reject(t(), Regex.t() | (Module.t() -> boolean())) :: t()

Return the pipeline with the phases matching the regex removed.

 Examples

iex> Pipeline.reject([A, B, C], ~r/A|B/)
[C]

 Link to this function

 replace(pipeline, phase, replacement)

 View Source

 replace(t(), Absinthe.Phase.t(), phase_config_t()) :: t()

Replace a phase in a pipeline with another, supporting reusing the same
options.

 Examples

Replace a simple phase (without options):

iex> Pipeline.replace([A, B, C], B, X)
[A, X, C]

Replace a phase with options, retaining them:

iex> Pipeline.replace([A, {B, [name: "Thing"]}, C], B, X)
[A, {X, [name: "Thing"]}, C]

Replace a phase with options, overriding them:

iex> Pipeline.replace([A, {B, [name: "Thing"]}, C], B, {X, [name: "Nope"]})
[A, {X, [name: "Nope"]}, C]

 Link to this function

 run(input, pipeline)

 View Source

 run(data_t(), t()) ::
 {:ok, data_t(), [Absinthe.Phase.t()]}
 | {:error, String.t(), [Absinthe.Phase.t()]}

 Link to this function

 run_phase(pipeline, input, done \\ [])

 View Source

 run_phase(t(), data_t(), [Absinthe.Phase.t()]) ::
 {:ok, data_t(), [Absinthe.Phase.t()]}
 | {:error, String.t(), [Absinthe.Phase.t()]}

 Link to this function

 upto(pipeline, phase)

 View Source

 upto(t(), atom()) :: t()

Return the part of a pipeline up to and including a specific phase.

 Examples

iex> Pipeline.upto([A, B, C], B)
[A, B]

 Link to this function

 without(pipeline, phase)

 View Source

 without(t(), Absinthe.Phase.t()) :: t()

Return the pipeline with the supplied phase removed.

 Examples

iex> Pipeline.without([A, B, C], B)
[A, C]

Absinthe.Pipeline.ErrorResult

A basic struct that wraps phase errors for
reporting to the user.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(errors)

 Generate a new ErrorResult for one or more phase errors

 Anchor for this section

 Types

 Link to this type

 t()

 View Source

 t() :: %Absinthe.Pipeline.ErrorResult{errors: [Absinthe.Phase.Error.t()]}

 Anchor for this section

 Functions

 Link to this function

 new(errors)

 View Source

 new(Absinthe.Phase.Error.t() | [Absinthe.Phase.Error.t()]) :: t()

Generate a new ErrorResult for one or more phase errors

Absinthe.Adapter behaviour

Absinthe supports an adapter mechanism that allows developers to define their
schema using one code convention (eg, snake_cased fields and arguments), but
accept query documents and return results (including names in errors) in
another (eg, camelCase).

Adapters aren’t a part of GraphQL, but a utility that Absinthe adds so that
both client and server can use use conventions most natural to them.

Absinthe ships with two adapters:

	Absinthe.Adapter.LanguageConventions, which expects schemas to be defined
 in snake_case (the standard Elixir convention), translating to/from camelCase
 for incoming query documents and outgoing results. (This is the default as of v0.3.)

	Absinthe.Adapter.Underscore, which is similar to the LanguageConventions
 adapter but converts all incoming identifiers to underscores and does not
 modify outgoing identifiers (since those are already expected to be
 underscores). Unlike Absinthe.Adapter.Passthrough this does not break
 introspection.

	Absinthe.Adapter.Passthrough, which is a no-op adapter and makes no
 modifications. (Note at the current time this does not support introspection
 if you’re using camelized conventions).

To set an adapter, you pass a configuration option at runtime:

For Absinthe.run/3:

Absinthe.run(
 query,
 MyApp.Schema,
 adapter: YourApp.Adapter.TheAdapterName
)

For Absinthe.Plug:

forward "/api",
 to: Absinthe.Plug,
 init_opts: [schema: MyAppWeb.Schema, adapter: YourApp.Adapter.TheAdapterName]

For GraphiQL:

forward "/graphiql",
 to: Absinthe.Plug.GraphiQL,
 init_opts: [schema: MyAppWeb.Schema, adapter: YourApp.Adapter.TheAdapterName]

Check Absinthe.Plug for full documentation on using the Plugs

Notably, this means you’re able to switch adapters on case-by-case basis.
In a Phoenix application, this means you could even support using different
adapters for different clients.

A custom adapter module must merely implement the Absinthe.Adapter protocol,
in many cases with use Absinthe.Adapter and only overriding the desired
functions.

Writing Your Own

All you may need to implement in your adapter is to_internal_name/2 and
to_external_name/2.

Check out Absinthe.Adapter.LanguageConventions for a good example.

Note that types that are defined external to your application (including
the introspection types) may not be compatible if you’re using a different
adapter.

 Anchor for this section

 Summary

 Types

 role_t()

 The lexical role of a name within the document/schema

 t()

 Callbacks

 to_external_name(binary, role_t)

 Convert a name from an internal name to an external name

 to_internal_name(binary, role_t)

 Convert a name from an external name to an internal name

 Anchor for this section

 Types

 Link to this type

 role_t()

 View Source

 role_t() :: :operation | :field | :argument | :result | :type | :directive

The lexical role of a name within the document/schema.

 Link to this type

 t()

 View Source

 t() :: module()

 Anchor for this section

 Callbacks

 Link to this callback

 to_external_name(binary, role_t)

 View Source

 to_external_name(binary(), role_t()) :: binary()

Convert a name from an internal name to an external name.

 Examples

Remove the role-prefix (the inverse of what we did in to_internal_name/2 above):

def to_external_name(internal_name, role) do
 internal_name
 |> String.replace(~r/^#{role}_/, "")
end

 Link to this callback

 to_internal_name(binary, role_t)

 View Source

 to_internal_name(binary(), role_t()) :: binary()

Convert a name from an external name to an internal name.

 Examples

Prefix all names with their role, just for fun!

def to_internal_name(external_name, role) do
 role_name = role |> to_string
 role_name <> "_" <> external_name
end

Absinthe.Adapter.LanguageConventions

This defines an adapter that supports GraphQL query documents in their
conventional (in JS) camelcase notation, while allowing the schema to be
defined using conventional (in Elixir) underscore (snakecase) notation, and
tranforming the names as needed for lookups, results, and error messages.

For example, this document:

{
 myUser: createUser(userId: 2) {
 firstName
 lastName
 }
}

Would map to an internal schema that used the following names:

	create_user instead of createUser

	user_id instead of userId

	first_name instead of firstName

	last_name instead of lastName

Likewise, the result of executing this (camelcase) query document against our
(snakecase) schema would have its names transformed back into camelcase on the
way out:

%{
 data: %{
 "myUser" => %{
 "firstName" => "Joe",
 "lastName" => "Black"
 }
 }
}

Note variables are a client-facing concern (they may be provided as
parameters), so variable names should match the convention of the query
document (eg, camelCase).

 Anchor for this section

 Summary

 Functions

 to_external_name(internal_name, role)

 Converts a snake_case name to camelCase

 to_internal_name(external_name, role)

 Converts a camelCase to snake_case

 Anchor for this section

 Functions

 Link to this function

 to_external_name(internal_name, role)

 View Source

Converts a snake_case name to camelCase

 Link to this function

 to_internal_name(external_name, role)

 View Source

Converts a camelCase to snake_case

Absinthe.Adapter.Passthrough

The default adapter, which makes no changes to incoming query document
ASTs or outgoing results.

 Anchor for this section

 Summary

 Functions

 dump_results(results)

 load_document(doc)

 to_external_name(internal_name, role)

 Convert a name from an internal name to an external name

 to_internal_name(external_name, role)

 Convert a name from an external name to an internal name

 Anchor for this section

 Functions

 Link to this function

 dump_results(results)

 View Source

 Link to this function

 load_document(doc)

 View Source

 Link to this function

 to_external_name(internal_name, role)

 View Source

Convert a name from an internal name to an external name.

 Examples

Remove the role-prefix (the inverse of what we did in to_internal_name/2 above):

def to_external_name(internal_name, role) do
 internal_name
 |> String.replace(~r/^#{role}_/, "")
end

Callback implementation for Absinthe.Adapter.to_external_name/2.

 Link to this function

 to_internal_name(external_name, role)

 View Source

Convert a name from an external name to an internal name.

 Examples

Prefix all names with their role, just for fun!

def to_internal_name(external_name, role) do
 role_name = role |> to_string
 role_name <> "_" <> external_name
end

Callback implementation for Absinthe.Adapter.to_internal_name/2.

Absinthe.Adapter.Underscore

Underscores external input and leaves external input alone. Unlike the
Absinthe.Adapter.Passthrough this does not break introspection (because
introspection relies on underscoring incoming introspection queries which we
still do).

 Anchor for this section

 Summary

 Functions

 to_external_name(internal_name, role)

 Convert a name from an internal name to an external name

 to_internal_name(external_name, role)

 Convert a name from an external name to an internal name

 Anchor for this section

 Functions

 Link to this function

 to_external_name(internal_name, role)

 View Source

Convert a name from an internal name to an external name.

 Examples

Remove the role-prefix (the inverse of what we did in to_internal_name/2 above):

def to_external_name(internal_name, role) do
 internal_name
 |> String.replace(~r/^#{role}_/, "")
end

Callback implementation for Absinthe.Adapter.to_external_name/2.

 Link to this function

 to_internal_name(external_name, role)

 View Source

Convert a name from an external name to an internal name.

 Examples

Prefix all names with their role, just for fun!

def to_internal_name(external_name, role) do
 role_name = role |> to_string
 role_name <> "_" <> external_name
end

Callback implementation for Absinthe.Adapter.to_internal_name/2.

Absinthe.Blueprint

Represents the graphql document to be executed.

Please see the code itself for more information on individual blueprint sub
modules.

 Anchor for this section

 Summary

 Types

 flags_t()

 node_t()

 result_t()

 t()

 use_t()

 Functions

 current_operation(blueprint)

 Get the currently selected operation

 find(blueprint, fun)

 flagged?(node, flag)

 Determine whether a flag has been set on a node

 fragment(blueprint, name)

 postwalk(blueprint, fun)

 postwalk(blueprint, acc, fun)

 prewalk(blueprint, fun)

 prewalk(blueprint, acc, fun)

 put_flag(node, flag, mod)

 Add a flag to a node

 update_current(blueprint, change)

 Update the current operation

 Anchor for this section

 Types

 Link to this type

 flags_t()

 View Source

 flags_t() :: %{optional(atom()) => module()}

 Link to this type

 node_t()

 View Source

 node_t() ::
 Absinthe.Blueprint.t()
 | Absinthe.Blueprint.Directive.t()
 | Absinthe.Blueprint.Document.t()
 | Absinthe.Blueprint.Schema.t()
 | Absinthe.Blueprint.Input.t()
 | Absinthe.Blueprint.TypeReference.t()

 Link to this type

 result_t()

 View Source

 result_t() :: %{
 optional(:data) => term(),
 optional(:errors) => [term()],
 optional(:extensions) => term()
}

 Link to this type

 t()

 View Source

 t() :: %Absinthe.Blueprint{
 adapter: nil | Absinthe.Adapter.t(),
 directives: [Absinthe.Blueprint.Schema.DirectiveDefinition.t()],
 errors: [Absinthe.Phase.Error.t()],
 execution: Absinthe.Blueprint.Execution.t(),
 flags: flags_t(),
 fragments: [Absinthe.Blueprint.Document.Fragment.Named.t()],
 input: term(),
 name: nil | String.t(),
 operations: [Absinthe.Blueprint.Document.Operation.t()],
 result: result_t(),
 schema: nil | Absinthe.Schema.t(),
 schema_definitions: [Absinthe.Blueprint.Schema.t()]
}

 Link to this type

 use_t()

 View Source

 use_t() ::
 Absinthe.Blueprint.Document.Fragment.Named.Use.t()
 | Absinthe.Blueprint.Input.Variable.Use.t()

 Anchor for this section

 Functions

 Link to this function

 current_operation(blueprint)

 View Source

 current_operation(t()) :: nil | Absinthe.Blueprint.Document.Operation.t()

Get the currently selected operation.

 Link to this function

 find(blueprint, fun)

 View Source

 Link to this function

 flagged?(node, flag)

 View Source

 flagged?(node_t(), atom()) :: boolean()

Determine whether a flag has been set on a node.

 Link to this function

 fragment(blueprint, name)

 View Source

 fragment(t(), String.t()) ::
 nil | Absinthe.Blueprint.Document.Fragment.Named.t()

 Link to this function

 postwalk(blueprint, fun)

 View Source

 Link to this function

 postwalk(blueprint, acc, fun)

 View Source

 Link to this function

 prewalk(blueprint, fun)

 View Source

 Link to this function

 prewalk(blueprint, acc, fun)

 View Source

 Link to this function

 put_flag(node, flag, mod)

 View Source

 put_flag(node_t(), atom(), module()) :: node_t()

Add a flag to a node.

 Link to this function

 update_current(blueprint, change)

 View Source

 update_current(
 t(),
 (Absinthe.Blueprint.Document.Operation.t() ->
 Absinthe.Blueprint.Document.Operation.t())
) :: t()

Update the current operation.

Absinthe.Blueprint.Execution

Blueprint Execution Data

The %Absinthe.Blueprint.Execution{} struct holds on to the core values that
drive a document’s execution.

Here’s how the execution flow works. Given a document like:

{
 posts {
 title
 author { name }
 }
}

After all the validation happens, and we’re actually going to execute this document,
an %Execution{} struct is created. This struct is passed to each plugin’s
before_resolution callback, so that plugins can set initial values in the accumulator
or context.

Then the resolution phase walks the document until it hits the posts field.
To resolve the posts field, an %Absinthe.Resolution{} struct is created from
the %Execution{} struct. This resolution struct powers the normal middleware
resolution process. When a field has resolved, the :acc, :context, and :field_cache
values within the resolution struct are pulled out and used to update the execution.

 Anchor for this section

 Summary

 Types

 acc()

 node_t()

 t()

 Functions

 get(bp_root, operation)

 get_result(execution, operation)

 get_result(map, _, _)

 update(resolution, result, context, acc)

 Anchor for this section

 Types

 Link to this type

 acc()

 View Source

 acc() :: map()

 Link to this type

 node_t()

 View Source

 node_t() :: Result.Object | Result.List | Result.Leaf

 Link to this type

 t()

 View Source

 t() :: %Absinthe.Blueprint.Execution{
 acc: acc(),
 adapter: term(),
 context: term(),
 fields_cache: term(),
 fragments: term(),
 result: nil | Result.Object.t(),
 root_value: term(),
 schema: term(),
 validation_errors: [Absinthe.Phase.Error.t()]
}

 Anchor for this section

 Functions

 Link to this function

 get(bp_root, operation)

 View Source

 Link to this function

 get_result(execution, operation)

 View Source

 Link to this function

 get_result(map, _, _)

 View Source

 Link to this function

 update(resolution, result, context, acc)

 View Source

Absinthe.Complexity

Extra metadata passed to aid complexity analysis functions, describing the
current field’s environment.

 Anchor for this section

 Summary

 Types

 t()

	:definition - The Blueprint definition for this field.

	:context - The context passed to Absinthe.run.

	:root_value - The root value passed to Absinthe.run, if any.

	:schema - The current schema

 Anchor for this section

 Types

 Link to this type

 t()

 View Source

 t() :: %Absinthe.Complexity{
 context: map(),
 definition: Absinthe.Blueprint.node_t(),
 root_value: any(),
 schema: Absinthe.Schema.t()
}

	:definition - The Blueprint definition for this field.

	:context - The context passed to Absinthe.run.

	:root_value - The root value passed to Absinthe.run, if any.

	:schema - The current schema.

Absinthe.Resolution

Information about the current resolution. It is created by adding field specific
information to the more general %Absinthe.Blueprint.Execution{} struct.

In many ways like the %Conn{} from Plug, the %Absinthe.Resolution{} is the
piece of information that passed along from middleware to middleware as part of
resolution.

Contents

	:adapter - The adapter used for any name conversions.

	:definition - The Blueprint definition for this field.

	:context - The context passed to Absinthe.run.

	:root_value - The root value passed to Absinthe.run, if any.

	:parent_type - The parent type for the field.

	:private - Operates similarly to the :private key on a %Plug.Conn{}
 and is a place for libraries (and similar) to store their information.

	:schema - The current schema.

	:source - The resolved parent object; source of this field.

When a %Resolution{} is accessed via middleware, you may want to update the
context (e.g. to cache a dataloader instance or the result of an ecto query).
Updating the context can be done simply by using the map updating syntax (or
Map.put/4):

%{resolution | context: new_context}
OR
Map.put(resolution, :context, new_context)

To access the schema type for this field, see the definition.schema_node.

 Anchor for this section

 Summary

 Types

 arguments()

 The arguments that are passed from the schema. (e.g. id of the record to be
fetched)

 field_state()

 source()

 t()

 Functions

 call(res, resolution_function)

 call(function, args, info)

 call(resolution_function, parent, args, field_info)

 TODO: Deprecate

 path(map)

 Get the current path

 path_string(resolution)

 project(info)

 Get the child fields under the current field

 project(info, type)

 Get the child fields under the current field

 put_result(res, result)

 Handy function for applying user function result tuples to a resolution struct

 resolver_spec(fun)

 result_error(value, field, source, guess)

 Anchor for this section

 Types

 Link to this type

 arguments()

 View Source

 arguments() :: %{optional(atom()) => any()}

The arguments that are passed from the schema. (e.g. id of the record to be
fetched)

 Link to this type

 field_state()

 View Source

 field_state() :: :unresolved | :resolved | :suspended

 Link to this type

 source()

 View Source

 source() :: any()

 Link to this type

 t()

 View Source

 t() :: %Absinthe.Resolution{
 acc: %{optional(any()) => any()},
 adapter: Absinthe.Adapter.t(),
 arguments: arguments(),
 context: map(),
 definition: Absinthe.Blueprint.node_t(),
 errors: [term()],
 extensions: %{optional(any()) => any()},
 fields_cache: term(),
 fragments: [Absinthe.Blueprint.Document.Fragment.Named.t()],
 middleware: term(),
 parent_type: Absinthe.Type.t(),
 path: term(),
 private: term(),
 root_value: any(),
 schema: Absinthe.Schema.t(),
 source: source(),
 state: field_state(),
 value: term()
}

 Anchor for this section

 Functions

 Link to this function

 call(res, resolution_function)

 View Source

 Link to this function

 call(function, args, info)

 View Source

 Link to this function

 call(resolution_function, parent, args, field_info)

 View Source

TODO: Deprecate

 Link to this function

 path(map)

 View Source

Get the current path.

Each Absinthe.Resolution struct holds the current result path as a list of
blueprint nodes and indices. Usually however you don’t need the full AST list
and instead just want the path that will eventually end up in the result.

For that, use this function.

 Examples

Given some query:

{users { email }}

If you called this function inside a resolver on the users email field it
returns a value like:

resolve fn _, _, resolution ->
 Absinthe.Resolution.path(resolution) #=> ["users", 5, "email"]
end

In this case 5 is the 0 based index in the list of users the field is currently
at.

 Link to this function

 path_string(resolution)

 View Source

 Link to this function

 project(info)

 View Source

Get the child fields under the current field.

See project/2 for details.

 Link to this function

 project(info, type)

 View Source

Get the child fields under the current field.

 Example

Given a document like:

{ user { id name }}

field :user, :user do
 resolve fn _, info ->
 child_fields = Absinthe.Resolution.project(info) |> Enum.map(&(&1.name))
 # ...
 end
end

child_fields will be ["id", "name"].

It correctly handles fragments, so for example if you had the document:

{
 user {
 ... on User {
 id
 }
 ... on Named {
 name
 }
 }
}

you would still get a nice and simple child_fields that was ["id", "name"].

 Link to this function

 put_result(res, result)

 View Source

Handy function for applying user function result tuples to a resolution struct

User facing functions generally return one of several tuples like {:ok, val}
or {:error, reason}. This function handles applying those various tuples
to the resolution struct.

The resolution state is updated depending on the tuple returned. :ok and
:error tuples set the state to :resolved, whereas middleware tuples set it
to :unresolved.

This is useful for middleware that wants to handle user facing functions, but
does not want to duplicate this logic.

 Link to this function

 resolver_spec(fun)

 View Source

 Link to this function

 result_error(value, field, source, guess)

 View Source

Absinthe.Introspection

Introspection support.

You can introspect your schema using __schema, __type, and __typename,
as described in the specification.

Examples

Seeing the names of the types in the schema:

"""
{
 __schema {
 types {
 name
 }
 }
}
"""
|> Absinthe.run(MyApp.Schema)
{:ok,
 %{data: %{
 "__schema" => %{
 "types" => [
 %{"name" => "Boolean"},
 %{"name" => "Float"},
 %{"name" => "ID"},
 %{"name" => "Int"},
 %{"name" => "String"},
 ...
]
 }
 }}
}

Getting the name of the queried type:

"""
{
 profile {
 name
 __typename
 }
}
"""
|> Absinthe.run(MyApp.Schema)
{:ok,
 %{data: %{
 "profile" => %{
 "name" => "Joe",
 "__typename" => "Person"
 }
 }}
}

Getting the name of the fields for a named type:

"""
{
 __type(name: "Person") {
 fields {
 name
 type {
 kind
 name
 }
 }
 }
}
"""
|> Absinthe.run(MyApp.Schema)
{:ok,
 %{data: %{
 "__type" => %{
 "fields" => [
 %{
 "name" => "name",
 "type" => %{"kind" => "SCALAR", "name" => "String"}
 },
 %{
 "name" => "age",
 "type" => %{"kind" => "SCALAR", "name" => "Int"}
 },
]
 }
 }}
}

(Note that you may have to nest several depths of type/ofType, as
type information includes any wrapping layers of List
and/or NonNull.)

Absinthe.Test

 Anchor for this section

 Summary

 Functions

 prime(schema_name)

 Run the introspection query on a schema

 Anchor for this section

 Functions

 Link to this function

 prime(schema_name)

 View Source

Run the introspection query on a schema.

In your test_helper.exs file add

Absinthe.Test.prime(MyApp.Schema)

 Explanation

In the test environment mix loads code lazily, which means that it isn’t until
the first GraphQL query in your test suite runs that Absinthe’s code base is
actually loaded. Absinthe is a lot of code, and so this can take several
milliseconds. This can be a problem for tests using message passing that expect
messages to happen within a certain amount of time.

By running the introspection query on your schema this function will cause mix
to load the majority of the Absinthe code base.

Absinthe.Logger

Handles logging of Absinthe-specific events.

Variable filtering

Absinthe can filter out sensitive information like tokens and passwords
during logging. They are replaced by "[FILTERED]".

Use the :filter_variables configuration setting for this module.
For example:

config :absinthe, Absinthe.Logger,
 filter_variables: ["token", "password", "secret"]

With the configuration above, Absinthe will filter any variable whose name
includes the terms token, password, or secret. The match is case
sensitive.

The default is ["token", "password"].

Pipeline display

Absinthe can optionally display the list of pipeline phases for each processed
document when logging. To enable this feature, set the :pipeline
configuration option for this module:

config :absinthe, Absinthe.Logger,
 pipeline: true

The default is false.

Disabling

To disable Absinthe logging, set the :log configuration option to false:

config :absinthe,
 log: false

The default is true.

 Anchor for this section

 Summary

 Functions

 log_run(level, arg)

 Log a document being processed

 Anchor for this section

 Functions

 Link to this function

 log_run(level, arg)

 View Source

 log_run(
 level :: Logger.level(),
 {doc :: Absinthe.Pipeline.data_t(), schema :: Absinthe.Schema.t(),
 pipeline :: Absinthe.Pipeline.t(), opts :: Keyword.t()}
) :: :ok

Log a document being processed.

Absinthe.Utils

 Anchor for this section

 Summary

 Functions

 camelize(word, opts \\ [])

 Camelize a word, respecting underscore prefixes

 Anchor for this section

 Functions

 Link to this function

 camelize(word, opts \\ [])

 View Source

 camelize(binary(), Keyword.t()) :: binary()

Camelize a word, respecting underscore prefixes.

 Examples

With an uppercase first letter:

iex> camelize("foo_bar")
"FooBar"
iex> camelize("foo")
"Foo"
iex> camelize("__foo_bar")
"__FooBar"
iex> camelize("__foo")
"__Foo"
iex> camelize("_foo")
"_Foo"

With a lowercase first letter:

iex> camelize("foo_bar", lower: true)
"fooBar"
iex> camelize("foo", lower: true)
"foo"
iex> camelize("__foo_bar", lower: true)
"__fooBar"
iex> camelize("__foo", lower: true)
"__foo"
iex> camelize("_foo", lower: true)
"_foo"

Absinthe.Utils.Suggestion

 Anchor for this section

 Summary

 Functions

 sort_list(suggestions, target, threshold \\ 0.7)

 Sort a list of suggestions by Jaro distance to a target string,
supporting a cut-off threshold

 Anchor for this section

 Functions

 Link to this function

 sort_list(suggestions, target, threshold \\ 0.7)

 View Source

 sort_list([String.t()], String.t(), float()) :: [String.t()]

Sort a list of suggestions by Jaro distance to a target string,
supporting a cut-off threshold.

Absinthe.AnalysisError exception

An error during analysis.

Absinthe.ExecutionError exception

An error during execution.

Absinthe.Schema.Error exception

Exception raised when a schema is invalid

 Anchor for this section

 Summary

 Functions

 message(error)

 Callback implementation for Exception.message/1

 Anchor for this section

 Functions

 Link to this function

 message(error)

 View Source

Callback implementation for Exception.message/1.

Absinthe.Schema.Notation.Error exception

Exception raised when a schema is invalid

mix absinthe.schema.json

Generate a schema.json file

Usage

absinthe.schema.json [FILENAME] [OPTIONS]

 The JSON codec to be used needs to be included in your mix.exs dependencies. If using the default codec,
 see the Jason installation instructions.

Options

	--schema - The name of the Absinthe.Schema module defining the schema to be generated.
 Default: As configured for :absinthe :schema

	--json-codec - Codec to use to generate the JSON file (see Custom Codecs).
 Default: Jason

	--pretty - Whether to pretty-print.
 Default: false

Examples

Write to default path ./schema.json using the :schema configured for the :absinthe application:

$ mix absinthe.schema.json

Write to default path ./schema.json using the MySchema schema:

$ mix absinthe.schema.json --schema MySchema

Write to path /path/to/schema.json using the MySchema schema, with pretty-printing:

$ mix absinthe.schema.json --schema MySchema --pretty /path/to/schema.json

Write to default path ./schema.json using the MySchema schema and a custom JSON codec, MyCodec:

$ mix absinthe.schema.json --schema MySchema --json-codec MyCodec

Custom Codecs

Any module that provides encode!/2 can be used as a custom codec:

encode!(value, options)

	value will be provided as a Map containing the generated schema.

	options will be a keyword list with a :pretty boolean, indicating whether the user requested pretty-printing.

The function should return a string to be written to the output file.

 Anchor for this section

 Summary

 Functions

 run(argv)

 Callback implementation for Mix.Task.run/1, which receives a list of command-line args

 Anchor for this section

 Functions

 Link to this function

 run(argv)

 View Source

 run(argv :: [binary()]) :: any()

Callback implementation for Mix.Task.run/1, which receives a list of command-line args.

 !function(e){function n(t){if(a[t])return a[t].exports;var i=a[t]={exports:{},id:t,loaded:!1};return e[t].call(i.exports,i,i.exports,n),i.loaded=!0,i.exports}var a={};return n.m=e,n.c=a,n.p="",n(0)}([function(e,n,a){"use strict";var t=a(1)["default"],i=a(2),r=t(i),s=a(3);(0,s.initialize)(),r["default"].initHighlightingOnLoad()},function(e,n){"use strict";n["default"]=function(e){return e&&e.__esModule?e:{"default":e}},n.__esModule=!0},function(e,n,a){!function(e){"object"==typeof window&&window||"object"==typeof self&&self;e(n)}(function(e){function n(e){return e.replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">")}function a(e){return e.nodeName.toLowerCase()}function t(e,n){var a=e&&e.exec(n);return a&&0===a.index}function i(e){return O.test(e)}function r(e){var n,a,t,r,s=e.className+" ";if(s+=e.parentNode?e.parentNode.className:"",a=M.exec(s))return E(a[1])?a[1]:"no-highlight";for(s=s.split(/\s+/),n=0,t=s.length;n<t;n++)if(r=s[n],i(r)||E(r))return r}function s(e){var n,a={},t=Array.prototype.slice.call(arguments,1);for(n in e)a[n]=e[n];return t.forEach(function(e){for(n in e)a[n]=e[n]}),a}function o(e){var n=[];return function t(e,i){for(var r=e.firstChild;r;r=r.nextSibling)3===r.nodeType?i+=r.nodeValue.length:1===r.nodeType&&(n.push({event:"start",offset:i,node:r}),i=t(r,i),a(r).match(/br|hr|img|input/)||n.push({event:"stop",offset:i,node:r}));return i}(e,0),n}function l(e,t,i){function r(){return e.length&&t.length?e[0].offset!==t[0].offset?e[0].offset<t[0].offset?e:t:"start"===t[0].event?e:t:e.length?e:t}function s(e){function t(e){return" "+e.nodeName+'="'+n(e.value).replace('"',""")+'"'}d+="<"+a(e)+w.map.call(e.attributes,t).join("")+">"}function o(e){d+="</"+a(e)+">"}function l(e){("start"===e.event?s:o)(e.node)}for(var c=0,d="",u=[];e.length||t.length;){var g=r();if(d+=n(i.substring(c,g[0].offset)),c=g[0].offset,g===e){u.reverse().forEach(o);do l(g.splice(0,1)[0]),g=r();while(g===e&&g.length&&g[0].offset===c);u.reverse().forEach(s)}else"start"===g[0].event?u.push(g[0].node):u.pop(),l(g.splice(0,1)[0])}return d+n(i.substr(c))}function c(e){return e.variants&&!e.cached_variants&&(e.cached_variants=e.variants.map(function(n){return s(e,{variants:null},n)})),e.cached_variants||e.endsWithParent&&[s(e)]||[e]}function d(e){function n(e){return e&&e.source||e}function a(a,t){return new RegExp(n(a),"m"+(e.case_insensitive?"i":"")+(t?"g":""))}function t(i,r){if(!i.compiled){if(i.compiled=!0,i.keywords=i.keywords||i.beginKeywords,i.keywords){var s={},o=function(n,a){e.case_insensitive&&(a=a.toLowerCase()),a.split(" ").forEach(function(e){var a=e.split("|");s[a[0]]=[n,a[1]?Number(a[1]):1]})};"string"==typeof i.keywords?o("keyword",i.keywords):x(i.keywords).forEach(function(e){o(e,i.keywords[e])}),i.keywords=s}i.lexemesRe=a(i.lexemes||/\w+/,!0),r&&(i.beginKeywords&&(i.begin="\\b("+i.beginKeywords.split(" ").join("|")+")\\b"),i.begin||(i.begin=/\B|\b/),i.beginRe=a(i.begin),i.end||i.endsWithParent||(i.end=/\B|\b/),i.end&&(i.endRe=a(i.end)),i.terminator_end=n(i.end)||"",i.endsWithParent&&r.terminator_end&&(i.terminator_end+=(i.end?"|":"")+r.terminator_end)),i.illegal&&(i.illegalRe=a(i.illegal)),null==i.relevance&&(i.relevance=1),i.contains||(i.contains=[]),i.contains=Array.prototype.concat.apply([],i.contains.map(function(e){return c("self"===e?i:e)})),i.contains.forEach(function(e){t(e,i)}),i.starts&&t(i.starts,r);var l=i.contains.map(function(e){return e.beginKeywords?"\\.?("+e.begin+")\\.?":e.begin}).concat([i.terminator_end,i.illegal]).map(n).filter(Boolean);i.terminators=l.length?a(l.join("|"),!0):{exec:function(){return null}}}}t(e)}function u(e,a,i,r){function s(e,n){var a,i;for(a=0,i=n.contains.length;a<i;a++)if(t(n.contains[a].beginRe,e))return n.contains[a]}function o(e,n){if(t(e.endRe,n)){for(;e.endsParent&&e.parent;)e=e.parent;return e}if(e.endsWithParent)return o(e.parent,n)}function l(e,n){return!i&&t(n.illegalRe,e)}function c(e,n){var a=v.case_insensitive?n[0].toLowerCase():n[0];return e.keywords.hasOwnProperty(a)&&e.keywords[a]}function m(e,n,a,t){var i=t?"":S.classPrefix,r='',r+n+s}function p(){var e,a,t,i;if(!w.keywords)return n(O);for(i="",a=0,w.lexemesRe.lastIndex=0,t=w.lexemesRe.exec(O);t;)i+=n(O.substring(a,t.index)),e=c(w,t),e?(M+=e[1],i+=m(e[0],n(t[0]))):i+=n(t[0]),a=w.lexemesRe.lastIndex,t=w.lexemesRe.exec(O);return i+n(O.substr(a))}function b(){var e="string"==typeof w.subLanguage;if(e&&!N[w.subLanguage])return n(O);var a=e?u(w.subLanguage,O,!0,x[w.subLanguage]):g(O,w.subLanguage.length?w.subLanguage:void 0);return w.relevance>0&&(M+=a.relevance),e&&(x[w.subLanguage]=a.top),m(a.language,a.value,!1,!0)}function _(){k+=null!=w.subLanguage?b():p(),O=""}function f(e){k+=e.className?m(e.className,"",!0):"",w=Object.create(e,{parent:{value:w}})}function h(e,n){if(O+=e,null==n)return _(),0;var a=s(n,w);if(a)return a.skip?O+=n:(a.excludeBegin&&(O+=n),_(),a.returnBegin||a.excludeBegin||(O=n)),f(a,n),a.returnBegin?0:n.length;var t=o(w,n);if(t){var i=w;i.skip?O+=n:(i.returnEnd||i.excludeEnd||(O+=n),_(),i.excludeEnd&&(O=n));do w.className&&(k+=A),w.skip||(M+=w.relevance),w=w.parent;while(w!==t.parent);return t.starts&&f(t.starts,""),i.returnEnd?0:n.length}if(l(n,w))throw new Error('Illegal lexeme "'+n+'" for mode "'+(w.className||"<unnamed>")+'"');return O+=n,n.length||1}var v=E(e);if(!v)throw new Error('Unknown language: "'+e+'"');d(v);var y,w=r||v,x={},k="";for(y=w;y!==v;y=y.parent)y.className&&(k=m(y.className,"",!0)+k);var O="",M=0;try{for(var R,C,T=0;;){if(w.terminators.lastIndex=T,R=w.terminators.exec(a),!R)break;C=h(a.substring(T,R.index),R[0]),T=R.index+C}for(h(a.substr(T)),y=w;y.parent;y=y.parent)y.className&&(k+=A);return{relevance:M,value:k,language:e,top:w}}catch(D){if(D.message&&D.message.indexOf("Illegal")!==-1)return{relevance:0,value:n(a)};throw D}}function g(e,a){a=a||S.languages||x(N);var t={relevance:0,value:n(e)},i=t;return a.filter(E).forEach(function(n){var a=u(n,e,!1);a.language=n,a.relevance>i.relevance&&(i=a),a.relevance>t.relevance&&(i=t,t=a)}),i.language&&(t.second_best=i),t}function m(e){return S.tabReplace||S.useBR?e.replace(R,function(e,n){return S.useBR&&"\n"===e?"
":S.tabReplace?n.replace(/\t/g,S.tabReplace):""}):e}function p(e,n,a){var t=n?k[n]:a,i=[e.trim()];return e.match(/\bhljs\b/)||i.push("hljs"),e.indexOf(t)===-1&&i.push(t),i.join(" ").trim()}function b(e){var n,a,t,s,c,d=r(e);i(d)||(S.useBR?(n=document.createElementNS("http://www.w3.org/1999/xhtml","div"),n.innerHTML=e.innerHTML.replace(/\n/g,"").replace(/<br[\/]*>/g,"\n")):n=e,c=n.textContent,t=d?u(d,c,!0):g(c),a=o(n),a.length&&(s=document.createElementNS("http://www.w3.org/1999/xhtml","div"),s.innerHTML=t.value,t.value=l(a,o(s),c)),t.value=m(t.value),e.innerHTML=t.value,e.className=p(e.className,d,t.language),e.result={language:t.language,re:t.relevance},t.second_best&&(e.second_best={language:t.second_best.language,re:t.second_best.relevance}))}function _(e){S=s(S,e)}function f(){if(!f.called){f.called=!0;var e=document.querySelectorAll("pre code");w.forEach.call(e,b)}}function h(){addEventListener("DOMContentLoaded",f,!1),addEventListener("load",f,!1)}function v(n,a){var t=N[n]=a(e);t.aliases&&t.aliases.forEach(function(e){k[e]=n})}function y(){return x(N)}function E(e){return e=(e||"").toLowerCase(),N[e]||N[k[e]]}var w=[],x=Object.keys,N={},k={},O=/^(no-?highlight|plain|text)$/i,M=/\blang(?:uage)?-([\w-]+)\b/i,R=/((^(<[^>]+>|\t|)+|(?:\n)))/gm,A="",S={classPrefix:"hljs-",tabReplace:null,useBR:!1,languages:void 0};return e.highlight=u,e.highlightAuto=g,e.fixMarkup=m,e.highlightBlock=b,e.configure=_,e.initHighlighting=f,e.initHighlightingOnLoad=h,e.registerLanguage=v,e.listLanguages=y,e.getLanguage=E,e.inherit=s,e.IDENT_RE="[a-zA-Z]\\w*",e.UNDERSCORE_IDENT_RE="[a-zA-Z_]\\w*",e.NUMBER_RE="\\b\\d+(\\.\\d+)?",e.C_NUMBER_RE="(-?)(\\b0[xX][a-fA-F0-9]+|(\\b\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)",e.BINARY_NUMBER_RE="\\b(0b[01]+)",e.RE_STARTERS_RE="!|!=|!==|%|%=|&|&&|&=|*|*=|\\+|\\+=|,|-|-=|/=|/|:|;|<<|<<=|<=|<|===|==|=|>>>=|>>=|>=|>>>|>>|>|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~",e.BACKSLASH_ESCAPE={begin:"\\\\[\\s\\S]",relevance:0},e.APOS_STRING_MODE={className:"string",begin:"'",end:"'",illegal:"\\n",contains:[e.BACKSLASH_ESCAPE]},e.QUOTE_STRING_MODE={className:"string",begin:'"',end:'"',illegal:"\\n",contains:[e.BACKSLASH_ESCAPE]},e.PHRASAL_WORDS_MODE={begin:/\b(a|an|the|are|I'm|isn't|don't|doesn't|won't|but|just|should|pretty|simply|enough|gonna|going|wtf|so|such|will|you|your|they|like|more)\b/},e.COMMENT=function(n,a,t){var i=e.inherit({className:"comment",begin:n,end:a,contains:[]},t||{});return i.contains.push(e.PHRASAL_WORDS_MODE),i.contains.push({className:"doctag",begin:"(?:TODO|FIXME|NOTE|BUG|XXX):",relevance:0}),i},e.C_LINE_COMMENT_MODE=e.COMMENT("//","$"),e.C_BLOCK_COMMENT_MODE=e.COMMENT("/*","*/"),e.HASH_COMMENT_MODE=e.COMMENT("#","$"),e.NUMBER_MODE={className:"number",begin:e.NUMBER_RE,relevance:0},e.C_NUMBER_MODE={className:"number",begin:e.C_NUMBER_RE,relevance:0},e.BINARY_NUMBER_MODE={className:"number",begin:e.BINARY_NUMBER_RE,relevance:0},e.CSS_NUMBER_MODE={className:"number",begin:e.NUMBER_RE+"(%|em|ex|ch|rem|vw|vh|vmin|vmax|cm|mm|in|pt|pc|px|deg|grad|rad|turn|s|ms|Hz|kHz|dpi|dpcm|dppx)?",relevance:0},e.REGEXP_MODE={className:"regexp",begin:/\//,end:/\/[gimuy]*/,illegal:/\n/,contains:[e.BACKSLASH_ESCAPE,{begin:/\[/,end:/\]/,relevance:0,contains:[e.BACKSLASH_ESCAPE]}]},e.TITLE_MODE={className:"title",begin:e.IDENT_RE,relevance:0},e.UNDERSCORE_TITLE_MODE={className:"title",begin:e.UNDERSCORE_IDENT_RE,relevance:0},e.METHOD_GUARD={begin:"\\.\\s*"+e.UNDERSCORE_IDENT_RE,relevance:0},e.registerLanguage("bash",function(e){var n={className:"variable",variants:[{begin:/\$[\w\d#@][\w\d_]*/},{begin:/\$\{(.*?)}/}]},a={className:"string",begin:/"/,end:/"/,contains:[e.BACKSLASH_ESCAPE,n,{className:"variable",begin:/\$\(/,end:/\)/,contains:[e.BACKSLASH_ESCAPE]}]},t={className:"string",begin:/'/,end:/'/};return{aliases:["sh","zsh"],lexemes:/\b-?[a-z\._]+\b/,keywords:{keyword:"if then else elif fi for while in do done case esac function",literal:"true false",built_in:"break cd continue eval exec exit export getopts hash pwd readonly return shift test times trap umask unset alias bind builtin caller command declare echo enable help let local logout mapfile printf read readarray source type typeset ulimit unalias set shopt autoload bg bindkey bye cap chdir clone comparguments compcall compctl compdescribe compfiles compgroups compquote comptags comptry compvalues dirs disable disown echotc echoti emulate fc fg float functions getcap getln history integer jobs kill limit log noglob popd print pushd pushln rehash sched setcap setopt stat suspend ttyctl unfunction unhash unlimit unsetopt vared wait whence where which zcompile zformat zftp zle zmodload zparseopts zprof zpty zregexparse zsocket zstyle ztcp",_:"-ne -eq -lt -gt -f -d -e -s -l -a"},contains:[{className:"meta",begin:/^#![^\n]+sh\s*$/,relevance:10},{className:"function",begin:/\w[\w\d_]*\s*\(\s*\)\s*\{/,returnBegin:!0,contains:[e.inherit(e.TITLE_MODE,{begin:/\w[\w\d_]*/})],relevance:0},e.HASH_COMMENT_MODE,a,t,n]}}),e.registerLanguage("css",function(e){var n="[a-zA-Z-][a-zA-Z0-9_-]*",a={begin:/[A-Z_\.\-]+\s*:/,returnBegin:!0,end:";",endsWithParent:!0,contains:[{className:"attribute",begin:/\S/,end:":",excludeEnd:!0,starts:{endsWithParent:!0,excludeEnd:!0,contains:[{begin:/[\w-]+\(/,returnBegin:!0,contains:[{className:"built_in",begin:/[\w-]+/},{begin:/\(/,end:/\)/,contains:[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE]}]},e.CSS_NUMBER_MODE,e.QUOTE_STRING_MODE,e.APOS_STRING_MODE,e.C_BLOCK_COMMENT_MODE,{className:"number",begin:"#[0-9A-Fa-f]+"},{className:"meta",begin:"!important"}]}}]};return{case_insensitive:!0,illegal:/[=\/|'\$]/,contains:[e.C_BLOCK_COMMENT_MODE,{className:"selector-id",begin:/#[A-Za-z0-9_-]+/},{className:"selector-class",begin:/\.[A-Za-z0-9_-]+/},{className:"selector-attr",begin:/\[/,end:/\]/,illegal:"$"},{className:"selector-pseudo",begin:/:(:)?[a-zA-Z0-9_\-\+\(\)"'.]+/},{begin:"@(font-face|page)",lexemes:"[a-z-]+",keywords:"font-face page"},{begin:"@",end:"[{;]",illegal:/:/,contains:[{className:"keyword",begin:/\w+/},{begin:/\s/,endsWithParent:!0,excludeEnd:!0,relevance:0,contains:[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.CSS_NUMBER_MODE]}]},{className:"selector-tag",begin:n,relevance:0},{begin:"{",end:"}",illegal:/\S/,contains:[e.C_BLOCK_COMMENT_MODE,a]}]}}),e.registerLanguage("diff",function(e){return{aliases:["patch"],contains:[{className:"meta",relevance:10,variants:[{begin:/^@@ +\-\d+,\d+ +\+\d+,\d+ +@@$/},{begin:/^*** +\d+,\d+ +****$/},{begin:/^\-\-\- +\d+,\d+ +\-\-\-\-$/}]},{className:"comment",variants:[{begin:/Index: /,end:/$/},{begin:/={3,}/,end:/$/},{begin:/^\-{3}/,end:/$/},{begin:/^*{3} /,end:/$/},{begin:/^\+{3}/,end:/$/},{begin:/*{5}/,end:/*{5}$/}]},{className:"addition",begin:"^\\+",end:"$"},{className:"deletion",begin:"^\\-",end:"$"},{className:"addition",begin:"^\\!",end:"$"}]}}),e.registerLanguage("erlang-repl",function(e){return{keywords:{built_in:"spawn spawn_link self",keyword:"after and andalso|10 band begin bnot bor bsl bsr bxor case catch cond div end fun if let not of or orelse|10 query receive rem try when xor"},contains:[{className:"meta",begin:"^[0-9]+> ",relevance:10},e.COMMENT("%","$"),{className:"number",begin:"\\b(\\d+#[a-fA-F0-9]+|\\d+(\\.\\d+)?([eE][-+]?\\d+)?)",relevance:0},e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,{begin:"\\?(::)?([A-Z]\\w*(::)?)+"},{begin:"->"},{begin:"ok"},{begin:"!"},{begin:"(\\b[a-z'][a-zA-Z0-9_']*:[a-z'][a-zA-Z0-9_']*)|(\\b[a-z'][a-zA-Z0-9_']*)",relevance:0},{begin:"[A-Z][a-zA-Z0-9_']*",relevance:0}]}}),e.registerLanguage("erlang",function(e){var n="[a-z'][a-zA-Z0-9_']*",a="("+n+":"+n+"|"+n+")",t={keyword:"after and andalso|10 band begin bnot bor bsl bzr bxor case catch cond div end fun if let not of orelse|10 query receive rem try when xor",literal:"false true"},i=e.COMMENT("%","$"),r={className:"number",begin:"\\b(\\d+#[a-fA-F0-9]+|\\d+(\\.\\d+)?([eE][-+]?\\d+)?)",relevance:0},s={begin:"fun\\s+"+n+"/\\d+"},o={begin:a+"\\(",end:"\\)",returnBegin:!0,relevance:0,contains:[{begin:a,relevance:0},{begin:"\\(",end:"\\)",endsWithParent:!0,returnEnd:!0,relevance:0}]},l={begin:"{",end:"}",relevance:0},c={begin:"\\b_([A-Z][A-Za-z0-9_]*)?",relevance:0},d={begin:"[A-Z][a-zA-Z0-9_]*",relevance:0},u={begin:"#"+e.UNDERSCORE_IDENT_RE,relevance:0,returnBegin:!0,contains:[{begin:"#"+e.UNDERSCORE_IDENT_RE,relevance:0},{begin:"{",end:"}",relevance:0}]},g={beginKeywords:"fun receive if try case",end:"end",keywords:t};g.contains=[i,s,e.inherit(e.APOS_STRING_MODE,{className:""}),g,o,e.QUOTE_STRING_MODE,r,l,c,d,u];var m=[i,s,g,o,e.QUOTE_STRING_MODE,r,l,c,d,u];o.contains[1].contains=m,l.contains=m,u.contains[1].contains=m;var p={className:"params",begin:"\\(",end:"\\)",contains:m};return{aliases:["erl"],keywords:t,illegal:"(</|*=|\\+=|-=|/*|*/|\\(*|*\\))",contains:[{className:"function",begin:"^"+n+"\\s*\\(",end:"->",returnBegin:!0,illegal:"\\(|#|//|/*|\\\\|:|;",contains:[p,e.inherit(e.TITLE_MODE,{begin:n})],starts:{end:";|\\.",keywords:t,contains:m}},i,{begin:"^-",end:"\\.",relevance:0,excludeEnd:!0,returnBegin:!0,lexemes:"-"+e.IDENT_RE,keywords:"-module -record -undef -export -ifdef -ifndef -author -copyright -doc -vsn -import -include -include_lib -compile -define -else -endif -file -behaviour -behavior -spec",contains:[p]},r,e.QUOTE_STRING_MODE,u,c,d,l,{begin:/\.$/}]}}),e.registerLanguage("http",function(e){var n="HTTP/[0-9\\.]+";return{aliases:["https"],illegal:"\\S",contains:[{begin:"^"+n,end:"$",contains:[{className:"number",begin:"\\b\\d{3}\\b"}]},{begin:"^[A-Z]+ (.*?) "+n+"$",returnBegin:!0,end:"$",contains:[{className:"string",begin:" ",end:" ",excludeBegin:!0,excludeEnd:!0},{begin:n},{className:"keyword",begin:"[A-Z]+"}]},{className:"attribute",begin:"^\\w",end:": ",excludeEnd:!0,illegal:"\\n|\\s|=",starts:{end:"$",relevance:0}},{begin:"\\n\\n",starts:{subLanguage:[],endsWithParent:!0}}]}}),e.registerLanguage("javascript",function(e){var n="[A-Za-z$_][0-9A-Za-z$_]*",a={keyword:"in of if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const export super debugger as async await static import from as",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document Symbol Set Map WeakSet WeakMap Proxy Reflect Promise"},t={className:"number",variants:[{begin:"\\b(0[bB][01]+)"},{begin:"\\b(0[oO][0-7]+)"},{begin:e.C_NUMBER_RE}],relevance:0},i={className:"subst",begin:"\\$\\{",end:"\\}",keywords:a,contains:[]},r={className:"string",begin:"`",end:"`",contains:[e.BACKSLASH_ESCAPE,i]};i.contains=[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,r,t,e.REGEXP_MODE];var s=i.contains.concat([e.C_BLOCK_COMMENT_MODE,e.C_LINE_COMMENT_MODE]);return{aliases:["js","jsx"],keywords:a,contains:[{className:"meta",relevance:10,begin:/^\s*['"]use (strict|asm)['"]/},{className:"meta",begin:/^#!/,end:/$/},e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,r,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,t,{begin:/[{,]\s*/,relevance:0,contains:[{begin:n+"\\s*:",returnBegin:!0,relevance:0,contains:[{className:"attr",begin:n,relevance:0}]}]},{begin:"("+e.RE_STARTERS_RE+"|\\b(case|return|throw)\\b)\\s*",keywords:"return throw case",contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.REGEXP_MODE,{className:"function",begin:"(\\(.*?\\)|"+n+")\\s*=>",returnBegin:!0,end:"\\s*=>",contains:[{className:"params",variants:[{begin:n},{begin:/\(\s*\)/},{begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,keywords:a,contains:s}]}]},{begin:/</,end:/(\/\w+|\w+\/)>/,subLanguage:"xml",contains:[{begin:/<\w+\s*\/>/,skip:!0},{begin:/<\w+/,end:/(\/\w+|\w+\/)>/,skip:!0,contains:[{begin:/<\w+\s*\/>/,skip:!0},"self"]}]}],relevance:0},{className:"function",beginKeywords:"function",end:/\{/,excludeEnd:!0,contains:[e.inherit(e.TITLE_MODE,{begin:n}),{className:"params",begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,contains:s}],illegal:/\[|%/},{begin:/\$[(.]/},e.METHOD_GUARD,{className:"class",beginKeywords:"class",end:/[{;=]/,excludeEnd:!0,illegal:/[:"\[\]]/,contains:[{beginKeywords:"extends"},e.UNDERSCORE_TITLE_MODE]},{beginKeywords:"constructor",end:/\{/,excludeEnd:!0}],illegal:/#(?!!)/}}),e.registerLanguage("json",function(e){var n={literal:"true false null"},a=[e.QUOTE_STRING_MODE,e.C_NUMBER_MODE],t={end:",",endsWithParent:!0,excludeEnd:!0,contains:a,keywords:n},i={begin:"{",end:"}",contains:[{className:"attr",begin:/"/,end:/"/,contains:[e.BACKSLASH_ESCAPE],illegal:"\\n"},e.inherit(t,{begin:/:/})],illegal:"\\S"},r={begin:"\\[",end:"\\]",contains:[e.inherit(t)],illegal:"\\S"};return a.splice(a.length,0,i,r),{contains:a,keywords:n,illegal:"\\S"}}),e.registerLanguage("xml",function(e){var n="[A-Za-z0-9\\._:-]+",a={endsWithParent:!0,illegal:/</,relevance:0,contains:[{className:"attr",begin:n,relevance:0},{begin:/=\s*/,relevance:0,contains:[{className:"string",endsParent:!0,variants:[{begin:/"/,end:/"/},{begin:/'/,end:/'/},{begin:/[^\s"'=<>`]+/}]}]}]};return{aliases:["html","xhtml","rss","atom","xjb","xsd","xsl","plist"],case_insensitive:!0,contains:[{className:"meta",begin:"<!DOCTYPE",end:">",relevance:10,contains:[{begin:"\\[",end:"\\]"}]},e.COMMENT("<!--","-->",{relevance:10}),{begin:"<\\!\\[CDATA\\[",end:"\\]\\]>",relevance:10},{begin:/<\?(php)?/,end:/\?>/,subLanguage:"php",contains:[{begin:"/*",end:"*/",skip:!0}]},{className:"tag",begin:"<style(?=\\s|>|$)",end:">",keywords:{name:"style"},contains:[a],starts:{end:"</style>",returnEnd:!0,subLanguage:["css","xml"]}},{className:"tag",begin:"<script(?=\\s|>|$)",end:">",keywords:{name:"script"},contains:[a],starts:{end:"</script>",returnEnd:!0,subLanguage:["actionscript","javascript","handlebars","xml"]}},{className:"meta",variants:[{begin:/<\?xml/,end:/\?>/,relevance:10},{begin:/<\?\w+/,end:/\?>/}]},{className:"tag",begin:"</?",end:"/?>",contains:[{className:"name",begin:/[^\/><\s]+/,relevance:0},a]}]}}),e.registerLanguage("markdown",function(e){return{aliases:["md","mkdown","mkd"],contains:[{className:"section",variants:[{begin:"^#{1,6}",end:"$"},{begin:"^.+?\\n[=-]{2,}$"}]},{begin:"<",end:">",subLanguage:"xml",relevance:0},{className:"bullet",begin:"^([*+-]|(\\d+\\.))\\s+"},{className:"strong",begin:"[*_]{2}.+?[*_]{2}"},{className:"emphasis",variants:[{begin:"*.+?*"},{begin:"_.+?_",relevance:0}]},{className:"quote",begin:"^>\\s+",end:"$"},{className:"code",variants:[{begin:"^```w*s*$",end:"^```s*$"},{begin:"`.+?`"},{begin:"^({4}|\t)",end:"$",relevance:0}]},{begin:"^[-*]{3,}",end:"$"},{begin:"\\[.+?\\][\\(\\[].*?[\\)\\]]",returnBegin:!0,contains:[{className:"string",begin:"\\[",end:"\\]",excludeBegin:!0,returnEnd:!0,relevance:0},{className:"link",begin:"\\]\\(",end:"\\)",excludeBegin:!0,excludeEnd:!0},{className:"symbol",begin:"\\]\\[",end:"\\]",excludeBegin:!0,excludeEnd:!0}],relevance:10},{begin:/^\[[^\n]+\]:/,returnBegin:!0,contains:[{className:"symbol",begin:/\[/,end:/\]/,excludeBegin:!0,excludeEnd:!0},{className:"link",begin:/:\s*/,end:/$/,excludeBegin:!0}]}]}}),e.registerLanguage("sql",function(e){var n=e.COMMENT("--","$");return{case_insensitive:!0,illegal:/[<>{}*#]/,contains:[{beginKeywords:"begin end start commit rollback savepoint lock alter create drop rename call delete do handler insert load replace select truncate update set show pragma grant merge describe use explain help declare prepare execute deallocate release unlock purge reset change stop analyze cache flush optimize repair kill install uninstall checksum restore check backup revoke comment",end:/;/,endsWithParent:!0,lexemes:/[\w\.]+/,keywords:{keyword:"abort abs absolute acc acce accep accept access accessed accessible account acos action activate add addtime admin administer advanced advise aes_decrypt aes_encrypt after agent aggregate ali alia alias allocate allow alter always analyze ancillary and any anydata anydataset anyschema anytype apply archive archived archivelog are as asc ascii asin assembly assertion associate asynchronous at atan atn2 attr attri attrib attribu attribut attribute attributes audit authenticated authentication authid authors auto autoallocate autodblink autoextend automatic availability avg backup badfile basicfile before begin beginning benchmark between bfile bfile_base big bigfile bin binary_double binary_float binlog bit_and bit_count bit_length bit_or bit_xor bitmap blob_base block blocksize body both bound buffer_cache buffer_pool build bulk by byte byteordermark bytes cache caching call calling cancel capacity cascade cascaded case cast catalog category ceil ceiling chain change changed char_base char_length character_length characters characterset charindex charset charsetform charsetid check checksum checksum_agg child choose chr chunk class cleanup clear client clob clob_base clone close cluster_id cluster_probability cluster_set clustering coalesce coercibility col collate collation collect colu colum column column_value columns columns_updated comment commit compact compatibility compiled complete composite_limit compound compress compute concat concat_ws concurrent confirm conn connec connect connect_by_iscycle connect_by_isleaf connect_by_root connect_time connection consider consistent constant constraint constraints constructor container content contents context contributors controlfile conv convert convert_tz corr corr_k corr_s corresponding corruption cos cost count count_big counted covar_pop covar_samp cpu_per_call cpu_per_session crc32 create creation critical cross cube cume_dist curdate current current_date current_time current_timestamp current_user cursor curtime customdatum cycle data database databases datafile datafiles datalength date_add date_cache date_format date_sub dateadd datediff datefromparts datename datepart datetime2fromparts day day_to_second dayname dayofmonth dayofweek dayofyear days db_role_change dbtimezone ddl deallocate declare decode decompose decrement decrypt deduplicate def defa defau defaul default defaults deferred defi defin define degrees delayed delegate delete delete_all delimited demand dense_rank depth dequeue des_decrypt des_encrypt des_key_file desc descr descri describ describe descriptor deterministic diagnostics difference dimension direct_load directory disable disable_all disallow disassociate discardfile disconnect diskgroup distinct distinctrow distribute distributed div do document domain dotnet double downgrade drop dumpfile duplicate duration each edition editionable editions element ellipsis else elsif elt empty enable enable_all enclosed encode encoding encrypt end end-exec endian enforced engine engines enqueue enterprise entityescaping eomonth error errors escaped evalname evaluate event eventdata events except exception exceptions exchange exclude excluding execu execut execute exempt exists exit exp expire explain export export_set extended extent external external_1 external_2 externally extract failed failed_login_attempts failover failure far fast feature_set feature_value fetch field fields file file_name_convert filesystem_like_logging final finish first first_value fixed flash_cache flashback floor flush following follows for forall force form forma format found found_rows freelist freelists freepools fresh from from_base64 from_days ftp full function general generated get get_format get_lock getdate getutcdate global global_name globally go goto grant grants greatest group group_concat group_id grouping grouping_id groups gtid_subtract guarantee guard handler hash hashkeys having hea head headi headin heading heap help hex hierarchy high high_priority hosts hour http id ident_current ident_incr ident_seed identified identity idle_time if ifnull ignore iif ilike ilm immediate import in include including increment index indexes indexing indextype indicator indices inet6_aton inet6_ntoa inet_aton inet_ntoa infile initial initialized initially initrans inmemory inner innodb input insert install instance instantiable instr interface interleaved intersect into invalidate invisible is is_free_lock is_ipv4 is_ipv4_compat is_not is_not_null is_used_lock isdate isnull isolation iterate java join json json_exists keep keep_duplicates key keys kill language large last last_day last_insert_id last_value lax lcase lead leading least leaves left len lenght length less level levels library like like2 like4 likec limit lines link list listagg little ln load load_file lob lobs local localtime localtimestamp locate locator lock locked log log10 log2 logfile logfiles logging logical logical_reads_per_call logoff logon logs long loop low low_priority lower lpad lrtrim ltrim main make_set makedate maketime managed management manual map mapping mask master master_pos_wait match matched materialized max maxextents maximize maxinstances maxlen maxlogfiles maxloghistory maxlogmembers maxsize maxtrans md5 measures median medium member memcompress memory merge microsecond mid migration min minextents minimum mining minus minute minvalue missing mod mode model modification modify module monitoring month months mount move movement multiset mutex name name_const names nan national native natural nav nchar nclob nested never new newline next nextval no no_write_to_binlog noarchivelog noaudit nobadfile nocheck nocompress nocopy nocycle nodelay nodiscardfile noentityescaping noguarantee nokeep nologfile nomapping nomaxvalue nominimize nominvalue nomonitoring none noneditionable nonschema noorder nopr nopro noprom nopromp noprompt norely noresetlogs noreverse normal norowdependencies noschemacheck noswitch not nothing notice notrim novalidate now nowait nth_value nullif nulls num numb numbe nvarchar nvarchar2 object ocicoll ocidate ocidatetime ociduration ociinterval ociloblocator ocinumber ociref ocirefcursor ocirowid ocistring ocitype oct octet_length of off offline offset oid oidindex old on online only opaque open operations operator optimal optimize option optionally or oracle oracle_date oradata ord ordaudio orddicom orddoc order ordimage ordinality ordvideo organization orlany orlvary out outer outfile outline output over overflow overriding package pad parallel parallel_enable parameters parent parse partial partition partitions pascal passing password password_grace_time password_lock_time password_reuse_max password_reuse_time password_verify_function patch path patindex pctincrease pctthreshold pctused pctversion percent percent_rank percentile_cont percentile_disc performance period period_add period_diff permanent physical pi pipe pipelined pivot pluggable plugin policy position post_transaction pow power pragma prebuilt precedes preceding precision prediction prediction_cost prediction_details prediction_probability prediction_set prepare present preserve prior priority private private_sga privileges procedural procedure procedure_analyze processlist profiles project prompt protection public publishingservername purge quarter query quick quiesce quota quotename radians raise rand range rank raw read reads readsize rebuild record records recover recovery recursive recycle redo reduced ref reference referenced references referencing refresh regexp_like register regr_avgx regr_avgy regr_count regr_intercept regr_r2 regr_slope regr_sxx regr_sxy reject rekey relational relative relaylog release release_lock relies_on relocate rely rem remainder rename repair repeat replace replicate replication required reset resetlogs resize resource respect restore restricted result result_cache resumable resume retention return returning returns reuse reverse revoke right rlike role roles rollback rolling rollup round row row_count rowdependencies rowid rownum rows rtrim rules safe salt sample save savepoint sb1 sb2 sb4 scan schema schemacheck scn scope scroll sdo_georaster sdo_topo_geometry search sec_to_time second section securefile security seed segment select self sequence sequential serializable server servererror session session_user sessions_per_user set sets settings sha sha1 sha2 share shared shared_pool short show shrink shutdown si_averagecolor si_colorhistogram si_featurelist si_positionalcolor si_stillimage si_texture siblings sid sign sin size size_t sizes skip slave sleep smalldatetimefromparts smallfile snapshot some soname sort soundex source space sparse spfile split sql sql_big_result sql_buffer_result sql_cache sql_calc_found_rows sql_small_result sql_variant_property sqlcode sqldata sqlerror sqlname sqlstate sqrt square standalone standby start starting startup statement static statistics stats_binomial_test stats_crosstab stats_ks_test stats_mode stats_mw_test stats_one_way_anova stats_t_test_ stats_t_test_indep stats_t_test_one stats_t_test_paired stats_wsr_test status std stddev stddev_pop stddev_samp stdev stop storage store stored str str_to_date straight_join strcmp strict string struct stuff style subdate subpartition subpartitions substitutable substr substring subtime subtring_index subtype success sum suspend switch switchoffset switchover sync synchronous synonym sys sys_xmlagg sysasm sysaux sysdate sysdatetimeoffset sysdba sysoper system system_user sysutcdatetime table tables tablespace tan tdo template temporary terminated tertiary_weights test than then thread through tier ties time time_format time_zone timediff timefromparts timeout timestamp timestampadd timestampdiff timezone_abbr timezone_minute timezone_region to to_base64 to_date to_days to_seconds todatetimeoffset trace tracking transaction transactional translate translation treat trigger trigger_nestlevel triggers trim truncate try_cast try_convert try_parse type ub1 ub2 ub4 ucase unarchived unbounded uncompress under undo unhex unicode uniform uninstall union unique unix_timestamp unknown unlimited unlock unpivot unrecoverable unsafe unsigned until untrusted unusable unused update updated upgrade upped upper upsert url urowid usable usage use use_stored_outlines user user_data user_resources users using utc_date utc_timestamp uuid uuid_short validate validate_password_strength validation valist value values var var_samp varcharc vari varia variab variabl variable variables variance varp varraw varrawc varray verify version versions view virtual visible void wait wallet warning warnings week weekday weekofyear wellformed when whene whenev wheneve whenever where while whitespace with within without work wrapped xdb xml xmlagg xmlattributes xmlcast xmlcolattval xmlelement xmlexists xmlforest xmlindex xmlnamespaces xmlpi xmlquery xmlroot xmlschema xmlserialize xmltable xmltype xor year year_to_month years yearweek",
literal:"true false null",built_in:"array bigint binary bit blob boolean char character date dec decimal float int int8 integer interval number numeric real record serial serial8 smallint text varchar varying void"},contains:[{className:"string",begin:"'",end:"'",contains:[e.BACKSLASH_ESCAPE,{begin:"''"}]},{className:"string",begin:'"',end:'"',contains:[e.BACKSLASH_ESCAPE,{begin:'""'}]},{className:"string",begin:"`",end:"`",contains:[e.BACKSLASH_ESCAPE]},e.C_NUMBER_MODE,e.C_BLOCK_COMMENT_MODE,n]},e.C_BLOCK_COMMENT_MODE,n]}}),e})},function(e,n){"use strict";function a(e){for(var n=e.target.getAttribute("data-group-id"),a=document.querySelectorAll("[data-group-id='"+n+"']"),t=0;t<a.length;++t)a[t].classList.add(r)}function t(e){for(var n=e.target.getAttribute("data-group-id"),a=document.querySelectorAll("[data-group-id='"+n+"']"),t=0;t<a.length;++t)a[t].classList.remove(r)}function i(){for(var e=document.querySelectorAll("[data-group-id]"),n=0;n<e.length;n++){var i=e[n];i.addEventListener("mouseenter",a),i.addEventListener("mouseleave",t)}}Object.defineProperty(n,"__esModule",{value:!0}),n.initialize=i;var r="hll"}]);

